Indirect Encodings of Artificial Neural Networks

Jan Drchal drchajan@fel.cvut.cz

Department of Computer Science and Engineering Faculty of Electrical Engineering Czech Technical University in Prague

Overview

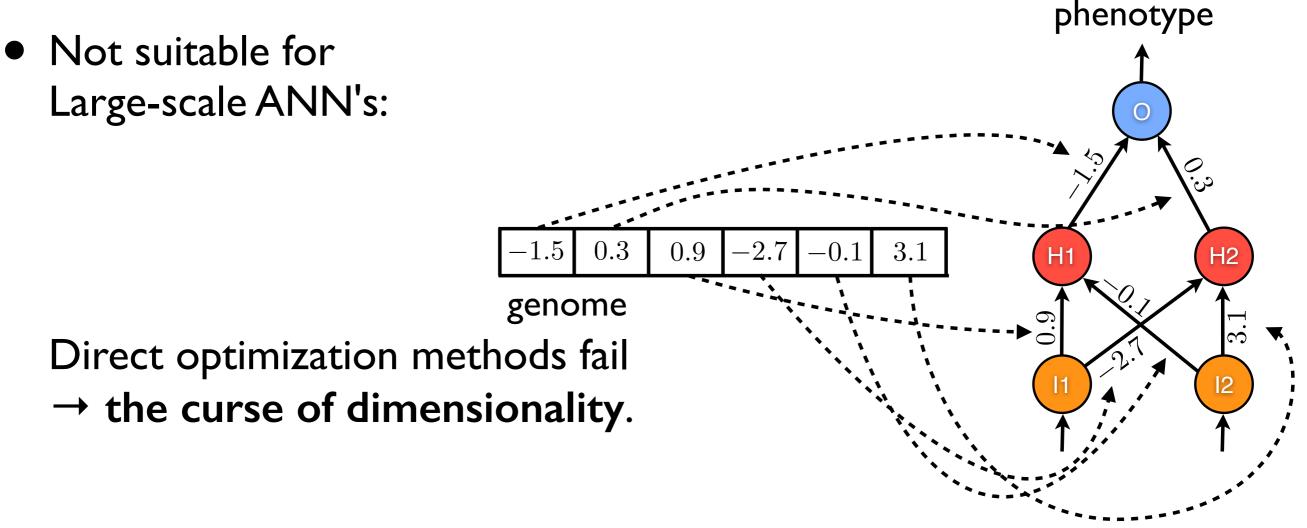
- Large-scale Artificial Neural Networks.
- Computational Development.
- Indirect Encodings of ANNs.
- Hyper-cube based encoding.

Evolving Large-scale ANNs

- 1000+ neurons (& corresponding # of links).
- Why to do that?
 - Complex models,
 - ability to process huge amount of inputs/ outputs without hand-coding features (i.e. pattern recognition)...

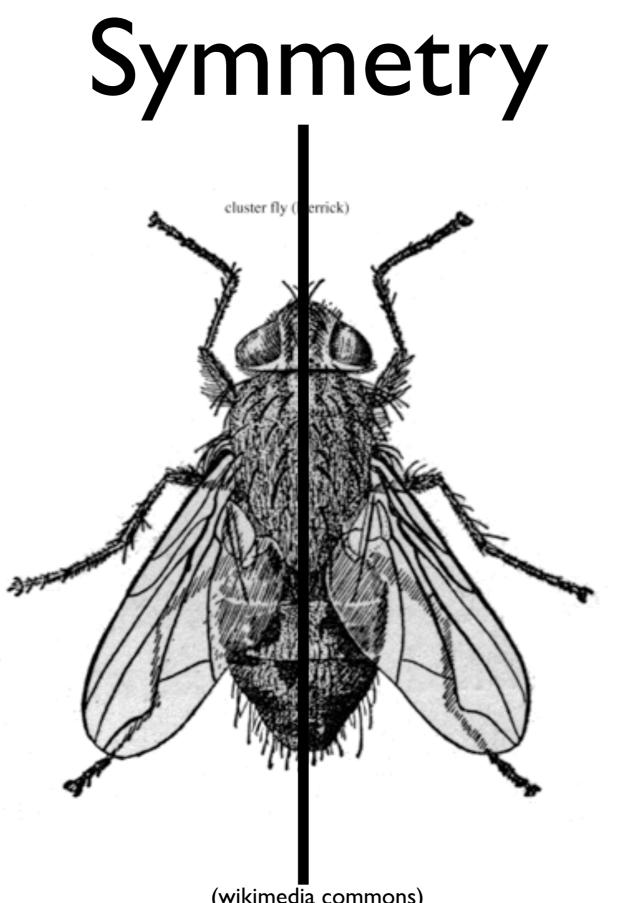
Direct Encoding

 Direct encoding → each structural part (neuron/link) is represented by a dedicated gene.

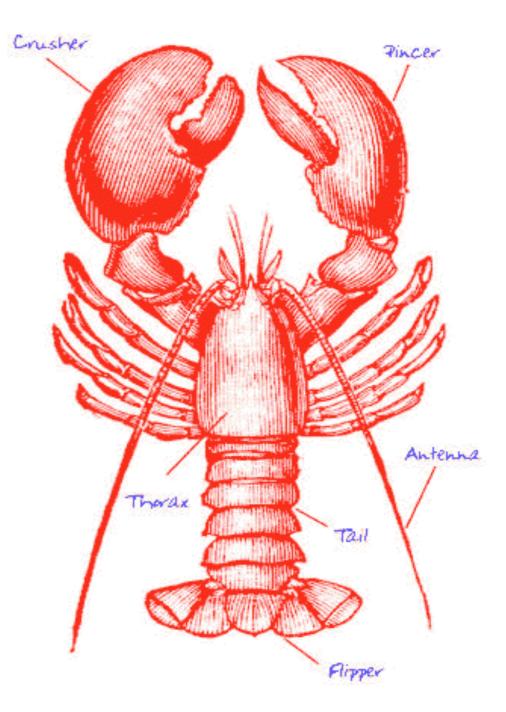


Indirect Encoding: the Way it Works in Nature

- Human genome → 20 000 25 000 genes describing almost 100 billion neurons each linked to as many as 7 000 others (plus the rest of organism!).
- We need some kind of compression:
 → indirect encoding.
- But we also need a **regularity** in data being compressed.
- Q: What are the regularities found in living organisms?

