# **Evolutionary Algorithms: Multi-Objective Optimization**

# Jiří Kubalík Department of Cybernetics, CTU Prague



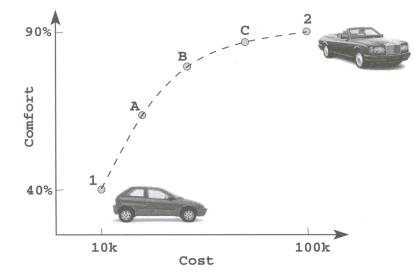
http://cw.felk.cvut.cz/doku.php/courses/a4m33bia/start

# **Multi-Objective Optimization**

- :: Many real-world problems involve multiple objectives
  - Conflicting objectives
    - A solution that is extreme with respect to one objective requires a compromise in other objectives.
    - A sacrifice in one objective is related to the gain in other objective(s).

#### Motivation example: Buying a car

- two extreme hypothetical cars 1 and 2,
- cars with a trade-off between cost and comfort – A, B, and C.



©Kalyanmoy Deb: Multi-Objective Optimization using Evolutionary Algorithms.

# **Multi-Objective Optimization**

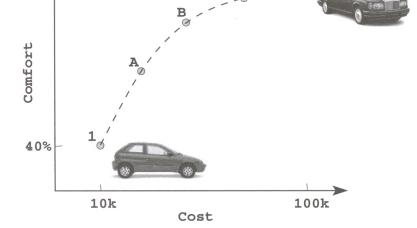
- :: Many real-world problems involve multiple objectives
  - Conflicting objectives
    - A solution that is extreme with respect to one objective requires a compromise in other objectives.
    - A sacrifice in one objective is related to the gain in other objective(s).
    - Motivation example: Buying a car
    - two extreme hypothetical cars 1 and 2,
    - cars with a trade-off between cost and comfort – A, B, and C.

©Kalyanmoy Deb: Multi-Objective Optimization using Evolutionary Algorithms.

Which solution out of all of the trade-off solutions is the best with respect to all objectives?
 Without any further information those trade-offs are indistinguishable.

90%

 $\implies$  a number of optimal solutions is sought in multiobjective optimization!



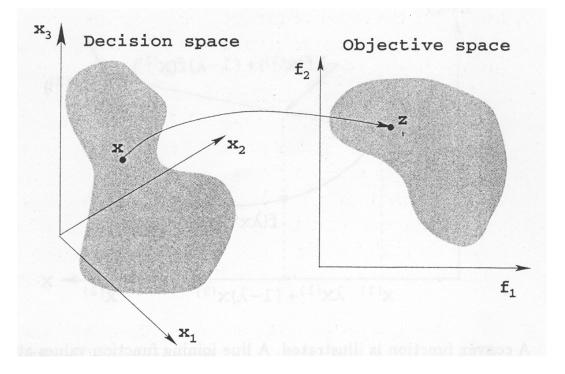
## **Multi-Objective Optimization: Definition**

#### :: General form of multi-objective optimization problem

• x is a vector of n decision variables:  $x = (x_1, x_2, ..., x_n)^T$ ;

- Decision space is constituted by variable bounds that restrict each variable  $x_i$  to take a value within a lower  $x_i^{(L)}$  and an upper  $x_i^{(U)}$  bound;
- Inequality and equality constraints
- A solution x that satisfies all constraints and variable bounds is a feasible solution, otherwise it si called an infeasible solution;
- Feasible space is a set of all feasible solutions;
- Objective functions  $f(x) = (f_1(x), f_2(x), ..., f_M(x))^T$  constitute a multi-dimensional objective space.

### **Decision and Objective Space**



©Kalyanmoy Deb: Multi-Objective Optimization using Evolutionary Algorithms.

• For each solution x in the decision space, there exists a point in the objective space

$$f(x) = z = (z_1, z_2, ..., z_M)^T$$

## **Motivation Example: Cantilever Design Problem**

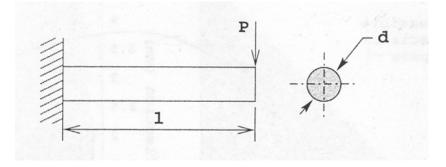
Task is to design a beam, defined by two decision variables

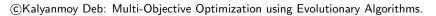
- diameter d,
- length *l*.

that can carry an end load P and is optimal with respect to the following **objectives** 

- $f_1$  minimization of weight,
- f<sub>2</sub> minimization of *deflection*.
   Obviously, conflicting objectives!

