
Evolutionary Algorithms: Genetic Programming

Jǐŕı Kubaĺık
Department of Cybernetics, CTU Prague

http://cw.felk.cvut.cz/doku.php/courses/a4m33bia/start



pGenetic Programming (GP)

:: GP shares with GA the philosophy of survival and reproduction of the fittest and the analogy

of naturally occurring genetic operators.

:: GP differs from GA in a representation, genetic operators and a scope of applications.

:: GP is extension of the conventional GA in which the structures undergoing adaptation

are trees of dynamically varying size and shape representing hierarchical computer programs.

:: Applications

� learning programs,

� learning decision trees,

� learning rules,

� learning strategies,

� . . .

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pGP: Representation

:: All possible trees are composed of functions (inner nodes) and terminals (leaf nodes)

appropriate to the problem domain

� Terminals – inputs to the programs (indepen-

dent variables), real, integer or logical constants,

actions.

� Functions

− arithmetic operators (+, -, *, / ),

− algebraic functions (sin, cos, exp, log),

− logical functions (AND, OR, NOT),

− conditional operators (If-Then-Else,

cond?true:false),

− and others.

Example: Tree representation of a LISP

S-expression 0.23 ∗ Z +X − 0.78

:: Closure – each of the functions should be able to accept, as its argument, any value that may

be returned by any function and any terminal.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pGP: Crossover

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pGP: Mutation and Other Operators

:: Mutation replaces selected subtree with a randomly generated new one.

:: Other operators:

� permutation,

� editing,

� encapsulation,

� decimation,

� . . .

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pAutomatically Defined Functions

:: Automatically Defined Functions – idea similar to subroutines in programming languages.

� Reuse eliminates the need to ”reinvent the wheel” on each occasion when a particular sequence

of steps may be useful.

� Code encapsulation – protection from crossover and mutation.

� Simplification – less complex code, easier to evolve.

� ADFs are the focus of Genetic Programming II: Automatic Discovery of Reusable Programs

(Koza, 1994).

:: Structure partly fixed:

� Function defining branches (ADFs).

� Result-producing branch (a calling program).

Typically, the automatically defined functions

are invoked with different instantiations of

their dummy variables.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pAutomatically Defined Functions: Example

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pGP: Initialisation

:: Maximum initial depth of trees Dmax is set.

:: Full method (each branch has depth = Dmax):

� nodes at depth d < Dmax randomly chosen from function set F,

� nodes at depth d = Dmax randomly chosen from terminal set T.

:: Grow method (each branch has depth ≤ Dmax):

� nodes at depth d < Dmax randomly chosen from F ∪ T ,

� nodes at depth d = Dmax randomly chosen from T .

:: Common GP initialization:

� Ramped half-and-half – grow & full method each deliver half of initial population.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pGP: Selection

:: Parent selection typically fitness proportionate.

:: Over-selection in very large populations

� rank population by fitness and divide it into two groups:

− group 1: best x% of population,

− group 2: other (100-x)%.

� 80% of selection operations chooses from group 1, 20% from group 2,

� for pop. size = 1000, 2000, 4000, 8000 x = 32%, 16%, 8%, 4%.

� motivation: to increase efficiency, %’s come from rule of thumb.

:: Survivor selection

� Typical: generational scheme (thus none)

� Recently steady-state is becoming popular for its elitism.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pArtificial Ant Problem

:: Santa Fe trail

� 32× 32 grid with 89 food pieces.

� Obstacles

− 1×, 2× strait,

− 1×, 2×, 3× right/left.

:: Ant capabilities

� detects the food right in front of

him in direction he faces.

� actions observable from outside

− MOVE – makes a step and eats

a food piece if there is some,

− LEFT – turns left,

− RIGHT – turns right,

− NO-OP – no operation.

:: Goal is to find a strategy that would navigate an ant through the grid so that it finds all the

food pieces in the given time (600 time steps).

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pArtificial Ant Problem: GP Approach

:: Terminals
� motorial section,

� T = MOVE, LEFT, RIGHT.

:: Functions
� conditional IF-FOOD-AHEAD – food detection, 2 ar-

guments (is/is not food ahead),

� unconditional PROG2, PROG3 – sequence of 2/3 ac-

tions.

:: Ant repeats the program until time runs out (600 time

steps) or all the food has been eaten.

Santa Fe trail

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pArtificial Ant Problem: GP Approach cont.

:: Typical solutions in the initial population

� this solution

completely fails in finding and eating the food,

� similarly this one

(IF-FOOD-AHEAD (LEFT)(RIGHT)),

� this one

(PROG2 (MOVE) (MOVE))

just by chance finds 3 pieces of food.

Santa Fe trail

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pArtificial Ant Problem: GP Approach cont.

:: More interesting solutions

� Quilter – performs systematic exploration of the grid,

(PROG3 (RIGHT)

(PROG3 (MOVE) (MOVE) (MOVE))

(PROG2 (LEFT) (MOVE)))

Quilter performance

� Tracker – perfectly tracks the food until the first ob-

stacle occurs, then it gets trapped in an infinite loop.

(IF-FOOD-AHEAD (MOVE) (RIGHT))

Tracker performance

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pArtificial Ant Problem: GP Approach cont.

� Avoider – perfectly avoids food!!!

(I-F-A (RIGHT)

(I-F-A (RIGHT)

(PROG2 (MOVE) (LEFT))))

Avoider performance

:: Average fitness in the initial population is 3.5

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pArtificial Ant Problem: GP result

:: In generation 21, the following solution was found that already navigates an ant so that he

eats all 89 food pieces in the given time.

