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pEvolutionary Algorithms for Real-Parameter Optimizations

Real Coding Advantages

� The use of real parameters makes it possible to use large domains (even unknown domains!)

for the variables.

� The capacity to exploit the graduality of the functions with continuous variables. The concept

of graduality refers to the fact that slight changes in the variables correspond to slight changes

in the function.

� The capacity for the local tuning of the solutions.

� The coding and decoding processes are avoided, thus increasing the EA’s speed.

� � � � � � � � � � � � � � � � � � � � � � � � � � � EAs for Real-Parameter Optimization



pEvolutionary Algorithms for Real-Parameter Optimizations

Real Coding Advantages

� The use of real parameters makes it possible to use large domains (even unknown domains!)

for the variables.

� The capacity to exploit the graduality of the functions with continuous variables. The concept

of graduality refers to the fact that slight changes in the variables correspond to slight changes

in the function.

� The capacity for the local tuning of the solutions.

� The coding and decoding processes are avoided, thus increasing the EA’s speed.

Evolutionary Algorithms

� Standard selecto-recombinative genetic algorithms with real representation.

� Evolution strategies.

� Differential Evolution.
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pRecombination Operators for Real-Parameter GAs

Standard recombination operators

� Simple Crossover (1-point)

� Average Crossover

� Arithmetic Crossover

� Flat Crossover

� Blend Crossover BLX-(α)

Specialized recombination operators

� Unimodal Normal Distribution Crossover (UNDX)

� Simplex Crossover (SPX)

� Parent-Centric (PCX)

� � � � � � � � � � � � � � � � � � � � � � � � � � � EAs for Real-Parameter Optimization



pStandard Recombination Operators for Real-Parameter GAs

Let us assume that P1 = (p11 . . . p
1
n) and P2 = (p21 . . . p

2
n) are two parental chromosomes.

� Simple Crossover – a position i ∈ 1, 2, . . . , n− 1 is randomly chosen and the two offspring

chromosomes O1 and O2 are built as follows
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� Average Crossover – an offspring O = (o1, . . . , oi, . . . , on) is created such that

oi = (p1i + p2i )/2, for i = 1 . . . n

� Arithmetical Crossover – two offspring Ok = (hk1, . . . , h
k
n), where k = 1, 2, are built as follows

o1i = λp1i + (1− λ)p2i , for i = 1 . . . n

o2i = λp2i + (1− λ)p1i
where λ is a constant or varies with regard to the number of generations made.

� � � � � � � � � � � � � � � � � � � � � � � � � � � EAs for Real-Parameter Optimization
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pStandard Recombination Operators for Real-Parameter GAs

Let us assume that P1 = (p11 . . . p
1
n) and P2 = (p21 . . . p

2
n) are two parental chromosomes.

� Flat Crossover – an offspring O = (o1, . . . , oi, . . . , on) is created such that

oi is randomly (uniformly) chosen value from interval [min(p1i , p
2
i ),max(p

1
i , p

2
i )].

� Blend Crossover – an offspring O = (o1, . . . , oi, . . . , on) is created such that oi is randomly

(uniformly) chosen number from interval

cmin − I · α, cmax + I · α, for i = 1 . . . n,

where cmin = min(p1i , p
2
i ), cmax = max(p1i , p

2
i ), I = cmax − cmin
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pUnimodal Normal Distribution Crossover

Unimodal Normal Distribution Crossover (UNDX) creates offspring solutions around the

center of mass of µ parents as follows:

−→o = −→m +

µ−1∑
i=1

wi|
−→
d (i)|−→e (i) +

n∑
j=µ

vjD
−→e (j)

where

� µ is the number of parents involved in the process of generating

the offspring

�
−→m is the mean of the first (µ− 1) parents

�
−→
d (i) = −→p (i) −−→m are (µ− 1) direction vectors

�
−→e (i) =

−→
d (i)

|
−→
d (i)|

are the orthogonal basis vectors spanning the sub-

space orthogonal to the subspace spanned by all −→e (i)

