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pMulti-Objective Optimization

:: Many real-world problems involve multiple objectives

� Conflicting objectives

− A solution that is extreme with respect

to one objective requires a compromise in

other objectives.

− A sacrifice in one objective is related to

the gain in other objective(s).

Motivation example: Buying a car

− two extreme hypothetical cars 1 and 2,

− cars with a trade-off between cost and

comfort – A, B, and C.
c©Kalyanmoy Deb: Multi-Objective Optimization using Evolutionary Algorithms.
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� Which solution out of all of the trade-off solutions is the best with respect to all objectives?

Without any further information those trade-offs are indistinguishable.

=⇒ a number of optimal solutions is sought in multiobjective optimization!

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �Multi-Objective Optimization



pMulti-Objective Optimization: Definition

:: General form of multi-objective optimization problem

Minimize/maximize fm(x), m = 1, 2, ...,M ;

subject to gj(x) ≥ 0, j = 1, 2, ..., J ;

hk(x) = 0, k = 1, 2, ..., K;

x
(L)
i ≤ xi ≤ x

(U)
i , i = 1, 2, ..., n.

� x is a vector of n decision variables: x = (x1, x2, ..., xn)
T ;

� Decision space is constituted by variable bounds that restrict each variable xi to take a

value within a lower x
(L)
i and an upper x

(U)
i bound;

� Inequality and equality constraints

� A solution x that satisfies all constraints and variable bounds is a feasible solution, otherwise

it si called an infeasible solution;

� Feasible space is a set of all feasible solutions;

� Objective functions f (x) = (f1(x), f2(x), ..., fM(x))T constitute a multi-dimensional

objective space.
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pDecision and Objective Space
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� For each solution x in the decision space, there exists a point in the objective space

f (x) = z = (z1, z2, ..., zM)T
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pMotivation Example: Cantilever Design Problem

Task is to design a beam, defined by two decision variables

� diameter d,

� length l.

that can carry an end load P and is optimal with

respect to the following objectives

� f1 – minimization of weight,

� f2 – minimization of deflection.

Obviously, conflicting objectives!

subject to the following constraints c©Kalyanmoy Deb: Multi-Objective Optimization using Evolutionary Algorithms.

� the developed maximum stress σmax is less than the allowable strength Sy,

� the end deflection δ is smaller than a specified limit δmax.
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pCantilever Design Problem: Decision and Objective Space
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pDominance and Pareto-Optimal Solutions
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pDominance and Pareto-Optimal Solutions
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:: Domination: A solution x(1) is said to dominate the other solution x(2), x(1) � x(2), if x(1) is

no worse than x(2) in all objectives and x(1) is strictly better than x(2) in at least one objective.

Solutions A, B, C, D are non-dominated solutions (Pareto-optimal solutions)

Solution E is dominated by C and B (E is non-optimal).
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pProperties of Dominance-Based Multi-Objective Optimization

:: Non-dominated set – Among a set of solutions P, the noon-dominated set of solutions P’

are those that are not dominated by any member of the set P.

The non-dominated set of the entire feasible search space is the globally Pareto-optimal set.

c©Kalyanmoy Deb: Multi-Objective Optimization using Evolutionary Algorithms.
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pProperties of Dominance-Based Multi-Objective Optimization

If for every member x in a set P there exists no solution y (in the neighborhood of x such that

‖y − x‖ ≤ ε, where ε is a small positive number) dominating any member of the set P, then

solutions belonging to the set P constitute a locally Pareto-optimal set.
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pGoals of Dominance-Based Multi-Objective Optimization

:: Every finite set of solutions P can be divided into two non-overlapping sets

� non-dominated set P1 – contains all solutions that do not dominate each other, and

� dominated set P2 – at least one solution in P1 dominates any solution in P2.

:: In the absence of other factors (e.g. preference for certain objectives, or for a particular region

of the tradeoff surface) there are two goals of the multi-objective optimization

� Quality – To find a set of solutions as close as possible to the Pareto-optimal front.

� Spread – To find a set of solutions as diverse as possible.
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pNon-Conflicting Objectives

:: There exist multiple Pareto-optimal solutions in a problem only if the objectives are conflicting

to each other.
� If this does not hold then the cardinality of the Pareto-optimal set is one.

This means that the optimum solution corresponding to any objective is the same.

Example: Cantilever beam design problem
� f1 – minimizing the end deflection δ,

� f2 – minimizing the maximum developed stress in the beam σmax.
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pDifferences with Single-Objective Optimization

:: Two (orthogonal) goals instead of one

� progressing towards the Pareto-optimal front,

� maintaining a diverse set of solutions in the non-dominated set.

