Artificial Neural Networks NeuroEvolution = ANN + EA

Jan Drchal

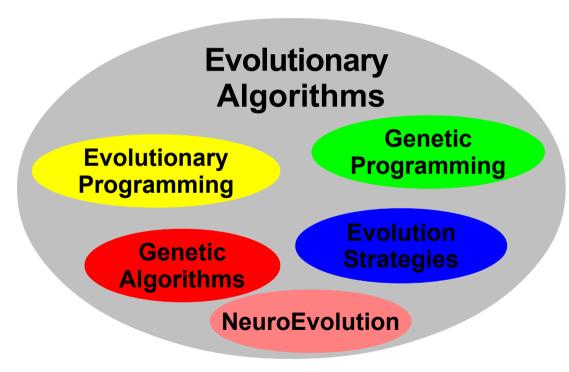
drchajan@fel.cvut.cz

Computational Intelligence Group
Department of Computer Science and Engineering
Faculty of Electrical Engineering
Czech Technical University in Prague

Motivation

- Learning ANNs = optimization of weights or potentially architecture.
- Problem of local extremes → unable to learn hard task/large network.
- Use of Evolutionary Algorithms → slower, but more robust than classic gradient methods like Back-Propagation.

Evolutionary Algorithms (EAs)



- Genetic Algorithms: binary strings
- Evolutionary Strategies: real vectors, only mutation.
- Genetic Programming: evolution of program trees.
- Evolutionary
 Programming: evolving

 FSMs.
- NeuroEvolution

What is Neuro Evolution?

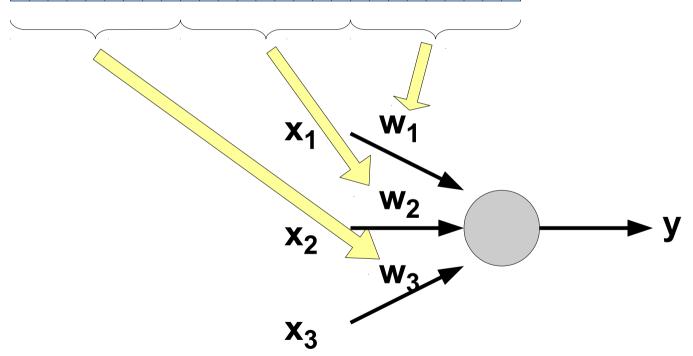
- Neuro-evolutionary algorithm is just another special kind of EA → the task is to evolve (learned) neural networks.
- Both parameters (weights) and topology can be optimized by evolution.
- But how to encode a network into a genome?

 A network with fixed topology is described by a vector/matrix of all its weights (real numbers)...

Direct Encoding of Neural Network

Directly encode the weights as a bit string:

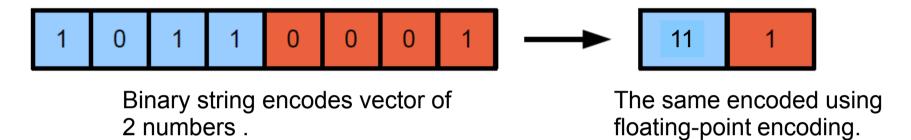
010100100110101100100110110



Can we do it better? Yes.

Floating-Point Encoding

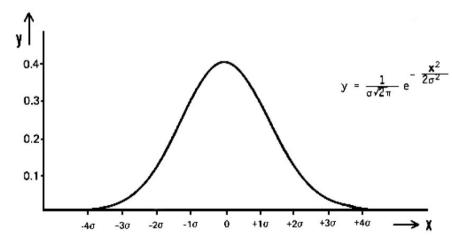
Motivation: simplicity, precision



What about mutation? -> Gaussian noise.

Idea:

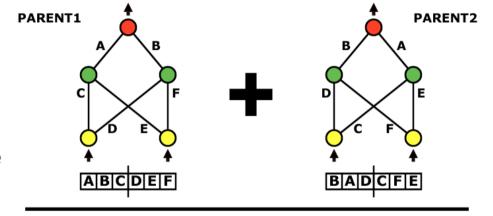
small changes with higher probability, large changes with lower.