� D is the length of the vector orthogonal to all −→e (i)

� wi and vj are zero-mean normally distributed variables
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pSimplex Crossover

Simplex Crossover (SPX)

� generates offspring around the mean of parents parents,

� offspring restricted within a region that is a simplex γ =
√
µ + 1

times bigger than the parent simplex,

� assigns a uniform probability distribution for creating solutions in

the restricted area,

� the computational complexity for creating one offspring is O(µ).
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pParent-Centric Crossover

Parent-Centric Crossover (PCX)

� offspring are centered around each parent; it assigns more probability for an offspring to remain

closer to the parents than away from parents,

� the complexity for creating one offspring is O(µ).

PCX creates offspring as follows

−→o = −→p + w1|
−→
d (p)| +

µ∑
i=1,i 6=p

w2D
−→e (i)

where

�
−→m is the mean vector of µ parents

�
−→p is a parent chosen as the basis for the offspring

�
−→
d (p) = −→p −−→m

� D is the average over all perpendicular distances calculated from

each of the other (µ− 1) parents to the vector
−→
d (p)

� w1 and w2 are zero-mean normally distributed variables.
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pGeneralized Generation Gap (G3) Evolutionary Algorithm Model

G3 – elite-preserving, steady-state, and computationally fast.

1. From the population P (t), select the best parent and (µ− 1) other parents randomly.

2. Generate λ offspring from µ parents using a recombination scheme.

3. Choose two parents at random from µ parents.

4. Form a combined subpopulation of chosen two parents and λ offspring, choose the best two

solutions and replace the chosen two parents with these solutions.

Comparisons of UNDX, SPX and PCX with the G3 model on Ellipsoidal, Schwefel’s, and Gener-

alized Rosenbrock’s functions and n = 20.

c©Deb K. et al.: Real-Coded Evolutionary Algorithms with Parent-Centric Recombination.
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pEvolution Strategies

Evolution strategy (ES)

� ES is an optimization technique based on ideas of adaptation and evolution.

� ES uses natural problem-dependent representations, and primarily mutation and selection as

search operators.

� For real-valued search spaces, mutation is performed by adding a normally distributed random

value to each vector component.

� The step size is often governed by self-adaptation. Individual step sizes for each

coordinate or correlations between coordinates are either governed by self-adaptation or by

covariance matrix adaptation (CMA-ES).
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pTwo Membered ES

The two membered ES – (1+1)-ES – is a simple mutation-selection scheme ES.

� Population consists of one parent individual and one descendant, created by means of adding

normally distributed random numbers.

� The better of both individuals then serves as the ancestor of the following iteration.

Formal definition of (1+1)-ES:

(1 + 1)− ES = (P 0,m, s, cd, ci, f, g, t)

where

P 0 = (x0, σ0) ∈ I population

x0 is a vector of solution parameters
σ0 is vector of standard deviations
I = Rn ×Rn

m : I → I mutation operator

s : I × I → I selection operator

cd, ci ∈ R step-size control
f : Rn → R objective function

gj : Rn → R constraint functions

t : I × I → {0, 1} termination criterion
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pTwo Membered ES cnd.

P 0 denotes the initial population consisting of a single parent.

Mutation operator m is applied to all components of the object parameter xt. It is realized by

adding normally distributed random numbers

x
′t = xt +N0(σ

t)

where N0 denotes a vector of independent Gaussian random numbers with zero mean and standard

deviations σti = (i = 1, . . . , n).

Selection operator just determines the fitter individual of the parent pt and offspring ot to become

the parent for the next generation.

� ot = m(pt) = (x
′t, σt) survives if it is not worse than the parent pt,

� pt = (xt, σt) survives otherwise.

Termination criterion can be

� elapsed CPU time,

� elapsed number of generations,

� absolute or relative progress per generation, etc.
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p1/5 Success Rule

Progress rate (ϕ) – a quotient of the distance covered towards the optimum and the number

of trials needed for this distance.

