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Overview

• Large-scale Artificial Neural Networks.

• Computational Development.

• Indirect Encodings of ANNs.

• Hyper-cube based encoding.
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Evolving Large-scale 
ANNs

• 1000+ neurons (& corresponding # of links).

•Why to do that?

• Complex models,

• ability to process huge amount of inputs/
outputs without  hand-coding features (i.e. 
pattern recognition)...
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Direct Encoding

• Direct encoding → each structural part 
(neuron/link) is represented by a dedicated gene.

• Not suitable for
Large-scale ANN's:

Direct optimization methods fail
→ the curse of dimensionality.
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Indirect Encoding:
the Way it Works in Nature
• Human genome → 20 000 - 25 000 genes 

describing almost 100 billion neurons each 
linked to as many as 7 000 others (plus the 
rest of organism!).

• We need some kind of compression:
→ indirect encoding.

• But we also need a regularity in data being 
compressed. 

• Q: What are the regularities found in living organisms?
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Symmetry

(wikimedia commons)
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Imperfect Symmetry

(wikimedia commons)

pondělí, 13. května 13





 A4M33BIA               2013

Repetition with 
Variation

• Note that all these regularities
happen at all scales of an organism.

(wikimedia commons)
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How Are Organisms 
Built?

• Development from a single cell (zygote).

• Evolutionary Development “Evo-Devo”.
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The Cell
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Genome: A Closer Look

• TATA box – marks the start of a gene

• (cis-)regulatory region – composed of binding sites.

• binding site – binds regulatory proteins → gene activation/
inhibition

• product region – when gene is active a protein is produced:

• special: cell division, differentiation,

• regulatory: can bind to binding sites of other genes,

• structural.
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Cell Divisions
• Program same

for all cells.

• What differs?

• Regulatory 
protein concentrations.

• Receptors – selectively pass regulatory 
proteins  from inter-cellular space.

• Diffusion, decay, cell differentiation.

• Gene Regulatory Networks (GRNs).
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How to Simulate 
Development?

• Cell program – ANN, FSM or other controller:

• inputs: binding sites,

• outputs: one for each gene → gene activity.

• Physical simulation: diffusion, decay, receptors...

• Cell division:

• copy cell program from mother → daughter cell,

• different concentrations for mother/daughter.

• This is called: Computational Development.
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“French Flag” Organism
• Cell program evolved using Cartesian 

Genetic Programming (CGP).

CGP encoded adder

Julian Francis Miller (2004):
Evolving a Self-Repairing, Self-Regulating, French Flag Organism
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“French Flag” Organism II
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Indirect encodings of 
ANNs

• GRN-based

• Cellular Encoding

• Hypercube-based

• Other: rewriting rules, L-systems, ...
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GRN-based

Figure 4: a. Growing neural network, b. The final neural net-

work controlling a foveating retina. One single cell is placed in

every field which have for computational reasons an upper limit

of 20 X 20. The cells are allowed to grow inside the predefined

fields. All connections and the cellular properties are under evolu-

tionary control and are determined by genetic and developmental

processes. The receptor field (bottom row of the cells which emit

topological, parallel axons) captures the light stimulation. The

activity of the cells in the motor layer causes the eyes to move in

four directions (up, down, right and left).

summed up and used as fitness value.

f =
∑

i,j

ai,j + (vai,j
− vri,j

)2 (7)

• f fitness value

• i, j are indexes running over all retinal sensors

• ai,j activity of motor neurons after stimulation of
retinal sensor (i, j)

• vai,j
actual motor vector after activating the retinal

sensor at the position (i, j).

• vri,j
designer specified target value for the motor vec-

tor

In typical runs with a (6,12)-evolutionary strategy a so-
lution was found after 100 to 200 generations (see Figure
5).

4 Results

4.1 Simulation Results

Figure 5 shows a typical evolutionary run over time.
Typically the task was solved after 300-500 generations
using a (20,600)-evolution strategy. First the fitness in-

Figure 5: Fitness of a typical run of the evolution of the foveating

retina plotted against number of generations.

creased because the sensory cells and the neurons learned
to link each other to the motor cells. Over time more
and more motor cells received input from the other lay-
ers and were able to move. A typical example is illus-
trated in figure 6a, which shows the movement patterns
of evolved neural controllers after stimulating each sin-
gle sensor and indicating the motor response to it. Over
time the results became better and the system learned
to foveate. A typical fitness curve is shown in Figure
5. Figure 6 shows some typical examples of individuals
with increasingly higher fitness. Preliminary analysis of
the cellular dynamics by blocking genes showed that the

Peter Eggenberger-Hotz (1997):
Creation of Neural Networks Based on 
Developmental and Evolutionary Principles Peter Eggenberger-Hotz (2003):

Evolving the Morphology of a Neural Network for 
Controlling a Foveating Retina and its Test on a 
Real Robot
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Cellular Encoding (CE)
• 1993, Fréderic Gruau: indirect encoding example.

• Inspiration in embryo-genesis (cell division and 
differentiation). Cells → neurons.

• Program to “grow” ANN is represented by a tree 
(Genetic Programming).

• Operations: parallel/sequential divisions, connections 
change, change of weights/bias...

Frédéric Gruau (2004):
Neural Network Synthesis using Cellular Encoding
and the Genetic Algorithm
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Cellular Encoding II
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Cellular Encoding III

• May use operation which reads a sub-tree 
repeatedly → evolved a network 
representing parity of arbitrary number of 
inputs.

• Allows ANNs of arbitrary size: neural 
module reuse.
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Compositional Pattern 
Producing Networks (CPPNs)
• Stanley 2006.

• Can we create such regular patterns 
without development in time?

• We can ask a special function called CPPN, 
where the cells are, using absolute coordinates.

Kenneth O. Stanley (2006):
Compositional Pattern Producing Networks: 
A Novel Abstraction of Development
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Regularities by CPPN
• Nature uses concentration gradients of 

regulatory proteins to determine position.

• CPPN is a composition of symmetric, 
periodic and other functions.
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Regularities by CPPN II
• CPPN is a composition of symmetric, 

periodic and other functions.
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Picbreeder
• Interactive evolution of images.

• CPPN output: level of grey.

• CPPNs evolved using NEAT.

• http://picbreeder.org/
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Picbreeder II
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Picbreeder: Space Ship
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Endless Forms

Evolving Three-Dimensional Objects with a Generative Encoding Inspired by
Developmental Biology

Jeff Clune and Hod Lipson

Department of Mechanical and Aerospace Engineering, Cornell University
jeffclune@cornell.edu

Abstract

This paper introduces an algorithm for evolving 3D objects
with a generative encoding that abstracts how biological mor-
phologies are produced. Evolving interesting 3D objects
is useful in many disciplines, including artistic design (e.g.
sculpture), engineering (e.g. robotics, architecture, or prod-
uct design), and biology (e.g. for investigating morphological
evolution). A critical element in evolving 3D objects is the
representation, which strongly influences the types of objects
produced. In 2007 a representation was introduced called
Compositional Pattern Producing Networks (CPPN), which
abstracts how natural phenotypes are generated. To date,
however, the ability of CPPNs to create 3D objects has barely
been explored. Here we present a new way to create 3D
objects with CPPNs. Experiments with both interactive and
target-based evolution demonstrate that CPPNs show poten-
tial in generating interesting, complex, 3D objects. We fur-
ther show that changing the information provided to CPPNs
and the functions allowed in their genomes biases the types of
objects produced. Finally, we validate that the objects transfer
well from simulation to the real-world by printing them with
a 3D printer. Overall, this paper shows that evolving objects
with encodings based on concepts from biological develop-
ment can be a powerful way to evolve complex, interesting
objects, which should be of use in fields as diverse as art, en-
gineering, and biology.