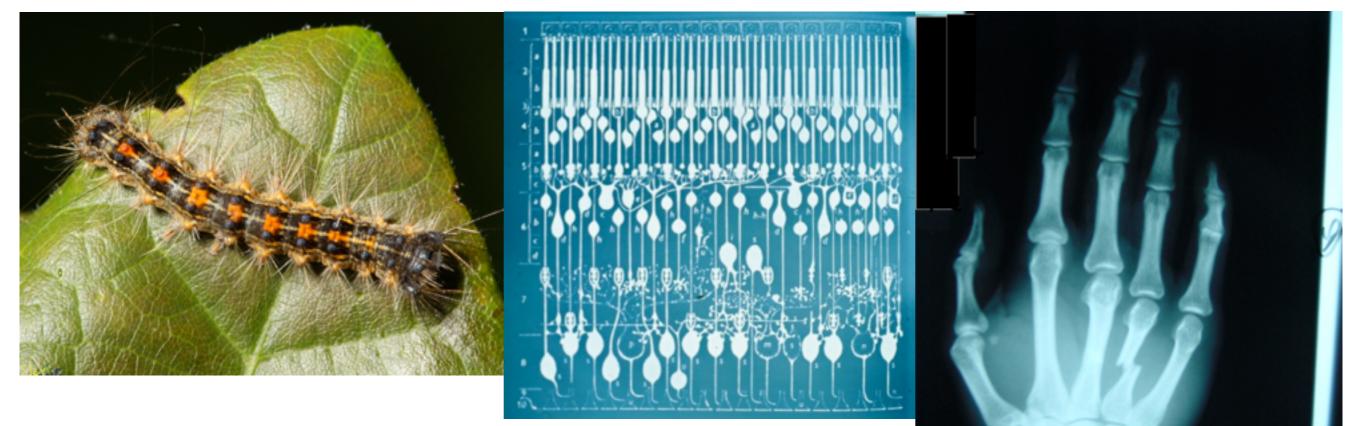


Imperfect Symmetry



(wikimedia commons)

Repetition with Variation

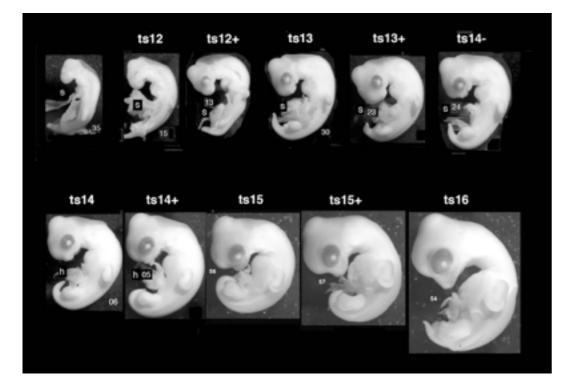


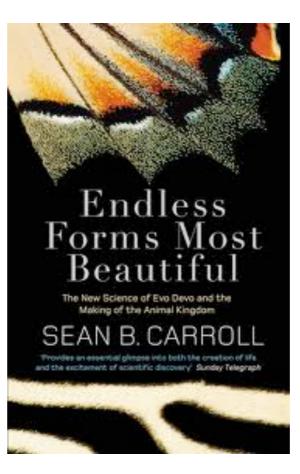
 Note that all these regularities happen at all scales of an organism.

(wikimedia commons)

How Are Organisms Built?

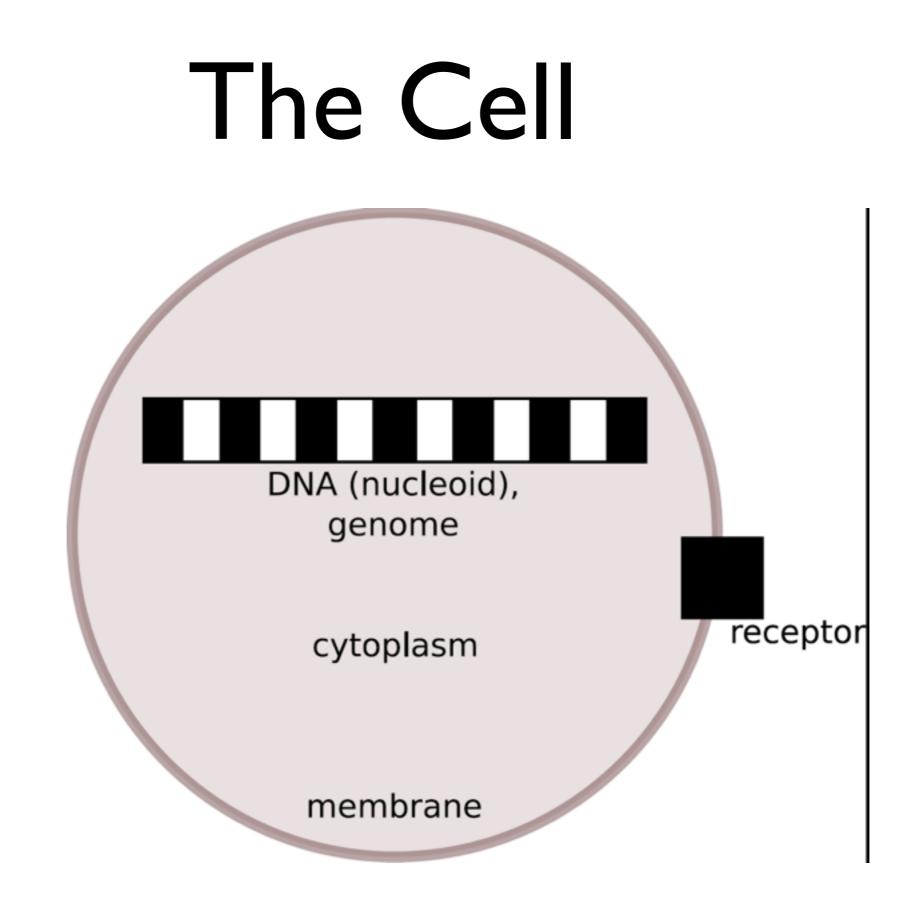
- Development from a single cell (zygote).
- Evolutionary Development "Evo-Devo".