:: Dealing with two search spaces

� objective vs. decision space,

� in which space the diversity must be achieved?

:: No artificial fix-ups

� weighted sum approach – multiple objectives are weighted and summed together to create a

composite objective function.

Its performance depends on the chosen weights.

� ε-constraint method – chooses one of the objective functions and treats of the objectives as

constraints by limiting each of them within certain predefined limits.

Also depends on the chosen constraint limits.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �Multi-Objective Optimization



pDifficulties with Classical Optimization Algorithms

� The convergence to an optimal solution depends on the chosen initial solution.

� Most algorithms tend to get stuck to a suboptimal solution.

� An algorithm efficient in solving one optimization problem may not be efficient in solving a

different opt. problem.

� Algorithms are not efficient in handling problems having a discrete search space.

� Algorithms cannot be efficiently used on a parallel machine
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pMulti-Objective Evolutionary Algorithms

� Pareto Archived Evolution Strategy (PAES)

Knowles, J.D., Corne, D.W. (2000) Approximating the nondominated front using the Pareto

archived evolution strategy. Evolutionary Computation, 8(2), pp. 149-172

� Multiple Objective Genetic Algorithm (MOGA)

Carlos M. Fonseca, Peter J. Fleming: Genetic Algorithms for Multiobjective Optimization:

Formulation, Discussion and Generalization, In Genetic Algorithms: Proceedings of the Fifth

International Conference, 1993

� Niched-Pareto Genetic Algorithm (NPGA)

Jeffrey Horn, Nicholas Nafpliotis, David E. Goldberg: A Niched Pareto Genetic Algorithm

for Multiobjective Optimization, Proceedings of the First IEEE Conference on Evolutionary

Computation, IEEE World Congress on Computational Intelligence, 1994

� SPEA2

Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary Al-

gorithm For Multiobjective Optimization, In: Evolutionary Methods for Design, Optimisation,

and Control, Barcelona, Spain, pp. 19-26, 2002
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� NSGA

Srinivas, N., and Deb, K.: Multi-objective function optimization using non-dominated sorting

genetic algorithms, Evolutionary Computation Journal 2(3), pp. 221-248, 1994

� NSGA-II

Kalyanmoy Deb, Samir Agrawal, Amrit Pratap, and T Meyarivan: A Fast Elitist Non-Dominated

Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II, In Proceedings of the

Parallel Problem Solving from Nature VI Conference, 2000

� . . .
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pNon-Dominated Sorting Genetic Algorithm (NSGA)

:: Common features with the standard GA

� variation operators – crossover and mutation,

� selection method – Stochastic Reminder Roulette-Wheel,

� standard generational evolutionary model.

:: What distinguishes NSGA from the SGA

� fitness assignment scheme which prefers non-dominated solutions, and

� fitness sharing strategy which preserves diversity among solutions of each non-dominated front.

:: Algorithm NSGA

1. Initialize population of solutions

2. Repeat

� Calculate objective values and assign fitness values

� Generate new population

Until stopping condition is fulfilled
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pFitness Sharing

:: Diversity preservation method originally proposed for solving multi-modal optimization

problems so that GA is able to sample each optimum with the same number of solutions.

:: Idea – diversity in the population is preserved by degrading the fitness of similar solutions

:: Algorithm for calculating the shared fitness function value of i-th individual in population of

size N

1. calculate sharing function value with all solutions in the population according to

Sh(d) =
1− ( d

σshare
)α, if d ≤ σshare

0, otherwise.

2. calculate niche count nci as follows

nci =

N∑
j=1

Sh(dij)

3. calculate shared fitness as

f ′i = fi/nci

:: Remark: If d = 0 then Sh(d) = 1 meaning that two solutions are identical. If d ≥ σshare
then Sh(d) = 0 meaning that two solutions do not have any sharing effect on each other.
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pFitness Sharing: Example

:: Bimodal function - six solutions and corresponding shared fitness functions

� σshare = 0.5, α = 1.
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:: Let’s take the first solution

� d11 = 0.0, d12 = 0.254, d13 = 0.731, d14 = 1.302, d15 = 0.127, d16 = 0.191

� Sh(d11) = 1, Sh(d12) = 0.492, Sh(d13) = 0, Sh(d14) = 0,

Sh(d15) = 0.746, Sh(d16) = 0.618.

� nc1 = 1 + 0.492 + 0 + 0 + 0.746 + 0.618 = 2.856

� f ′(1) = f (1)/nc1 = 0.890/2.856 = 0.312
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pNSGA: Fitness Assignment

:: Input: Set P of solutions with assigned objective values.

:: Output: Set of solutions with assigned fitness values (the bigger the better).