Motivation and Previous Work
The diversity, complexity, and function of natural morpholo-
gies is awe-inspiring. Evolution has created bodies that can
fly, run, and swim with amazing agility. It would be desir-
able to harness the power of evolution to create synthetic
physical designs and morphologies. Doing so would benefit
a variety of fields. For example, artists, architects and engi-
neers could evolve sculptures, buildings, product designs,
and sophisticated robots. Evolution should be especially
helpful in the design of complex objects with many interact-
ing parts made of non-linear materials. In such challenging
problem domains, evolution excels while human intuition
is limited. Being able to evolve sophisticated morpholo-
gies also furthers biological research because it enables the
investigation of how and why certain natural designs were
produced. Evolving 3D objects is thus worthwhile both as a

Figure 1: Examples of evolved objects that were transferred
to reality via a 3D printer.

basic science and for its innumerable potential applications.
This paper describes how 3D shapes can be evolved and then
transferred to reality via 3D printing technology (Figure 1).

Previous research in digital morphological evolution has
typically involved encodings that were either highly biolog-
ically detailed, or highly-abstract with less biological accu-
racy. The former camp frequently simulates the low-level
processes that govern biological development, such as the
diffusing morphogen chemicals and proteins that determine
the identity of embryonic cells (Bongard and Pfeifer 2001,
Eggenberger 1997, Miller 2004). While this approach facil-
itates studying the mechanisms of developmental biology,
the computational cost of simulating chemistry in such de-
tail greatly limits the complexity of the evolved phenotypes.
The most complex forms typically evolved in such systems
are simple geometric patterns (such as three bands) (Miller

• Similar approach in 3D.

• http://endlessforms.com

Jeff Clune, Hod Lipson (2011):
Evolving Three-Dimensional Objects with a Generative Encoding Inspired by 
Developmental Biology
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Hypercube-based 
Encoding

• Stanley 2007.

• Uses CPPNs in a similar way to Picbreeder: evolves 
connectivity patterns.

• Best known for HyperNEAT algorithm which 
evolves ANNs.
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HyperNEAT
• Stanley et al. 2007: Hypercube-based encoding.

I1 I2

O1 O2

substrate

Substrate is a 
template for a 

possibly large-scale 
neural network.
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HyperNEAT
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(1)
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Each neuron is 
assigned 

coordinates. The 
weights of 

connections are  
unknown.

• Stanley et al. 2007: Hypercube-based encoding.
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HyperNEAT

I1 I2

O1 O2

substrate

CPPN
(1)

(1)(�1)

(�1)
decode weight values

The final network is 
constructed out of 

substrate by  
computing all 

needed weights. 
This is done using 

CPPN.

• Stanley et al. 2007: Hypercube-based encoding.
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HyperNEAT

I1 I2
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substrate

CPPN
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(1)(�1)
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decode weight values

CPPN is a function 
which takes 

coordinates of both 
source and 

destination neuron 
for each 

connection ...

• Stanley et al. 2007: Hypercube-based encoding.
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HyperNEAT

I1 I2
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�2.5�2.5

decode weight values

... and computes the 
weight of the 
corresponding 
connection.

• Stanley et al. 2007: Hypercube-based encoding.
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HyperNEAT
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O1 O2

substrate

CPPN

1.31.3
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�2.5

decode weight values

(1)

All weights are 
computed in a same 

way...

• Stanley et al. 2007: Hypercube-based encoding.
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HyperNEAT
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O1 O2
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• Stanley et al. 2007: Hypercube-based encoding.
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HyperNEAT
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Note, that the 
weights are 

symmetric. CPPNs 
promote regular 

patterns.

• Stanley et al. 2007: Hypercube-based encoding.
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HyperNEAT

EA
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• Stanley et al. 2007: Hypercube-based encoding.
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HyperNEAT

EA

I1 I2

O1 O2

substrate

CPPN

1.3

(1)

(1)(�1)

(�1)

�2.5 �2.5

decode weight values

evolve

evaluate fitness on target domain

1.3

• Stanley et al. 2007: Hypercube-based encoding.
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HyperNEAT vs. 
Standard Approaches

EA ANN

EA

genotype to phenotype conversion

CPPN

fitness evaluation on a given problem

genotype to phenotype conversion

ANN

const
ruc

t 

ANN
fitnessevaluation

STANDARD 
APPROACH

HYPERNEAT
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Types of Substrate?