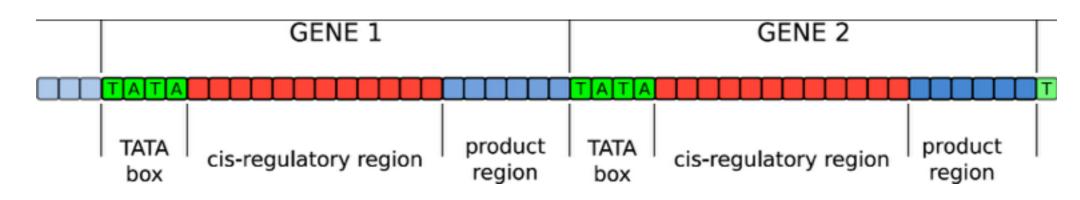


On Growth, Form and Computers

EDITED BY SANJEEV KUMAR AND PETER J. BENTLEY



Genome: A Closer Look



- TATA box marks the start of a gene
- (cis-)regulatory region composed of binding sites.
- binding site binds regulatory proteins → gene activation/ inhibition
- product region when gene is active a protein is produced:
- special: cell division, differentiation,
- regulatory: can bind to binding sites of other genes,

• structural.

A4M33BIA 2014

Cell Divisions

- Program same for all cells.
- What differs?

COMPUTATIONAL

GROUP

- Regulatory protein concentrations.
- Receptors selectively pass regulatory proteins from inter-cellular space.
- Diffusion, decay, cell differentiation.
- Gene Regulatory Networks (GRNs).

How to Simulate Development?

- Cell program ANN, FSM or other controller:
 - *inputs*: binding sites,
 - *outputs*: one for each gene \rightarrow gene activity.
- Physical simulation: diffusion, decay, receptors...
- Cell division:

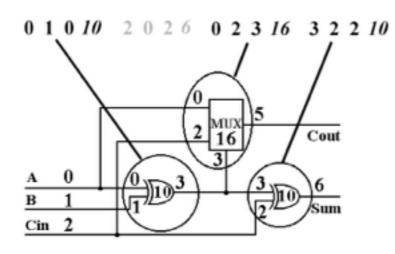
OMPUTATIONAL

- copy cell program from mother \rightarrow daughter cell,
- different concentrations for mother/daughter.
- This is called: Computational Development.

"French Flag" Organism

 Cell program evolved using Cartesian Genetic Programming (CGP).

CGP encoded adder



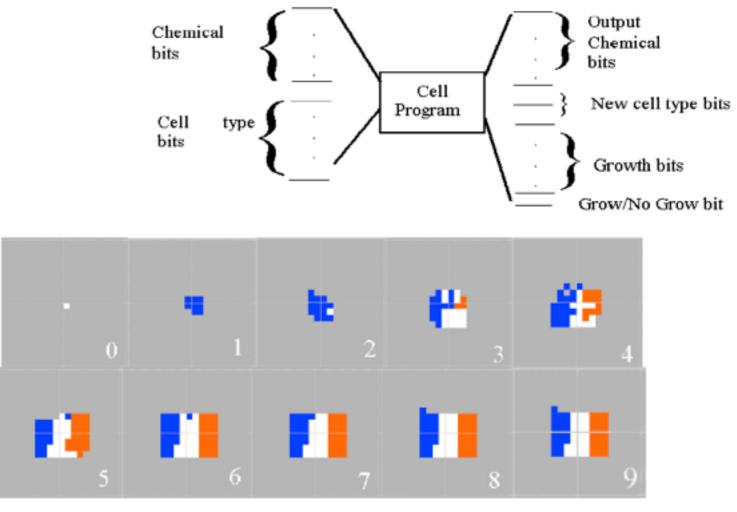


Fig. 4. Growth of fittest cell program from a white seed cell to a mature French flag (two chemicals)

COMPUTATIONAL Julian Francis Miller (2004):

GROUP

Evolving a Self-Repairing, Self-Regulating, French Flag Organism

A4M33BIA 2014

"French Flag" Organism II

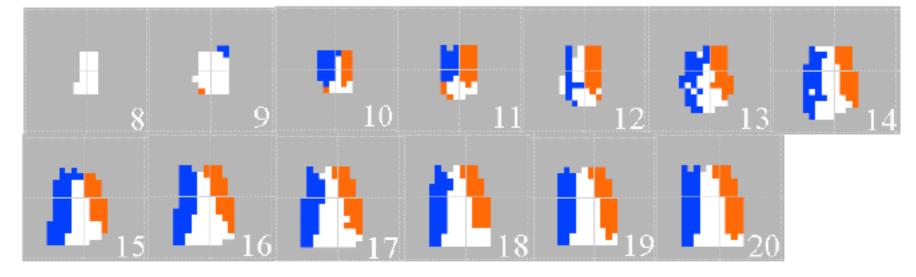


Fig. 7. Autonomous recovery of badly damaged French flag organism conditions (blue and red regions killed at iteration 8 - see Fig. 4). There is no further change after iteration 20