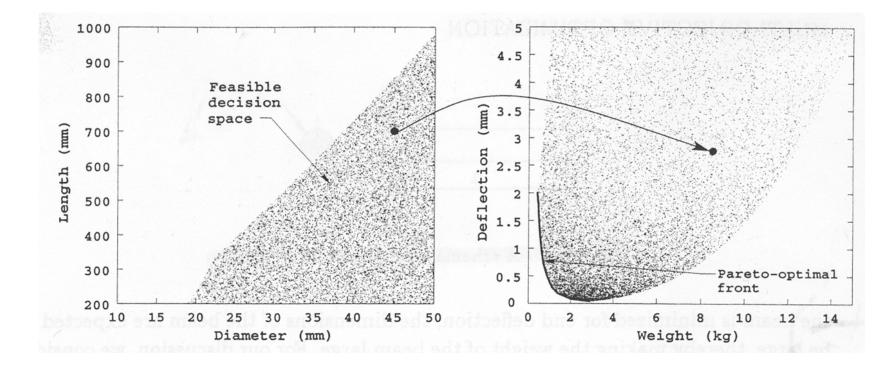
subject to the following constraints





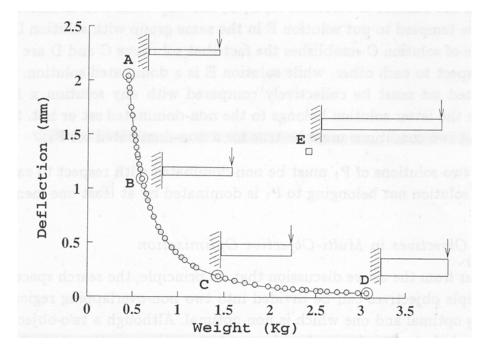
- the developed maximum stress  $\sigma_{max}$  is less than the allowable strength  $S_y$ ,
- the end deflection  $\delta$  is smaller than a specified limit  $\delta_{max}$ .

### **Cantilever Design Problem: Decision and Objective Space**



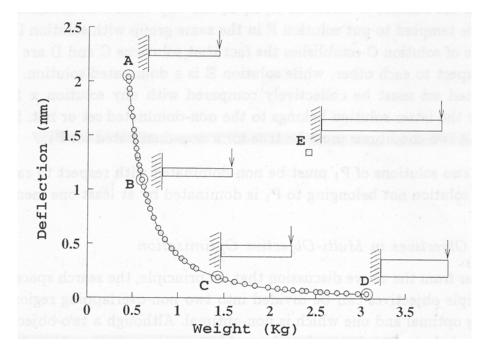
©Kalyanmoy Deb: Multi-Objective Optimization using Evolutionary Algorithms.

### **Dominance and Pareto-Optimal Solutions**



©Kalyanmoy Deb: Multi-Objective Optimization using Evolutionary Algorithms.

#### **Dominance and Pareto-Optimal Solutions**



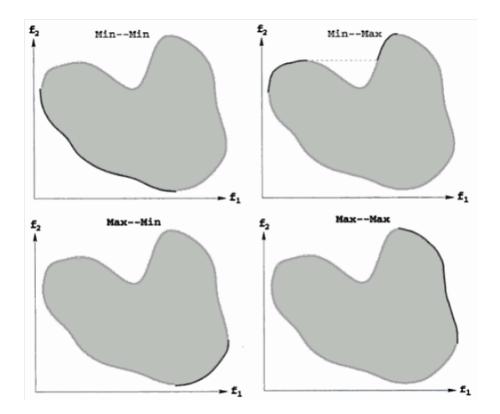
©Kalyanmoy Deb: Multi-Objective Optimization using Evolutionary Algorithms.

**::** Domination: A solution  $x^{(1)}$  is said to dominate the other solution  $x^{(2)}$ ,  $x^{(1)} \leq x^{(2)}$ , if  $x^{(1)}$  is no worse than  $x^{(2)}$  in all objectives and  $x^{(1)}$  is strictly better than  $x^{(2)}$  in at least one objective. Solutions A, B, C, D are non-dominated solutions (Pareto-optimal solutions) Solution E is dominated by C and B (E is non-optimal).

# **Properties of Dominance-Based Multi-Objective Optimization**

**::** Non-dominated set – Among a set of solutions P, the noon-dominated set of solutions P' are those that are not dominated by any member of the set P.