1. Choose sharing parameter σshare, small positive number ε,

initialize Fmax = PopSize and front counter front = 1

2. Find set P ′ ⊂ P of non-dominated solutions

3. For each q ∈ P ′
� assign fitness f (q) = fmax,

� calculate sharing function with all solutions in P ′ niche

count ncq among solutions of P ′ only,

the normalized Euclidean distance dij is calculated

� calculate shared fitness f ′(q) = f (q)/ncq.

dij =

√√√√ n∑
k=1

(
x

(i)
k − x

(j)
k

xmaxk − xmink

)2

4. fmax = min(f ′(q) : q ∈ P ′)− ε
P = P \ P ′

front = front + 1

5. If not all solutions are assessed go to step 2, otherwise stop.
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pNSGA: Fitness Assignment cont.

:: Example:

� First, 10 solutions are classified into different non-dominated fronts.

� Then, the fitness values are calculated according to the fitness sharing method.

− The sharing function method is used front-wise.

− Within a front, less dense solutions have better fitness values.

c©Kalyanmoy Deb: Multi-Objective Optimization using Evolutionary Algorithms.
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pNSGA: Conclusions

:: Computational complexity
� Governed by the non-dominated sorting procedure and the sharing function implementation.

− non-dominated sorting – complexity of O(MN 3).

− sharing function – requires every solution in a front to be compared with every other

solution in the same front, total of
∑ρ

j=1 |Pj|2, where ρ is a number of fronts.

Each distance computation requires evaluation of n differences between parameter values.

In the worst case, when ρ = 1, the overall complexity is of O(nN 2).

:: Advantages
� Assignment of fitness according to non-dominated sets – makes the algorithm converge towards

the Pareto-optimal region.

� Sharing allows phenotypically diverse solutions to emerge.

:: Disdvantages
� sensitive to the sharing method parameter σshare.

− some guidelines for setting the parameter based on the expected number of optima q.

σshare =
0.5
n
√
q

− or dynamic update procedure of σshare.
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pNSGA-II

:: Fast non-dominated sorting approach

� Computational complexity of O(MN 2).

:: Diversity preservation

� the sharing function method is replaced with a crowded comparison approach,

� parameterless approach.

:: Elitist evolutionary model
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pNSGA-II: Diversity preservation

:: Density estimation

c©Kalyanmoy Deb: Multi-Objective Optimization using Evolutionary Algorithms.

:: Crowded comparison operator

Every solution in the population has two attributes
1. non-domination rank (irand), and

2. crowding distance (idistance).

A partial order ≺n is defined as:

i ≺n j if(irank < jrank) or ((irank = jrank)and(idistance > jdistance))
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pNSGA-II: Evolutionary Model

1. Current population Pt is sorted based on the non-domination

Each solution is assigned a fitness equal to its non-domination level (1 is the best).

2. The usual binary tournament selection, recombination, and mutation are used to create a child

population Qt of size N.

3. Combined population Rt = Pt ∪Qt is formed.

Elitism is ensured.

4. Population Pt+1 is formed according to the following schema

c©Kalyanmoy Deb: Multi-Objective Optimization using Evolutionary Algorithms.
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pNSGA-II: Simulation Results

Problem with continuous Pareto-optimal front Problem with discontinuous Pareto-optimal front

c©Kalyanmoy Deb et al.: A Fast and Elitist Multi-Objective Genetic Algorithm: NSGA-II.
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pMultiobjective 0/1 Knapsack Problem

Definition:

Given a set of m items and a set of n knapsacks, with pi,j being profit of item j

according to knapsack i, wi,j being weight of item j according to knapsack i, and ci
being capacity of knapsack i, find a vector x = (x1, x2, . . . , xm) ∈ {0, 1}m, such that

∀i ∈ {1, 2, . . . , n} :

m∑
j=1

wi,j · xj ≤ ci

and for which f (x) = (f1(x), f2(x), . . . , fn(x)) is maximum, where

fi(x) =

m∑
j=1

pi,j · xj

and xj = 1 iff item j is selected.

A well-known NP hard combinatorial optimization problem.
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pSimulation Results: NSGA vs. NSGA-II

Comparison of NSGA nad NSGA-II on bi-objective 0/1 Knapsack Problem with 750 items.

NSGA-II outperforms NSGA with respect to both performance measures.
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pNSGA-II: Constraint Handling Approach

:: Binary tournament selection with modified domination concept is used to choose the

better solution out of the two solutions i and j, randomly picked up from the population.

:: In the presence of constraints each solution in the population can be either feasible or

infeasible, so that there are the following three possible situations:

� both solutions are feasible,

� one is feasible and other is not,

� both are infeasible.