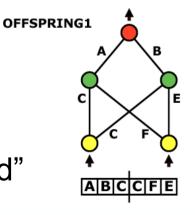


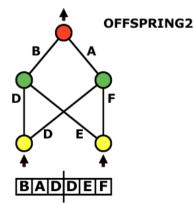
Useful for integers and floats ...

Competing Conventions Problem

- Problem of competing conventions:
 - Same solution can be represented by many genomes → ordering of weights matters.
 - Error (fitness) landscape contains many optima representing the same solution.
 - Crossover of two such individuals will most probably lead to "crippled" offspring.

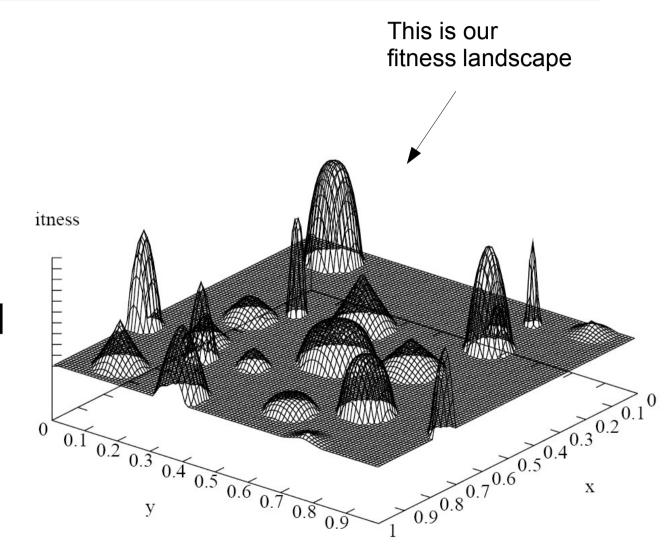






Multimodal Domains

- Multimodal functions:
 - multiple optima,
 - many local.
- Too many attractors → hard optimization :(
- ANN fitness/error landscapes look like this.



Why to Evolve the Topology?

- Motivation:
 - spare experimenters time → finding correct number of layers/neurons,
 - well designed algorithm can find globally optimal topology (smallest but sufficient).
- TWEANNs: Topology & Weight Evolving Artificial Neural Networks.

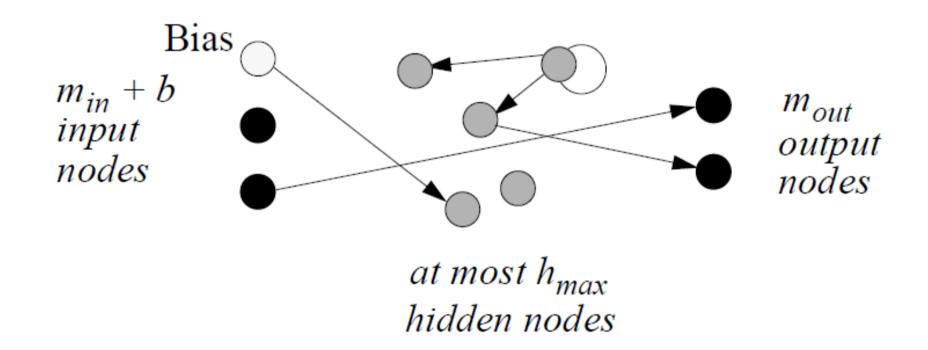
GNARL

- GeNeralized Aquisition of Recurrent Links.
- 1994: Angeline, Saunders, Pollack.
- Evolution of general recurrent networks.
- Based on evolutionary strategies → no crossover operator → no competing conventions.
- Starts with population of random networks.
- Two kinds of mutation operators:
 - Parametric weight mutations (Gaussian noise),
 - Structural add/remove neurons/links between.