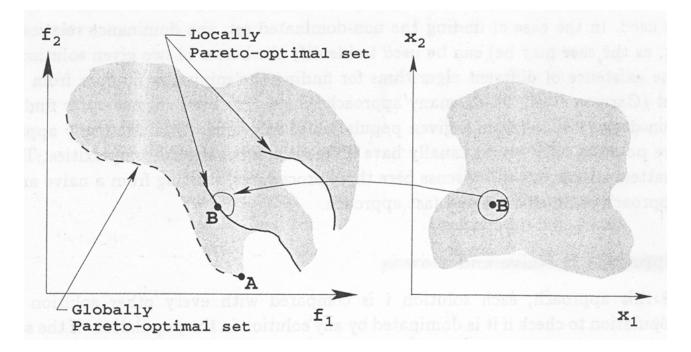
The non-dominated set of the entire feasible search space is the **globally Pareto-optimal set**.



©Kalyanmoy Deb: Multi-Objective Optimization using Evolutionary Algorithms.

## **Properties of Dominance-Based Multi-Objective Optimization**

If for every member x in a set P there exists no solution y (in the neighborhood of x such that  $||y - x|| \le \epsilon$ , where  $\epsilon$  is a small positive number) dominating any member of the set P, then solutions belonging to the set P constitute a locally Pareto-optimal set.



©Kalyanmoy Deb: Multi-Objective Optimization using Evolutionary Algorithms.

# **Goals of Dominance-Based Multi-Objective Optimization**

- :: Every finite set of solutions P can be divided into two non-overlapping sets
  - non-dominated set  $P_1$  contains all solutions that do not dominate each other, and
  - dominated set  $P_2$  at least one solution in  $P_1$  dominates any solution in  $P_2$ .

:: In the absence of other factors (e.g. preference for certain objectives, or for a particular region of the tradeoff surface) there are two goals of the multi-objective optimization

- Quality To find a set of solutions as close as possible to the Pareto-optimal front.
- **Spread** To find a set of solutions as diverse as possible.

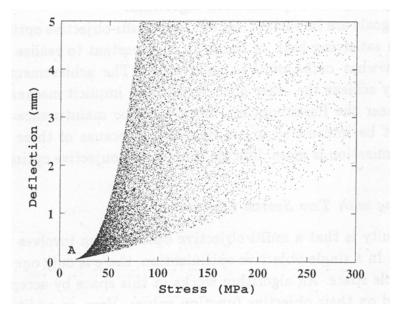
# **Non-Conflicting Objectives**

- :: There exist multiple Pareto-optimal solutions in a problem only if the objectives are conflicting to each other.
  - If this does not hold then the cardinality of the Pareto-optimal set is one.

This means that the optimum solution corresponding to any objective is the same.

Example: Cantilever beam design problem

- $f_1$  minimizing the end deflection  $\delta$ ,
- $f_2$  minimizing the maximum developed stress in the beam  $\sigma_{max}$ .



©Kalyanmoy Deb: Multi-Objective Optimization using Evolutionary Algorithms.

## **Differences with Single-Objective Optimization**

#### :: Two (orthogonal) goals instead of one

- progressing towards the Pareto-optimal front,
- maintaining a diverse set of solutions in the non-dominated set.
- :: Dealing with two search spaces
  - objective vs. decision space,
  - in which space the diversity must be achieved?

#### :: No artificial fix-ups

 weighted sum approach – multiple objectives are weighted and summed together to create a composite objective function.

Its performance depends on the chosen weights.

•  $\varepsilon$ -constraint method – chooses one of the objective functions and treats of the objectives as constraints by limiting each of them within certain predefined limits.

Also depends on the chosen constraint limits.

# **Difficulties with Classical Optimization Algorithms**

- The convergence to an optimal solution depends on the chosen initial solution.
- Most algorithms tend to get stuck to a suboptimal solution.
- An algorithm efficient in solving one optimization problem may not be efficient in solving a different opt. problem.
- Algorithms are not efficient in handling problems having a discrete search space.
- Algorithms cannot be efficiently used on a parallel machine

#### Pareto Archived Evolution Strategy (PAES)

Knowles, J.D., Corne, D.W. (2000) Approximating the nondominated front using the Pareto archived evolution strategy. Evolutionary Computation, 8(2), pp. 149-172

#### Multiple Objective Genetic Algorithm (MOGA)

Carlos M. Fonseca, Peter J. Fleming: Genetic Algorithms for Multiobjective Optimization: Formulation, Discussion and Generalization, In Genetic Algorithms: Proceedings of the Fifth International Conference, 1993

#### Niched-Pareto Genetic Algorithm (NPGA)

Jeffrey Horn, Nicholas Nafpliotis, David E. Goldberg: A Niched Pareto Genetic Algorithm for Multiobjective Optimization, Proceedings of the First IEEE Conference on Evolutionary Computation, IEEE World Congress on Computational Intelligence, 1994