:: Constrained-domination: A solution i is said to constrained-dominate a solution j, if any

of the following conditions is true

1. Solution i is feasible and solution j is not.

2. Solutions i and j are both infeasible, but solution i has a smaller overall constraint violation.

3. Solutions i and j are feasible, and solution i dominates solution j.
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pNSGA-II: Simulation Results cont.

Comparison of NSGA-II and Ray-Kang-Chye’s Constraint handling approach

� Ray, T., Tai, K. and Seow, K.C. [2001] ”Multiobjective Design Optimization by an Evolutionary Algorithm”, Engineering Optimization, Vol.33, No.4, pp.399-424

NSGA-II Ray-Kang-Chye’s

c©Kalyanmoy Deb et al.: A Fast and Elitist Multi-Objective Genetic Algorithm: NSGA-II.
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pNSGA-II: Simulation Results cont.

Comparison of NSGA-II and Ray-Kang-Chye’s Constraint handling approach

NSGA-II Ray-Kang-Chye’s
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pMOEA Performance Measures

:: The result of a MOEA run is not a single scalar value, but a collection of vectors forming a

non-dominated set.

1. Comparing two MOEA algorithms requires comparing the non-dominated sets they produce.

However, there is no straightforward way to compare different non-dominated sets.

:: Three goals that can be identified and measured:

1. The distance of the resulting non dominated set to the Pareto-optimal front should be mini-

mized.

2. A good (in most cases uniform) distribution of the solutions found is desirable.

3. The extent of the obtained non dominated front should be maximized, i.e., for each objective,

a wide range of values should be present.
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pMOEA Performance Measures cnd.

:: Properties of metrics for comparing non-dominated sets

1. Pareto compatibility – a comparison metric R is compatible with an outperformance relation

if for each pair of non-dominated sets A nad B, such that A ≤ B, R will evaluate A as being

better than B.

Outperformance relation ≤ – a non-dominated set A completely outperforms set B if each

point in B is dominated by a point in A.

2. Direct comparative metric – compares A and B directly using a scalar measure R(A,B) to

describe how much better A is than B.

3. Reference metric – use a reference set; it scores both sets against this reference set and

compares the results.

4. Independent metric – measures some property of each set that is not dependent on any other,

or any reference set.

5. Transitive metric – induces a complete ordering of all possible non-dominated sets. It ensures

that if A beats B, and B beats C then it is always true that A beats C.

6. Cardinal metrics – counts the number of vectors in sets.
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pS Metric

Size of the space covered S(X) – it calculates the hypervolume of the multi-dimensional re-

gion enclosed by a set A and a reference point (usualy so-called Utopian point). The hypervolume

expresses the size of the region A dominates.

So, the bigger the value of this measure the better the quality of A is, and vice versa.

c©Knowles J. and Corne D.: On Metrics for Comparing Non-Dominated Sets.
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pS Metric cnd.

Pros:

� Compatible with the outperformance relations.

� Independent.

� Differentiates between different degrees of complete outperformance of two sets.

� Scaling independent.

� Intuitive meaning/interpretation.

Cons:

� Requires defing some upper boundary of the region.

This choice does affect the ordering of non-dominated sets.

� It has a large computational overhead, O(nk+1), rendering it unusable for many objectives or

large sets.

� It multiplies apples by oranges, that is, different objectives together.
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pC Metric

Coverage of two sets C(X, Y ) – given two sets of non-dominated solutions X and Y found

by the compared algorithms, the measure C(X, Y ) returns a ratio of a number of solutions of Y

that are dominated by or equal to any solution of X to the whole set Y .

� It returns values from the interval [0, 1].

� The value C(X, Y ) = 1 means that all solutions in

Y are covered by solutions of the set X . And vice

versa, the value C(X, Y ) = 0 means that none of the

solutions in Y are covered by the set X .

� Always both orderings have to be considered, since

C(X, Y ) is not necessarily equal to 1− C(Y,X).

C(A,B) = 0.75,

C(B,A) = 0.25

Properties:

� It has low computational overhead.

� The non-symmetric nature of C complicates the analysis of its compatibility with the outper-

formance relations.

� If two sets are of different cardinality and/or the distributions of the sets are non-uniform,

then it gives unreliable results.
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pC Metric cnd.

Properties:

� Any pair of C metric scores for a pair of sets A and B in which neither C(A,B) = 1 nor

C(B,A) = 1, indicates that the two sets are incomparable according to the weak outperfor-

mance relation.

� It is cycleinducing – if three sets are compared using C, they may not be ordered.

Example:

� C(A,B) = 0, C(B,A) = 3/4

� C(B,C) = 0, C(C,B) = 1/2

� C(A,C) = 1/2, C(C,A) = 0

C considers B better than A, A better than C,

but C better than B.
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