� Calculated for two model functions

Corridor model: f1(x) = F (x1) = c0 + c1x1, ∀i ∈ {2, . . . , n} : −b/2 ≤ xi ≤ b/2

Sphere model: f2(x) =
∑n

i=1 x
2
i

� In both cases the step size σopti is inversely proportional to the number of object variables n.

� The maximum progress rate is also inversely proportional to n.

For the optimum step sizes Rechenberg obtained the following probabilities for a successful mu-

tation,

� popt1 = 1/(2e) ≈ 0.184

� popt2 ≈ 0.270

1/5 success rule – In order to obtain nearly optimal (local) performance of the (1+1)-ES in

real-valued search spaces, tune the mutation strength in such a way that the (measured) success

rate is about 1/5.

� If it is greater than 1/5, increase the variance; if it is less, decrease the mutation variance.

� � � � � � � � � � � � � � � � � � � � � � � � � � � EAs for Real-Parameter Optimization



pExtended Mutation Operator

Mutation operator m modifies all components of the object parameter xt according to

x
′t = xt +N0(σ

t)

while the σt variances are dynamically adjusted (all at the same time) according to

σt+n = cd · σt , if pts < 1/5

ci · σt , if pts > 1/5

σt , if pts = 1/5

where pts is the frequency of successful mutations, measured over 10n trials.

Recommended setup:

� increase step size: ci = 1/0.82,

� decrease step size: cd = 0.82,

� adjustment takes place every n mutations.

� � � � � � � � � � � � � � � � � � � � � � � � � � � EAs for Real-Parameter Optimization



pMultimembered EAs

Multimembered (µ+1)-ES where µ > 1 parents can participate in the generation of one offspring:

(µ + 1)− ES = (P 0, µ, r,m, s, cd, ci, f, g, t)

where

P 0 = (a01, . . . , a
0
µ) ∈ Iµ population

I = Rn ×Rn

µ > 1 number of parents

r : Iµ → I recombination operator
m : I → I mutation operator

s : Iµ+1 → Iµ selection operator

cd, ci ∈ R step-size control

f : Rn → R objective function

gj : Rn → R constraint functions

t : Iµ → {0, 1} termination criterion
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pMultimembered EAs: Recombination

Recombination operator r:

r(P t) = a
′
= (x

′
, σ
′
) ∈ I, x′ ∈ Rn, σ

′ ∈ Rn

x
′
i = xa,i, χ ≤ 0.5 ∀i ∈ 1, . . . , n

xb,i, χ > 0.5

σ
′
i = σa,i, χ ≤ 0.5 ∀i ∈ 1, . . . , n

σb,i, χ > 0.5

where a = (xa, σa) and b = (xb, σb) are two parents.

Remarks:

� Parents a and b are determined randomly (uniform).

All individuals in the population have the same mating probabilities.

� A uniform random variable χ is sampled anew for each component of the vectors x
′

and σ
′
.

� The selection operator s removes the least fit individual out of µ parents plus 1 offspring from

the population.
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p(µ + λ)- and (µ, λ)- Multimembered EAs

Motivation to extend (µ + 1)-ES to (µ + λ)- and (µ, λ)-ES:

� To enable self-adaptation of strategic parameters standard deviations.

The σt parameters are considered a part of the individual’s genome that is subject to recom-

bination and mutation.

Those individuals with better adjusted strategy parameters are expected to perform better.

� To make use of parallel computers, where several newly generated individuals can be
processed (evaluated) simultaneously.
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p(µ + λ)-EA

Model:

� µ parents produce λ offspring which are reduced again to the µ parents for the next generation.

� Selection s operates on joined set of parents and offspring.

Some very well adapted individuals can survive in the population for ever.

Deficiencies:

� Can get stuck at some good location if the internal parameter setting becomes unsuitable to

jump to the new field of possible improvements (dynamic opt. problems, problems with noisy

objective function).
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p(µ, λ)-EA

Model:

� µ parents produce λ offspring, only the offspring undergo selection;

� Forgetting principle – the lifetime of every individual is limited to one generation if µ < λ.

Remarks:

� Possible short phases of recession.