#### SPEA2

Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary Algorithm For Multiobjective Optimization, In: Evolutionary Methods for Design, Optimisation, and Control, Barcelona, Spain, pp. 19-26, 2002

#### NSGA

Srinivas, N., and Deb, K.: Multi-objective function optimization using non-dominated sorting genetic algorithms, Evolutionary Computation Journal 2(3), pp. 221-248, 1994

#### NSGA-II

Kalyanmoy Deb, Samir Agrawal, Amrit Pratap, and T Meyarivan: A Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II, In Proceedings of the Parallel Problem Solving from Nature VI Conference, 2000

• • • •

# Non-Dominated Sorting Genetic Algorithm (NSGA)

- :: Common features with the standard GA
  - variation operators crossover and mutation,
  - selection method Stochastic Reminder Roulette-Wheel,
  - standard generational evolutionary model.
- :: What distinguishes NSGA from the SGA
  - fitness assignment scheme which prefers non-dominated solutions, and
  - fitness sharing strategy which preserves diversity among solutions of each non-dominated front.

#### :: Algorithm NSGA

- 1. Initialize population of solutions
- 2. Repeat
  - Calculate objective values and assign fitness values
  - Generate new population

Until stopping condition is fulfilled

**::** Diversity preservation method originally proposed for solving multi-modal optimization problems so that GA is able to sample each optimum with the same number of solutions.

:: Idea - diversity in the population is preserved by degrading the fitness of similar solutions

:: Algorithm for calculating the shared fitness function value of i-th individual in population of size  ${\cal N}$ 

1. calculate *sharing function* value with all solutions in the population according to

$$Sh(d) = \begin{array}{l} 1 - (\frac{d}{\sigma_{share}})^{\alpha}, & \text{if } d \leq \sigma_{share} \\ \mathbf{0}, & \text{otherwise.} \end{array}$$

2. calculate niche count  $nc_i$  as follows

$$nc_i = \sum_{j=1}^N Sh(d_{ij})$$

3. calculate shared fitness as

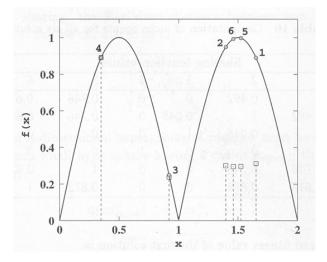
$$f_i' = f_i/nc_i$$

:: Remark: If d = 0 then Sh(d) = 1 meaning that two solutions are identical. If  $d \ge \sigma_{share}$  then Sh(d) = 0 meaning that two solutions do not have any sharing effect on each other.

#### **Fitness Sharing: Example**

- :: Bimodal function six solutions and corresponding shared fitness functions
  - $\sigma_{share} = 0.5, \ \alpha = 1.$

| Sol. | String | Decoded | $\chi^{(i)}$ | fi    | nci   | f'i   |
|------|--------|---------|--------------|-------|-------|-------|
| i    |        | value   |              |       | 8.0   | ι     |
| 1    | 110100 | 52      | 1.651        | 0.890 | 2.856 | 0.312 |
| 2    | 101100 | 44      | 1.397        | 0.948 | 3.160 | 0.300 |
| 3    | 011101 | 29      | 0.921        | 0.246 | 1.048 | 0.235 |
| 4    | 001011 | 11      | 0.349        | 0.890 | 1.000 | 0.890 |
| 5    | 110000 | 48      | 1.524        | 0.997 | 3.364 | 0.296 |
| 6    | 101110 | 46      | 1.460        | 0.992 | 3.364 | 0.295 |



©Kalyanmoy Deb: Multi-Objective Optimization using Evolutionary Algorithms.

- :: Let's take the first solution
  - $d_{11} = 0.0$ ,  $d_{12} = 0.254$ ,  $d_{13} = 0.731$ ,  $d_{14} = 1.302$ ,  $d_{15} = 0.127$ ,  $d_{16} = 0.191$
  - $Sh(d_{11}) = 1$ ,  $Sh(d_{12}) = 0.492$ ,  $Sh(d_{13}) = 0$ ,  $Sh(d_{14}) = 0$ ,  $Sh(d_{15}) = 0.746$ ,  $Sh(d_{16}) = 0.618$ .
  - $nc_1 = 1 + 0.492 + 0 + 0 + 0.746 + 0.618 = 2.856$
  - $f'(1) = f(1)/nc_1 = 0.890/2.856 = 0.312$

### **NSGA: Fitness Assignment**

- **::** Input: Set *P* of solutions with assigned objective values.
- **:: Output**: Set of solutions with assigned fitness values (the bigger the better).
- 1. Choose sharing parameter  $\sigma_{share}$ , small positive number  $\epsilon$ , initialize  $F_{max} = PopSize$  and front counter front = 1
- 2. Find set  $P' \subset P$  of non-dominated solutions
- 3. For each  $q \in P'$ 
  - assign fitness  $f(q) = f_{max}$ ,
  - calculate sharing function with all solutions in P' niche count ncq among solutions of P' only, the normalized Euclidean distance d<sub>ij</sub> is calculated
  - calculate shared fitness  $f'(q) = f(q)/nc_q$ .