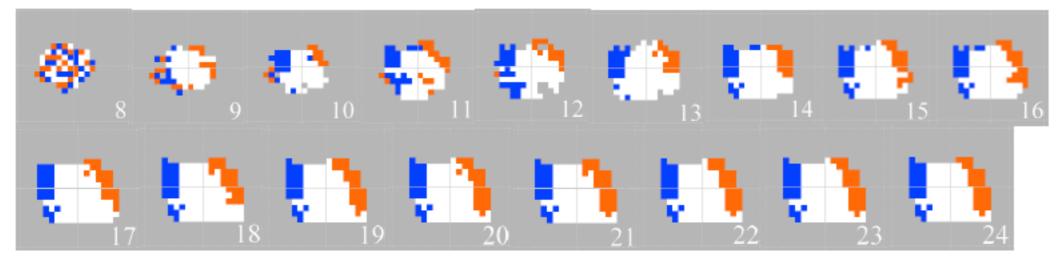
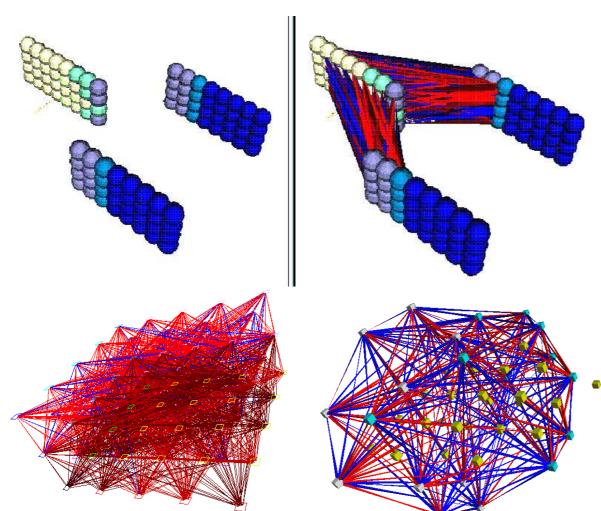


Fig. 8. Autonomous recovery of French flag from randomly rearranged cells (French flag at iteration 8 - see Fig. 4). There is no further change after iteration 24

Indirect encodings of ANNs

- GRN-based
- Cellular Encoding
- Hypercube-based
- Other: rewriting rules, L-systems, ...

GRN-based



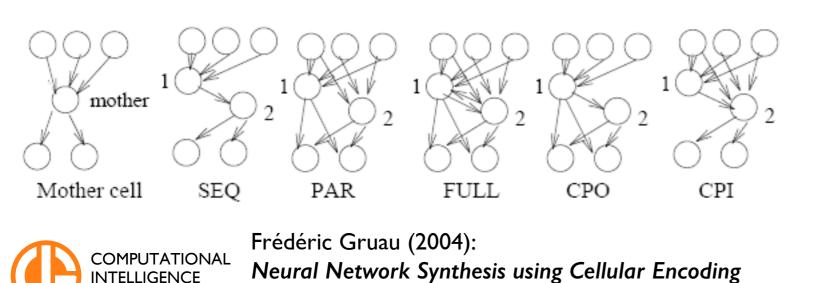
Peter Eggenberger-Hotz (1997): Creation of Neural Networks Based on Developmental and Evolutionary Principles

Peter Eggenberger-Hotz (2003): Evolving the Morphology of a Neural Network for Controlling a Foveating Retina and its Test on a Real Robot A4M33BIA

2014

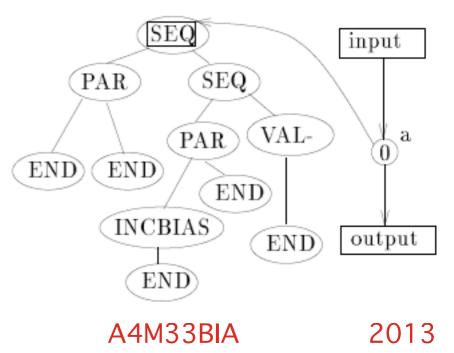
Cellular Encoding (CE)

- 1993, Fréderic Gruau: indirect encoding example.
- Inspiration in embryo-genesis (cell division and differentiation). Cells → neurons.
- Program to "grow" ANN is represented by a tree (Genetic Programming).
- Operations: parallel/sequential divisions, connections change, change of weights/bias...