(I-F-A (MOVE)

(PROG3 (I-F-A (MOVE)

(RIGHT)

(PROG2 (RIGHT)

(PROG2 (LEFT)

(RIGHT))))

(PROG2 (I-F-A (MOVE)

(LEFT))

(MOVE))))

This program solves every trail with the obstacles of the same type as occurs in Santa Fe trail.

:: Compare the computational complexity with the GA approach!!!

GA approach: 65.536× 200 = 13× 106 trials.

vs.

GP approach: 500× 21 = 10.500 trials.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pGP: Trigonometric Identity

:: Task is to find an equivalent expression to cos(2x).

:: GP implementation:

� Terminal set T = {x, 1.0}.

� Function set F = {+,−, ∗,%, sin}.

� Training cases: 20 pairs (xi, yi), where xi are values evenly distributed in interval (0, 2π).

� Fitness: Sum of absolute differences between desired yi and the values returned by generated

expressions.

� Stopping criterion: A solution found that gives the error less than 0.01.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pGP: Trigonometric Identity cont.

:: 1. run, 13th generation

(−(−1(∗(sinx)(sinx))))(∗(sinx)(sinx)))

which equals (after editing) to 1–2 ∗ sin2x

:: 2. run, 34th generation
(−1(∗(∗(sinx)(sinx))2))

which is just another way of writing the same expression.

:: 3. run, 30th generation

(sin (−(−2(∗x2))

(sin(sin(sin(sin(sin(sin(∗(sin (sin1))

(sin1))

)))))))))

Note that the expression on the second and third row is almost equal to π/2 so the discovered

identity is

cos(2x) = sin(π/2–2x)

.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pGP: Symbolic Regression

:: Task is to find a function that fits to training data evenly sampled from interval < −1.0, 1.0 >.

:: GP implementation:

� Terminal set T = {x}.
� Function set F = {+,−, ∗,%, sin, cos}.
� Training cases: 20 pairs (xi, yi), where xi are values evenly distributed in interval (−1, 1).

� Fitness: Sum of errors calculated over all (xi, yi) pairs.

� Stopping criterion: A solution

found that gives the error less than

0.01.

:: Besides the desired function
other three were found

� with a very strange behavior outside

the interval of training data,

� though optimal with respect to the

defined fitness.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pGP: Decision Trees

:: Classical decision trees (DT)
� Inner nodes represent simple decisions of type

att > const, att = const

⇒ axis-parallel splits, in some cases not very efficient way to partition the attribute space.

� Leaf node indicates a class to which the sample, which corresponds to the decisions made

along the branch from root to the leaf, belongs.

� Standard learning algorithms – Quinlan’s ID3 (Iterative Dichotomiser 3).

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pGP: Decision Trees cont.

:: Oblique/Multivariate DT

� Inner (decision) nodes represent complex rules (functions).

� More flexible splits are possible.

� But may be hard to understand and interpret.

:: This looks much better, but how to find the rules?

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pMultivariate DT: Rule Structure

:: Root node returns boolean value {true, false}

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pIntertwined Spirals Problem

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pMultivariate DT: Effect of Terminals and Functions Selection

:: Without any prior knowledge A

� Terminals: Ta = {x, y, R},

� Functions: Fa = {+,−, ?, (> 0)}.

:: With prior knowledge about the circular characteristics of data

� Polar coordinates.

� Terminals: Tb = {%, ϕ,R}, where % and ϕ are radius and phase of data points,

% =
√
x2 + y2 and ϕ = arctan y

x

� Functions: Fb = {+,−, ∗, (> 0), sin}.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pMultivariate DT: Classifiers Evolved with {Ta, Fa}

This does not look nice.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pMultivariate DT: Classifiers Evolved with {Ta, Fa} cont.

Neither does this one.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pMultivariate DT: Classifiers Evolved with {Tb, Fb}

This is better already.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pMultivariate DT: Classifiers Evolved with {Tb, Fb} cont.

Wow, this one is really nice!!!

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pGP: Evolving Fuzzy-rule based Classifier

:: Classifier consists of fuzzy if-then rules of type

IF (x1 is medium) and (x3 is large) THEN class = 1 with cf = 0.73

:: Linguistic terms – small, medium small, medium, medium large, large.

:: Fuzzy membership functions – approximate the confidence in that the crisp value is

represented by the linguistic term.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pRule Base Example

:: Three rules connected by OR.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pIllegal Tree

:: Tree does not represent a correct rule base.

� obviously due to the fact that the closure property does not hold here.

:: This might happen very often since crossover, mutation etc. are just blind operators.

What can we do?

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pStrongly typed GP

:: Strongly typed GP

� prevents generating illegal individuals,

� quite a big overhead =⇒ inefficient for large trees.

:: Can be done any better?

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pStrongly typed GP

:: Strongly typed GP

� prevents generating illegal individuals,

� quite a big overhead =⇒ inefficient for large trees.

:: Can be done any better?

Grammatical Evolution (GE) – designed to evolve programs in any language, that can be

described by a context free grammar. GE evolves tree structures, but operates on simple linear

string chromosomes :-o

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pReading

� Poli, R., Langdon, W., McPhee, N.F.: A Field Guide to Genetic Programming, 2008,

http://www.gp-field-guide.org.uk/

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming