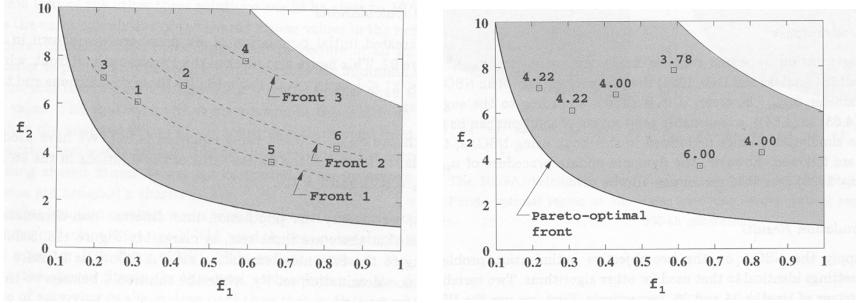
4. 
$$f_{max} = min(f'(q) : q \in P') - \epsilon$$
  
 $P = P \setminus P'$   
 $front = front + 1$ 

5. If not all solutions are assessed go to step 2, otherwise stop.

$$d_{ij} = \sqrt{\sum_{k=1}^{n} (\frac{x_k^{(i)} - x_k^{(j)}}{x_k^{max} - x_k^{min}})^2}$$

#### **NSGA:** Fitness Assignment cont.

- :: Example:
  - First, 10 solutions are classified into different non-dominated fronts.
  - Then, the fitness values are calculated according to the fitness sharing method.
    - The sharing function method is used front-wise.
    - Within a front, less dense solutions have better fitness values.



©Kalyanmoy Deb: Multi-Objective Optimization using Evolutionary Algorithms.

#### :: Computational complexity

- Governed by the non-dominated sorting procedure and the sharing function implementation.
  - non-dominated sorting complexity of  $O(MN^3)$ .
  - sharing function requires every solution in a front to be compared with every other solution in the same front, total of  $\sum_{j=1}^{\rho} |P_j|^2$ , where  $\rho$  is a number of fronts. Each distance computation requires evaluation of n differences between parameter values. In the worst case, when  $\rho = 1$ , the overall complexity is of  $O(nN^2)$ .

#### :: Advantages

- Assignment of fitness according to non-dominated sets makes the algorithm converge towards the Pareto-optimal region.
- Sharing allows phenotypically diverse solutions to emerge.

#### :: Disdvantages

- sensitive to the sharing method parameter  $\sigma_{share}$ .
  - some guidelines for setting the parameter based on the expected number of optima q.

$$\sigma_{share} = \frac{0.5}{\sqrt[n]{q}}$$

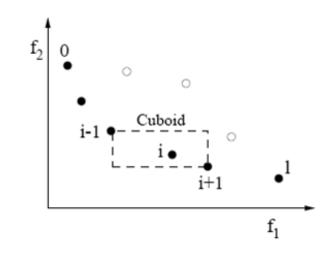
- or dynamic update procedure of  $\sigma_{share}$ .

# NSGA-II

- :: Fast non-dominated sorting approach
  - Computational complexity of  $O(MN^2)$ .
- :: Diversity preservation
  - the sharing function method is replaced with a crowded comparison approach,
  - parameterless approach.
- :: Elitist evolutionary model

## **NSGA-II: Diversity preservation**

:: Density estimation



©Kalyanmoy Deb: Multi-Objective Optimization using Evolutionary Algorithms.

#### :: Crowded comparison operator

Every solution in the population has two attributes

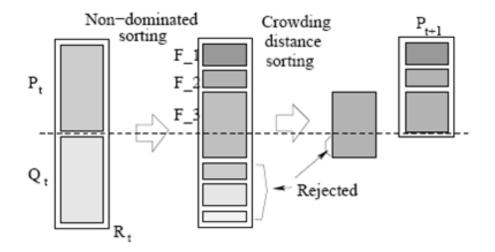
- 1. non-domination rank  $(i^{rand})$ , and
- 2. crowding distance  $(i^{distance})$ .