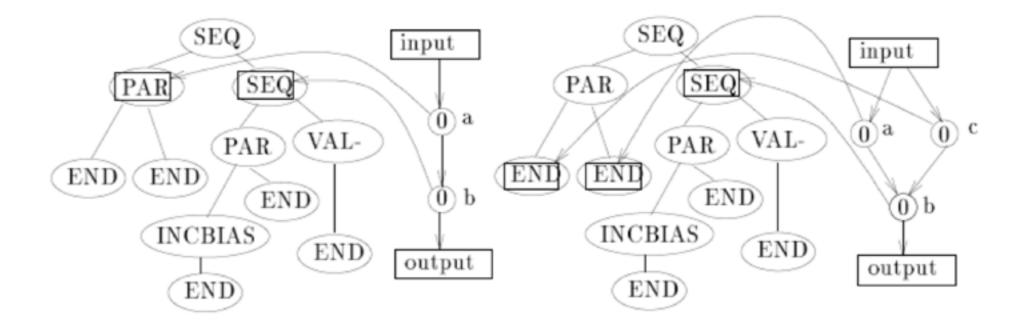


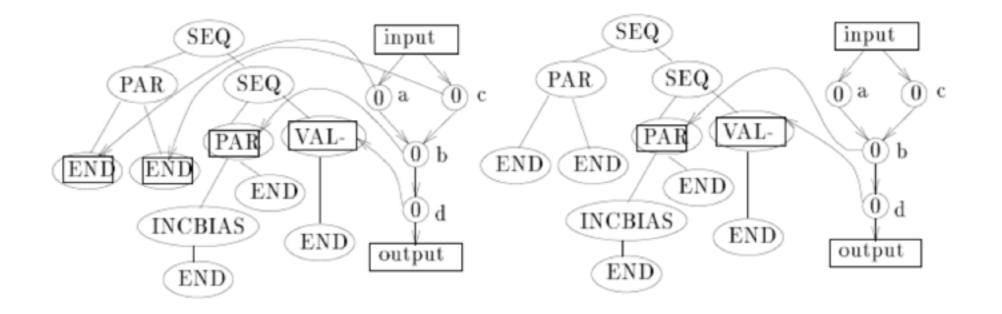
and the Genetic Algorithm

GROUP



Cellular Encoding II





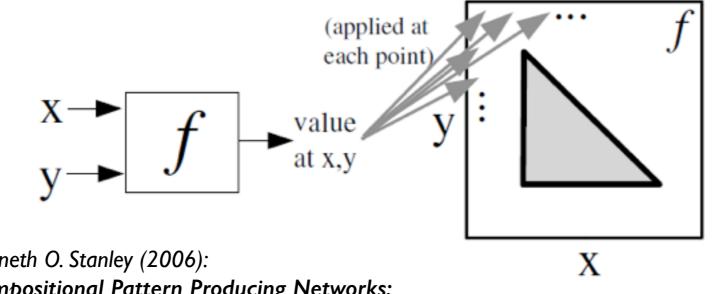
A4M33BIA 2014

Cellular Encoding III

- May use operation which reads a sub-tree repeatedly → evolved a network representing parity of arbitrary number of inputs.
- Allows ANNs of arbitrary size: neural module reuse.

Compositional Pattern Producing Networks (CPPNs)

- Stanley 2006.
- Can we create such regular patterns without development in time?
- We can ask a special function called CPPN, where the cells are, using absolute coordinates.

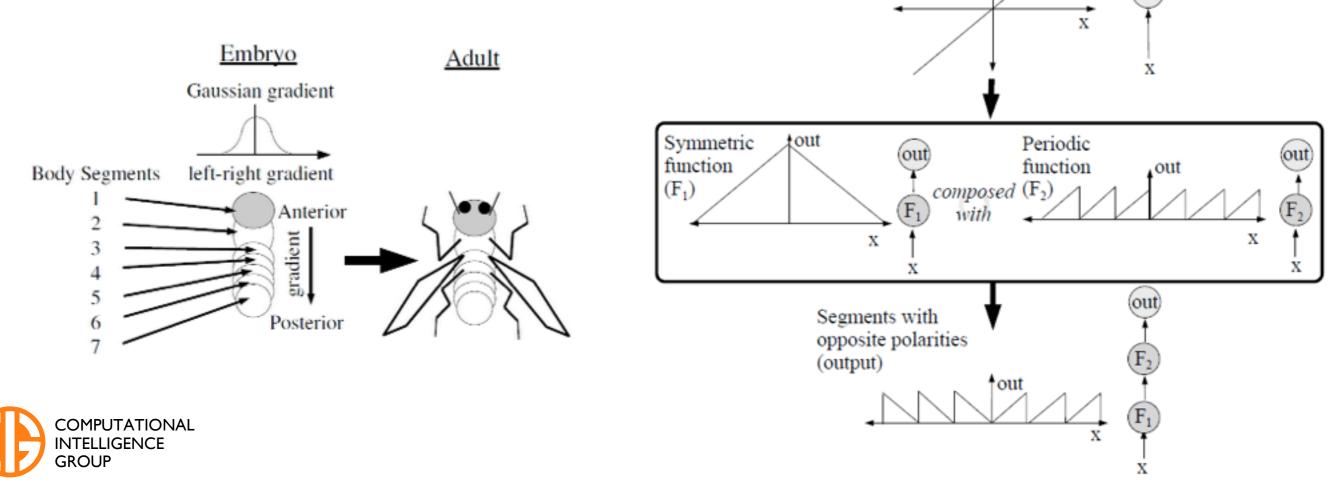


Kenneth O. Stanley (2006): Compositional Pattern Producing Networks: A Novel Abstraction of Development

A4M33BIA 2014

Regularities by CPPN

- Nature uses concentration gradients of regulatory proteins to determine position.
- CPPN is a composition of symmetric, periodic and other functions.

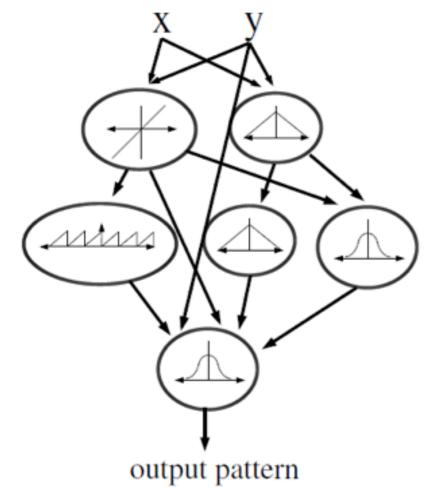


↓out

out

Regularities by CPPN II

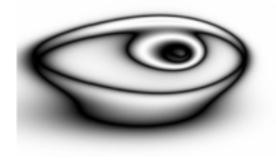
• CPPN is a composition of symmetric,



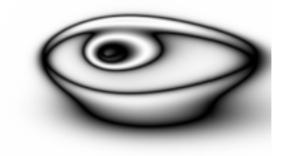
Name	Equation
Bipolar Sigmoid	$\frac{2}{1+e^{-4.9x}}-1$
Linear	x
Gaussian	$e^{-2.5 x^2}$
Absolute value	x
Sine	sin(x)
Cosine	cos(x)

Picbreeder

- Interactive evolution of images.
- CPPN output: level of grey.
- CPPNs evolved using NEAT.
- http://picbreeder.org/