Angeline, P.J. Saunders, G.M. Pollack, J.B.: An Evolutionary Algorithm That Constructs Recurrent Neural Networks

GNARL 2

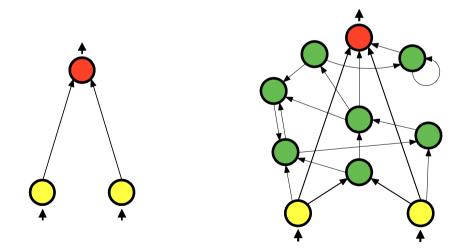
Sample of GNARL's initial random network:



Note, disconnected neuron does not affect network evaluation, it is available as a resource for future structural mutations.

NEAT

- Neuro Evolution of Augmenting Topologies: Kenneth O. Stanley, 2001, The University Of Texas at Austin
- Complexification start from small topologies: evolution add neurons/links as needed by task.



Kenneth O. Stanley and Risto Miikkulainen: Evolving Neural Networks Through Augmenting Topologies

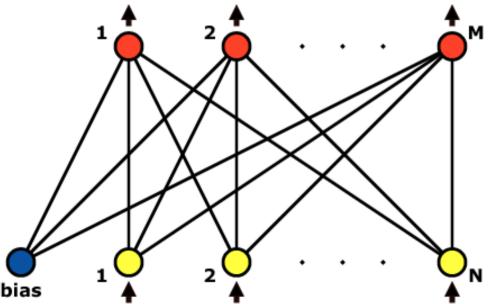
NEAT 2

- Topology is augmented by adding neurons and links between.
 - → Variable genome length.
- Mutations:
 - parametric Gaussian noise,
 - structural adding neurons & links (no pruning), switch on/off links.
- Mating special crossover two parents → single child.

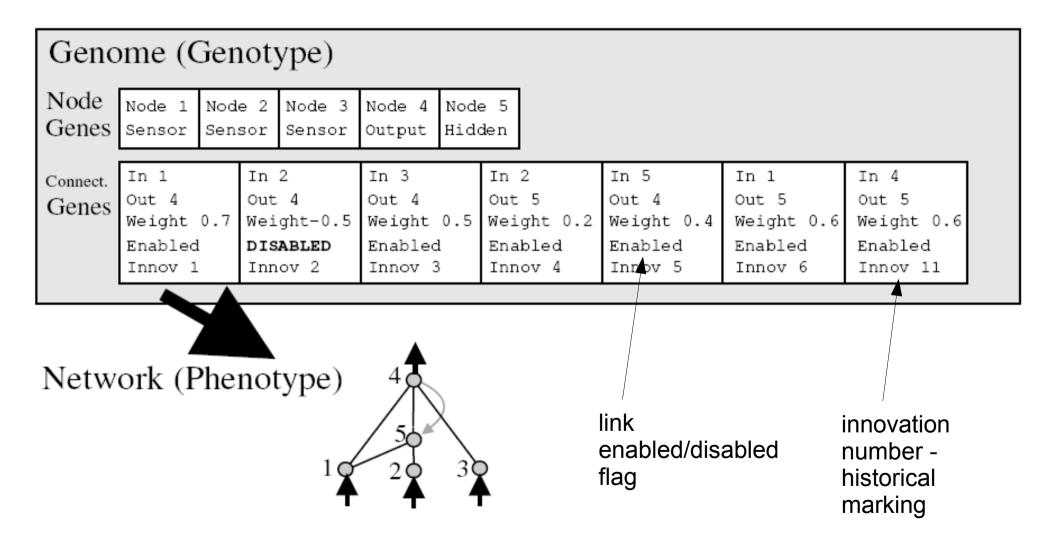
Note, some newer implementations use pruning However, it is not essential.

Minimal Substrate

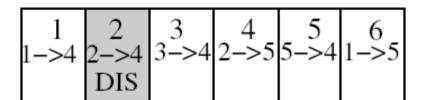
 Initial population is formed of the simplest topologies: fully connected feed-forward networks without hidden layers: the minimal substrate.