A partial order  $\prec_n$  is defined as:

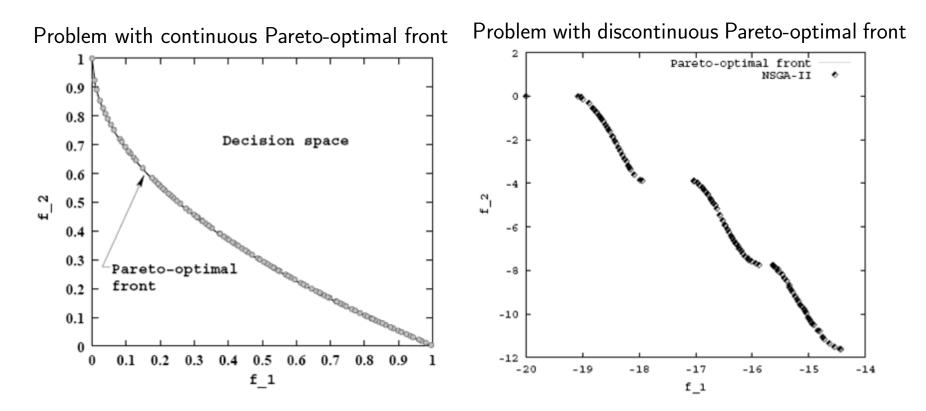
$$i \prec_n j \text{ if}(i^{rank} < j^{rank}) \text{ or } ((i^{rank} = j^{rank}) and(i^{distance} > j^{distance}))$$

## **NSGA-II: Evolutionary Model**

- 1. Current population  $P_t$  is sorted based on the non-domination Each solution is assigned a fitness equal to its non-domination level (1 is the best).
- 2. The usual binary tournament selection, recombination, and mutation are used to create a child population  $Q_t$  of size N.
- 3. Combined population  $R_t = P_t \cup Q_t$  is formed. Elitism is ensured.
- 4. Population  $P_{t+1}$  is formed according to the following schema



©Kalyanmoy Deb: Multi-Objective Optimization using Evolutionary Algorithms.



©Kalyanmoy Deb et al.: A Fast and Elitist Multi-Objective Genetic Algorithm: NSGA-II.

#### **Definition:**

Given a set of m items and a set of n knapsacks, with  $p_{i,j}$  being profit of item j according to knapsack i,  $w_{i,j}$  being weight of item j according to knapsack i, and  $c_i$  being capacity of knapsack i, find a vector  $\mathbf{x} = (x_1, x_2, \ldots, x_m) \in \{0, 1\}^m$ , such that

$$\forall i \in \{1, 2, \dots, n\} : \sum_{j=1}^{m} w_{i,j} \cdot x_j \le c_i$$

and for which  $f(\mathbf{x}) = (f_1(\mathbf{x}), f_2(\mathbf{x}), \dots, f_n(\mathbf{x}))$  is maximum, where

$$f_i(\mathbf{x}) = \sum_{j=1}^m p_{i,j} \cdot x_j$$

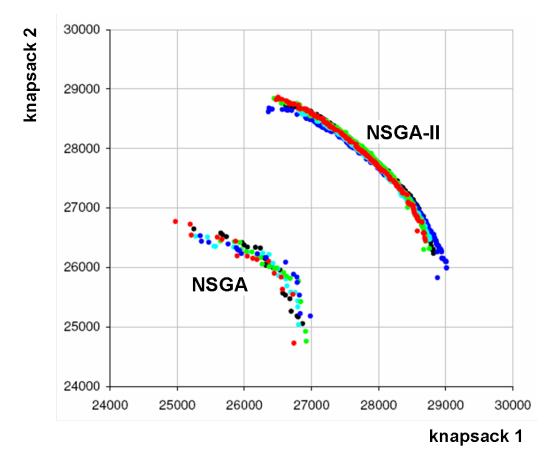
and  $x_j = 1$  iff item j is selected.

A well-known **NP hard** combinatorial optimization problem.

## Simulation Results: NSGA vs. NSGA-II

Comparison of NSGA nad NSGA-II on bi-objective 0/1 Knapsack Problem with 750 items.

**NSGA-II outperforms NSGA** with respect to both performance measures.



**::** Binary tournament selection with modified domination concept is used to choose the better solution out of the two solutions i and j, randomly picked up from the population.

:: In the presence of constraints each solution in the population can be either **feasible** or **infeasible**, so that there are the following three possible situations:

- both solutions are feasible,
- one is feasible and other is not,
- both are infeasible.