(a) Eye warped left

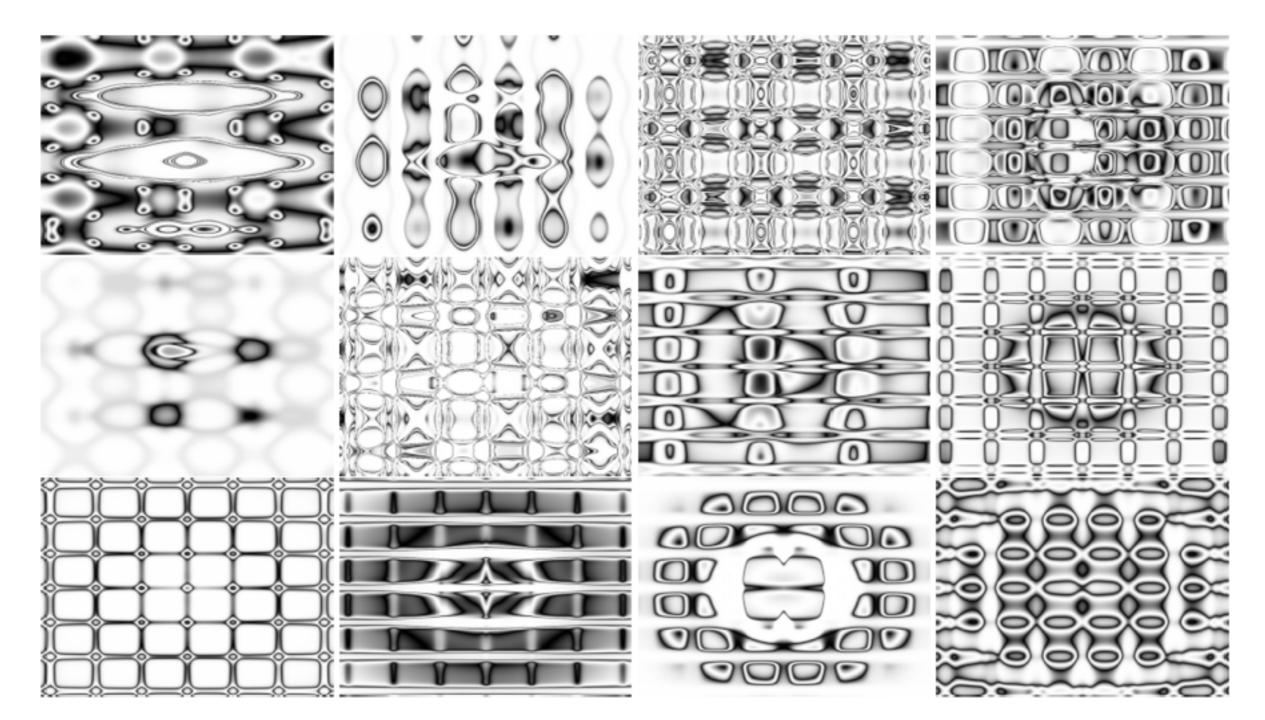


(b) Symmetric eye

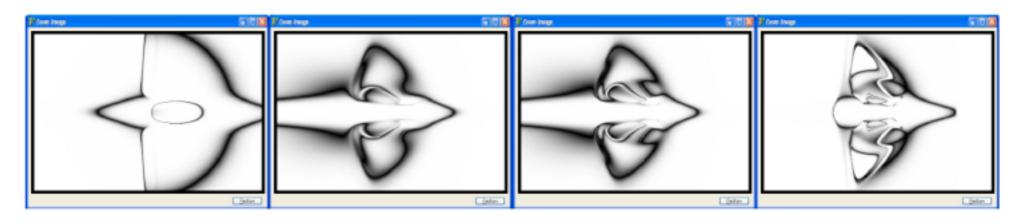
(c) Eye warped right

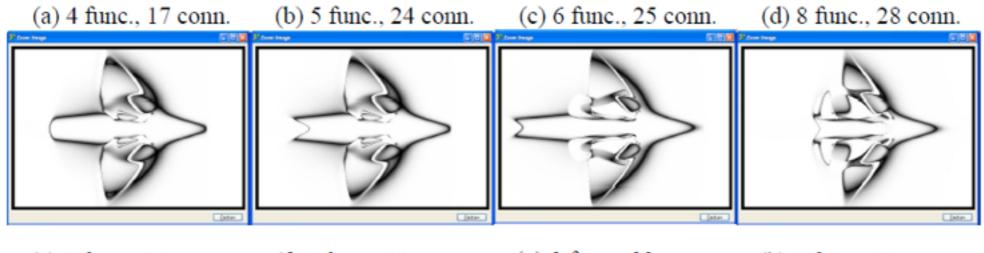
K. O. Stanley. Compositional pattern producing networks: A novel abstraction of development. *Genetic Programming and Evolvable Machines Special Issue on Developmental Systems*, 2007. To appear.

Picbreeder II



Picbreeder: Space Ship



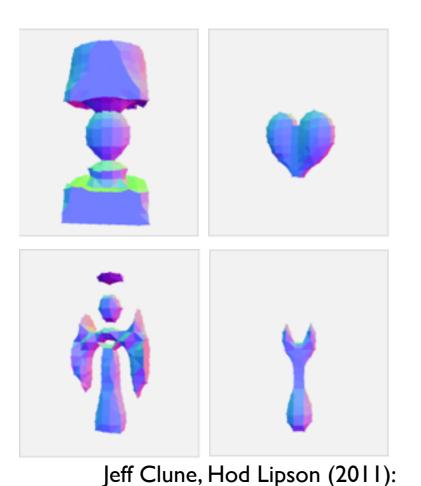


(e) 8 func., 30 conn. (f) 8 func., 31 conn. (g) 8 func., 32 conn. (h) 8 func., 34 conn.

(i) 8 func., 36 conn. (j) 9 func., 36 conn. (k) 9 func., 38 conn.