• The list of neurons’ coordinates along with 
possible connections between them.
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Create or not Create a 
Link?

• Substrates are often fully connected → lots of 
links → computationally infeasible → pruning is 
used.

• If CPPN outputs weights in range [-3; 3] then

• links with weights < 0.2 are not expressed,

• >= 0.2 are scaled to magnitude between 0 and 3.

→ when using this approach the final ANN is a 
sub-graph of a substrate.

pondělí, 13. května 13





 A4M33BIA               2013

Connectivity Patterns

• Patterns evolved using interactive evolution:
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Spatial Representation
• HyperNEAT exploits spatial representation of 

a problem. The same happens in Nature:

• connection of eyes to brain hemispheres,

• similar  things processed nearby.

• We have to assign coordinates. 

• Does every problem have a reasonable 
spatial representation?

• It seams that most problems have. The others would 
not probably benefit from regularities in ANNs.
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NEAT in HyperNEAT
• HyperNEAT uses a slightly modified NEAT (Stanley 2001) as a 

base algorithm to evolve CPPNs.

• NEAT is neuro-evolutionary algorithm able to evolve ANNs of 
arbitrary topologies.

• It is based on:

• complexification → evolving gradually more complex ANNs,

• innovation numbers → track structural innovations,

• niching → allows simultaneous evolution of small and large 
ANNs in one population. Requires to define a distance 
measure for ANNs.
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Visual Discrimination
• Visual targeting: distinguish the larger 

object.

• “Sandwich substrate”.

Jason J. Gauci and Kenneth O. Stanley (2007):
Generating Large-Scale Neural Networks Through Discovering Geometric Regularities
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Visual Discrimination II: 
Scaling the Substrate
• The substrate density can be scaled using the same 

CPPN.

• The function of the final ANN is approximately 
preserved.

• We can train on small → get large.
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Visual Discrimination III: 
Scaling the Substrate
• An equivalent connectivity concept at 

different

• substrate resolutions.
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Food Gathering Problem
• Range-finder sensors detect food.

• More food eaten → higher fitness.

• Experiments with different sensor/effector placement – 
exploiting geometric relationships with “outer world”.

David B. D'Ambrosio and Kenneth O. Stanley (2007)
A Novel Generative Encoding for Exploiting Neural Network Sensor and Output Geometry
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Food Gathering Problem II

• Parallel worked better than Concentric 
because less computation is needed for 
CPPN.

• New CPPN inputs added: the distances

• (x1-x2) and (y1-y2)

• When CPPN is provided the distances, 
both work the same.
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Checkers
• Comparison with classic NEAT.

• HyperNEAT is faster + 
generalizes.

• Single CPPN with multiple 
outputs.

• The output of the final net is a 
heuristic score for the minimax 
algorithm.

Jason Gauci and Kenneth O. Stanley (2008):
A Case Study on the Critical Role of Geometric 
Regularity in Machine Learning 
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HyperNEAT Coordinated 
Quadruped Gaits

• Simulation of four legged walker 
robot.

• Comparison with classic NEAT.

• Other experiments show that 
HyperNEAT can deal with 
random substrates.

Jeff Clune:
Evolving Coordinated Quadruped Gaits with the HyperNEAT 
Generative Encoding
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Mobile Robot Navigation
• HyperNEAT/HyperGP for robot control.

• ViVAE Simulated 2D environment with rigid 
body physics.
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Mobile Robot Navigation II
• Substrate uses polar coordinates.

• Input + 1 fully recurrent layer

• See VIDEO...
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Mobile Robot Navigation III
• Obstacle avoidance.

• Object sensors added (two input layers)

f = distanceTravelled

simulationSteps+1

⇣
1� targetDistance

initialDistance

⌘
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Q&A
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