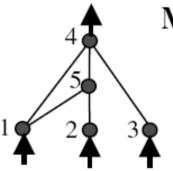
NEAT Genome

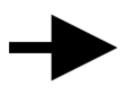


Add Link Mutation



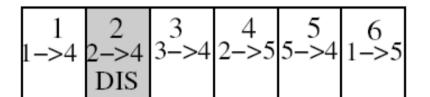
1	2	3	4	5	6	7
1->4	2–>4	3->4	2->5	5->4	1–>5	3->5
	DIS					



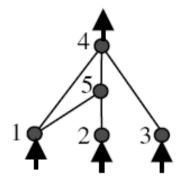


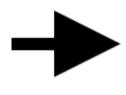


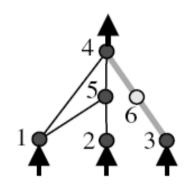
Add Neuron Mutation



1	2	3	4	5	6	8	9
1->4	2–>4	3–>4	2->5	5->4	1->5	3->6	6->4
		DIS					







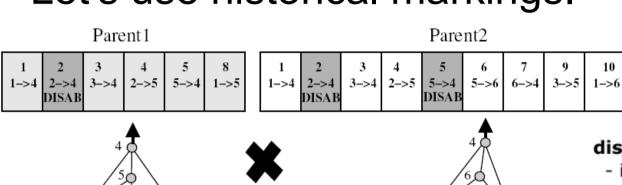
The weights of new neuron's incoming/outgoing links are set in a way which minimizes the difference between original and mutated networks.

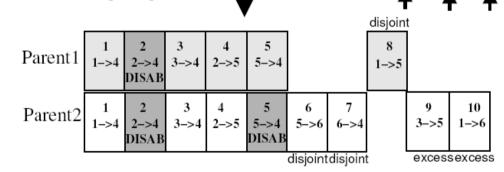
Historical Markings

- Q: How to align two genomes of different size representing two different networks?
- A: let's use "the creation date" of a particular gene (caused by a structural mutation) – historical marking (innovation number).
- Aligning two genomes:
 - when two genes with matching HMs are found, it is likely they have similar function in the network.
- HM is a counter, the same value is assigned for the same innovation within a single generation or more generations (i.e. adding a link between neurons #3 and #4).

Mating

Let's use historical markings.





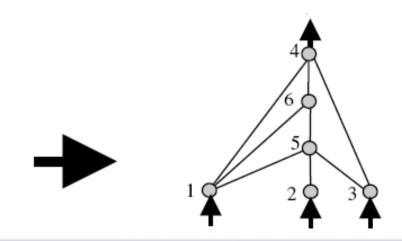
Offenring	1	2	3	4	5	6	7	8	9	10
Offspring		2–>4 DISAB			5–>4 DISAB		6->4	1->5	3->5	1->6

disjoint or excess

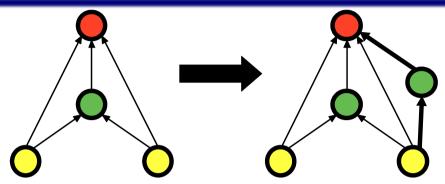
- inherit more fit
- if equal fitness inherit randomly

other

- inherit randomly



Niching



- There are networks of different sizes in the population.
- Adding a new structure:
 - likely lowers the fitness,
 - larger networks → longer genome → more time needed to optimize parameters.
- New topologies must be protected → niching.
- Here we use Explicit Fitness Sharing:
 Separate the population into species → selection and reproduction only among similar individuals → HMs again used to compute similarity of two genomes.

Similarity – Distance

$$d_{ij} = \frac{c_1 E}{N} + \frac{c_2 D}{N} + c_3 \cdot \overline{W}$$

- Using historical markings again.
- E ... # of excess genes,
- D ... # of disjoint genes,
- W ... averaged difference of matching weights,
- N ... the length of the longer genome,
- c_1 , c_2 , c_3 ... balancing constants.

The Three Most Important Ideas **Behind NEAT**

- Complexification start with small networks, gradually add neurons/links (reminds GMDH or GAME approaches).
- Concept of historical markings cross/match only corresponding genes → deals with competing conventions.
- Use of niching allows the survival of larger, recently structurally innovated networks → gives them time to optimize their weights and "show" that the structural innovation was beneficial.

Thanks for Attention

- What's next?
 - large-scale ANNs,
 - direct vs. indirect encodings.