Endless Forms

- Similar approach in 3D.
- http://endlessforms.com



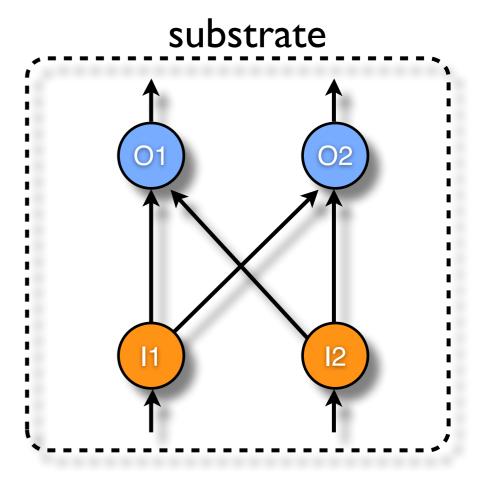
COMPUTATIONAL INTELLIGENCE GROUP Evolving Three-Dimensional Objects with a Generative Encoding Inspired by Developmental Biology

Hypercube-based Encoding

- Stanley 2007.
- Uses CPPNs in a similar way to Picbreeder: evolves connectivity patterns.
- Best known for HyperNEAT algorithm which evolves ANNs.

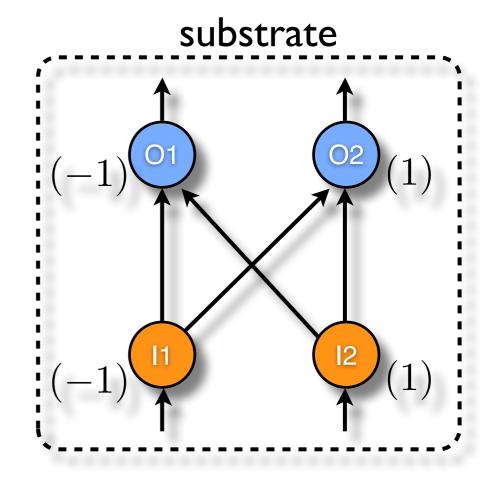
• Stanley et al. 2007: Hypercube-based encoding.

Substrate is a template for a possibly large-scale neural network.

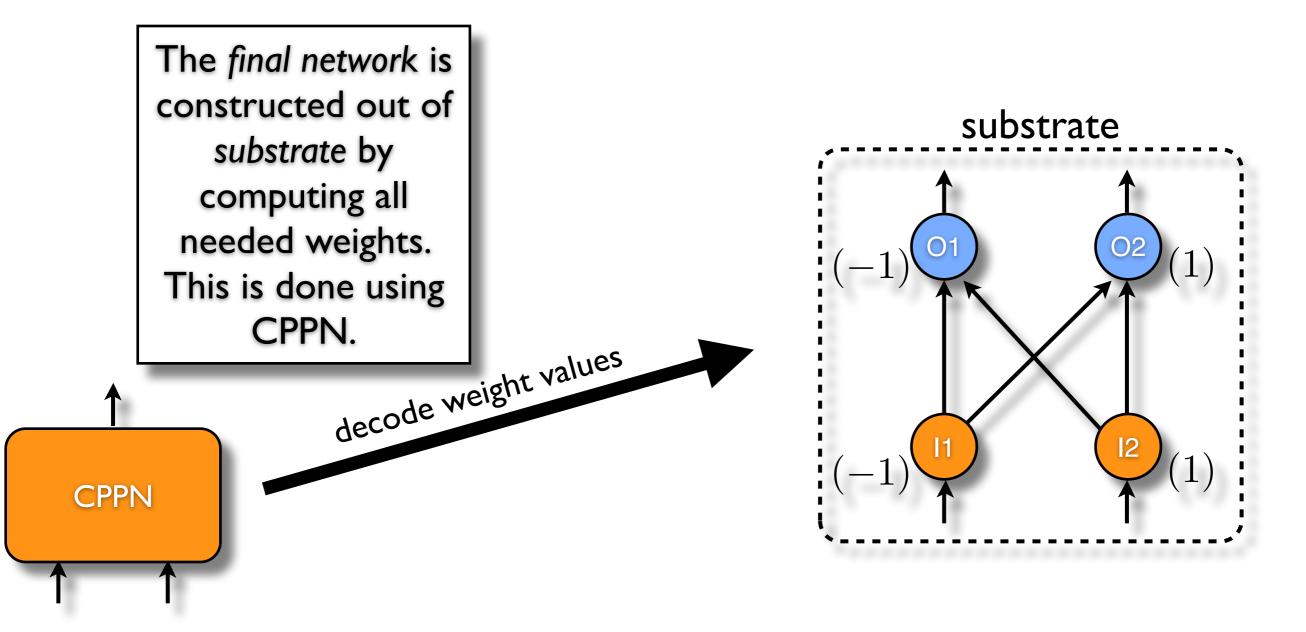


Stanley et al. 2007: Hypercube-based encoding.