� It avoids long stagnation phases due to misadapted strategy parameters.
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pHandling the Internal Strategy Parameters

Internal strategy parameters σt are part of the genetic information of an individual

ati = (xt, σt) ∈ I

which are not controlled by the 1/5 success rule anymore.

Mutation operator works on both the xt and σt:

a
′t
i = r(P t) // recombination

m(a
′t
i ) = a

′′t
i = (x

′′t, σ
′′t)

σ
′′t = σ

′texp(N0(M σ)) // strategy mutation

x
′′t = x

′t +N0(σ
′′t) // mutation of solution params x

Remarks:

� Unsuitable σ
′′t are removed by means of selection.

� EAs which are operated with an optimum ratio of µ/λ for a maximum rate of convergence,

are biased towards local search.

They tend to reduce the number of different parameters σt in a population.
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pES with Correlated Mutations

Motivation:

� With dedicated σi for each object variable xi preferred directions of search can be established

only along the axes of the coordinate system.

� The optimum rate of progress is achieved by chance when suitable mutations coincide.

The trajectory of the population through the search space does not straightforwardly follow

the gradient.

Correlated mutations – additional strategy vector θ is added to the genotype ati = (xt, σt, θt),

where a set of inclination angles θ ∈ Rw define n-dim rotating hyperellipsoids, w = n(n− 1)/2.

Ellipsoid contours of equal prob. density to place an offspring for simple and correlated mutations.

c©B ack T. et al.: A Survey of Evolution Strategies.
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pDifferential Evolution

Differential Evolution (DE) – an evolutionary algorithm named after a special kind of differ-

ential operator, which is used to create new offspring.

DE evolves a population of N D-dimensional variable vectors. The ith vector of the population

at time t is represented as
−→
X i(t) = [xi,1(t), xi,2(t), . . . , xi,D(t)]

Values xi,j can be restricted within certain range between xLj and xUj .
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pDifferential Evolution: Differential Operator

Differential Operator – generates an offspring for each population member
−→
X i(t) as follows

1. Donor vector
−→
V i(t) is created.

DE/rand/1 scheme:

� Three population members (indexed r1, r2 and r3) are chosen at random.

� A difference between any two of the three vectors scaled by value F is added to the third

one.

vi,j(t) = xr1,j(t) + F · (xr2,j(t)− xr3,j(t)), for j = 1 . . . D.

Illustration of Creation of the Donor Vector in 2D

c©Das S. et al.: Particle Swarm Optimization and Differential Evolution Algorithms. Projection of the Ackley’s function
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pDifferential Evolution: Crossover

2. Crossover – to increase a diversity of the population.

The donor vector exchanges its components with the target vector
−→
X i(t) under one of the

following schemes:

� Exponential scheme

L – the number of components the donor vector will contribute to the target.

n – a starting point in the target vector
−→
X i(t), from where the crossover with the donor

vector
−→
V i(t) starts.

CR – crossover parameter determining Prob(L ≥ m) = (CR)m−1, for any m > 0.

Trial vector
−→
U i(t) (offspring) is formed as follows

ui,j(t) = vi,j(t) for j =< n >D, < n + 1 >D, . . . , < n + L− 1 >D,

= xi,j(t) for remaining components

where <>D denote a modulo function with modulus D.

� Binomial scheme. The crossover is performed on each of the D variables whenever a

randomly picked number between 0 and 1 is within CR value

ui,j(t) = vi,j(t) if rand(0,1)< CR

= xi,j(t) otherwise
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pDifferential Evolution: Selection

3. Selection – determines which one of the target vector and the trial vector will survive in the

next generation.

−→
X i(t + 1) =

−→
U i(t) if f (

−→
U i(t)) ≤ f (

−→
X i(t))

=
−→
X i(t) otherwise

The population either gets better (w.r.t. fitness function) or remains constant.
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pDifferential Evolution: Pseudocode

Various DE schemes – DE/x/y

1. x – type of the vector to be perturbed by the differential operator (rand/best).

2. y – number of difference vectors considered for perturbation of x.
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