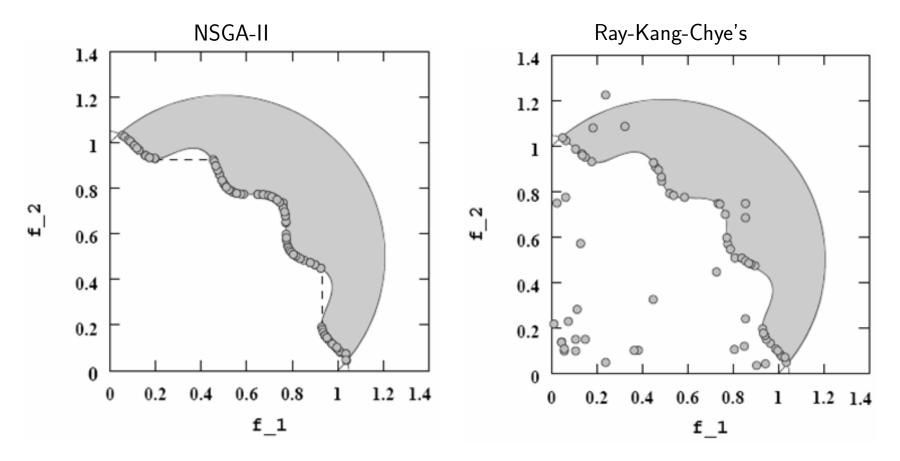
:: Constrained-domination: A solution i is said to constrained-dominate a solution j, if any of the following conditions is true

- 1. Solution i is feasible and solution j is not.
- 2. Solutions i and j are both infeasible, but solution i has a smaller overall constraint violation.
- 3. Solutions i and j are feasible, and solution i dominates solution j.

## **NSGA-II: Simulation Results cont.**

Comparison of NSGA-II and Ray-Kang-Chye's Constraint handling approach

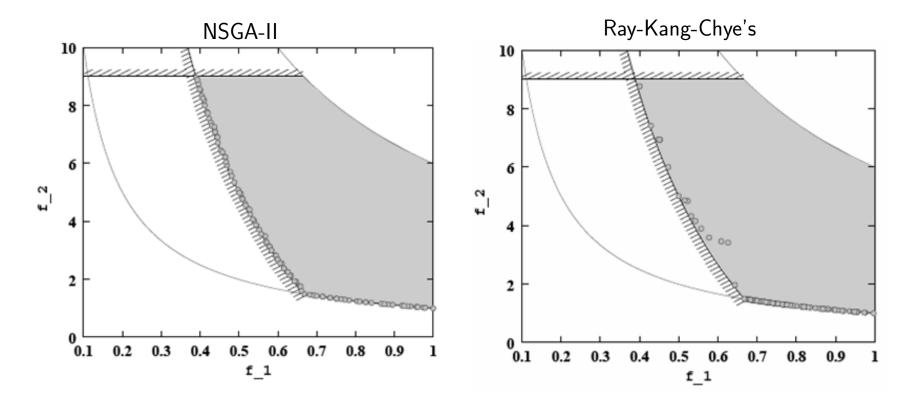
Ray, T., Tai, K. and Seow, K.C. [2001] "Multiobjective Design Optimization by an Evolutionary Algorithm", Engineering Optimization, Vol.33, No.4, pp.399-424



©Kalyanmoy Deb et al.: A Fast and Elitist Multi-Objective Genetic Algorithm: NSGA-II.

## **NSGA-II: Simulation Results cont.**

Comparison of NSGA-II and Ray-Kang-Chye's Constraint handling approach



©Kalyanmoy Deb et al.: A Fast and Elitist Multi-Objective Genetic Algorithm: NSGA-II.

:: The result of a MOEA run is not a single scalar value, but a collection of vectors forming a non-dominated set.

- 1. Comparing two MOEA algorithms requires comparing the non-dominated sets they produce. However, there is no straightforward way to compare different non-dominated sets.
- :: Three goals that can be identified and measured:
- 1. The distance of the resulting non dominated set to the Pareto-optimal front should be minimized.
- 2. A good (in most cases uniform) distribution of the solutions found is desirable.
- 3. The extent of the obtained non dominated front should be maximized, i.e., for each objective, a wide range of values should be present.

- :: Properties of metrics for comparing non-dominated sets
- 1. Pareto compatibility a comparison metric R is compatible with an outperformance relation if for each pair of non-dominated sets A nad B, such that  $A \leq B$ , R will evaluate A as being better than B.

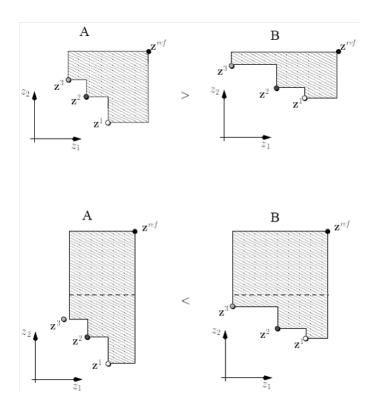
Outperformance relation  $\leq$  – a non-dominated set A completely outperforms set B if each point in B is dominated by a point in A.

- 2. Direct comparative metric compares A and B directly using a scalar measure R(A, B) to describe how much better A is than B.
- 3. Reference metric use a reference set; it scores both sets against this reference set and compares the results.
- 4. Independent metric measures some property of each set that is not dependent on any other, or any reference set.
- 5. Transitive metric induces a complete ordering of all possible non-dominated sets. It ensures that if A beats B, and B beats C then it is always true that A beats C.
- 6. Cardinal metrics counts the number of vectors in sets.

## S Metric

Size of the space covered S(X) – it calculates the *hypervolume* of the multi-dimensional region enclosed by a set A and a *reference point* (usually so-called *Utopian* point). The hypervolume expresses the size of the region A dominates.

So, the bigger the value of this measure the better the quality of A is, and vice versa.



©Knowles J. and Corne D.: On Metrics for Comparing Non-Dominated Sets.

# ${\cal S}$ Metric cnd.

Pros:

- Compatible with the outperformance relations.
- Independent.
- Differentiates between different degrees of complete outperformance of two sets.
- Scaling independent.
- Intuitive meaning/interpretation.

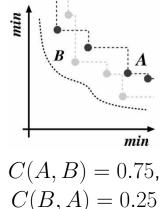
#### Cons:

- Requires defing some upper boundary of the region.
   This choice does affect the ordering of non-dominated sets.
- It has a large computational overhead, O(n<sup>k+1</sup>), rendering it unusable for many objectives or large sets.
- It multiplies apples by oranges, that is, different objectives together.

### C Metric

**Coverage of two sets** C(X, Y) – given two sets of non-dominated solutions X and Y found by the compared algorithms, the measure C(X, Y) returns a ratio of a number of solutions of Y that are dominated by or equal to any solution of X to the whole set Y.

- It returns values from the interval [0, 1].
- The value C(X,Y) = 1 means that all solutions in Y are covered by solutions of the set X. And vice versa, the value C(X,Y) = 0 means that none of the solutions in Y are covered by the set X.



Always both orderings have to be considered, since C(X,Y) is not necessarily equal to 1 - C(Y,X).

Properties:

- It has low computational overhead.
- The non-symmetric nature of C complicates the analysis of its compatibility with the outperformance relations.
- If two sets are of different cardinality and/or the distributions of the sets are non-uniform, then it gives unreliable results.

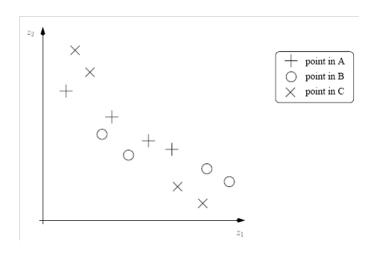
Properties:

- Any pair of C metric scores for a pair of sets A and B in which neither C(A, B) = 1 nor C(B, A) = 1, indicates that the two sets are incomparable according to the weak outperformance relation.
- It is cycleinducing if three sets are compared using C, they may not be ordered.

Example:

- C(A,B) = 0, C(B,A) = 3/4
- C(B, C) = 0, C(C, B) = 1/2
- C(A, C) = 1/2, C(C, A) = 0

C considers B better than A, A better than C, but C better than B.



©Knowles J. and Corne D.: On Metrics for Comparing Non-Dominated Sets.

# Reading

- Kalyanmoy Deb: Multi-objective optimization using evolutionary algorithms http://books.google.com/books?id=OSTn4GSy2uQC&printsec=frontcover&dq=deb&hl=cs&cd=1
- Kalyanmoy Deb et al.: A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II, IEEE Transactions on Evolutionary Computation, vol. 6, pp. 182–197, 2000.

http://sci2s.ugr.es/docencia/doctobio/2002-6-2-DEB-NSGA-II.pdf

- Eckart Zitzler et al.: SPEA2: Improving the Strength Pareto Evolutionary Algorithm, 2001. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.112.5073&rep=rep1&type=pdf
- Eckart Zitzler: Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications, 1999.

ftp://ftp.tik.ee.ethz.ch/pub/people/zitzler/Zitz1999.ps.gz

 Joshua Knowles and David Corne: On Metrics for Comparing Non-Dominated Sets, 2001. http://www.lania.mx/ ccoello/knowles02a.ps.gz