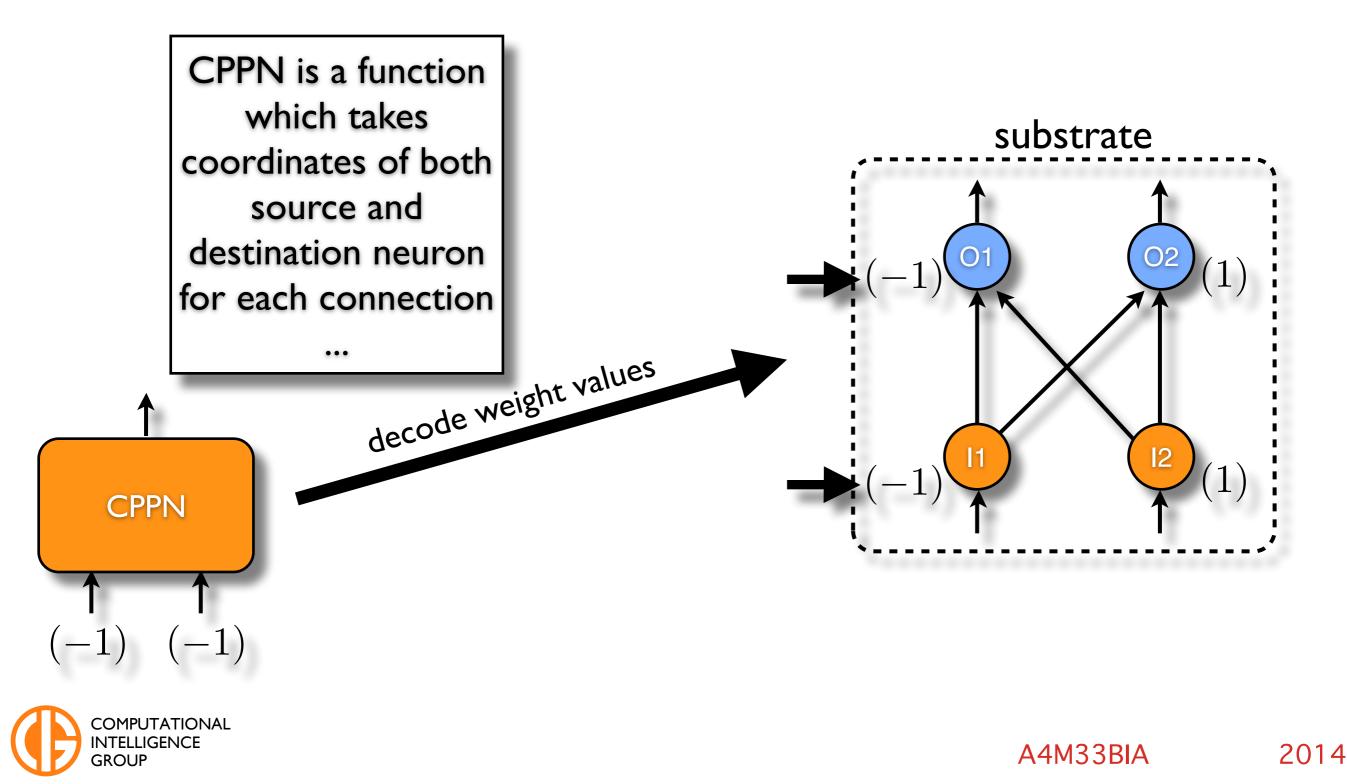
Each neuron is assigned coordinates.The weights of connections are unknown.



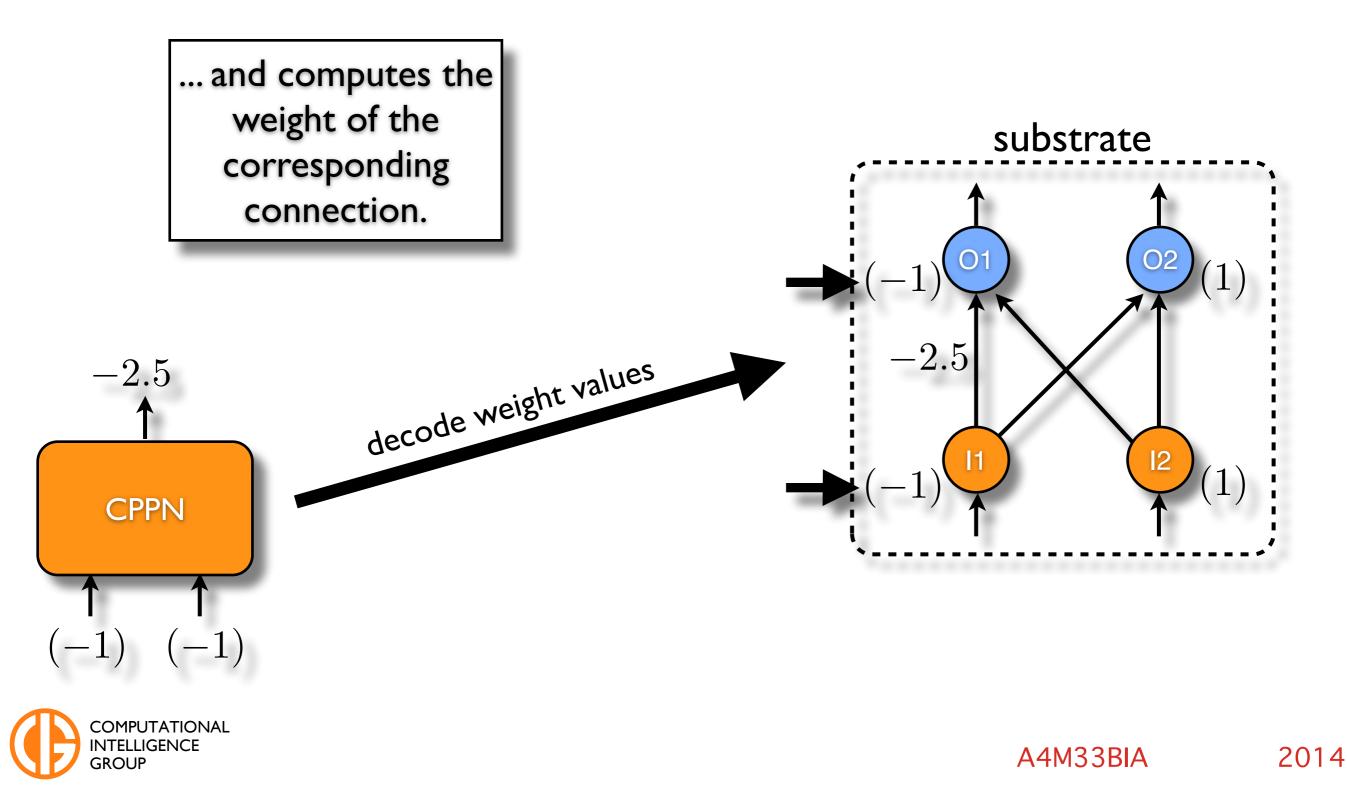
• Stanley et al. 2007: Hypercube-based encoding.



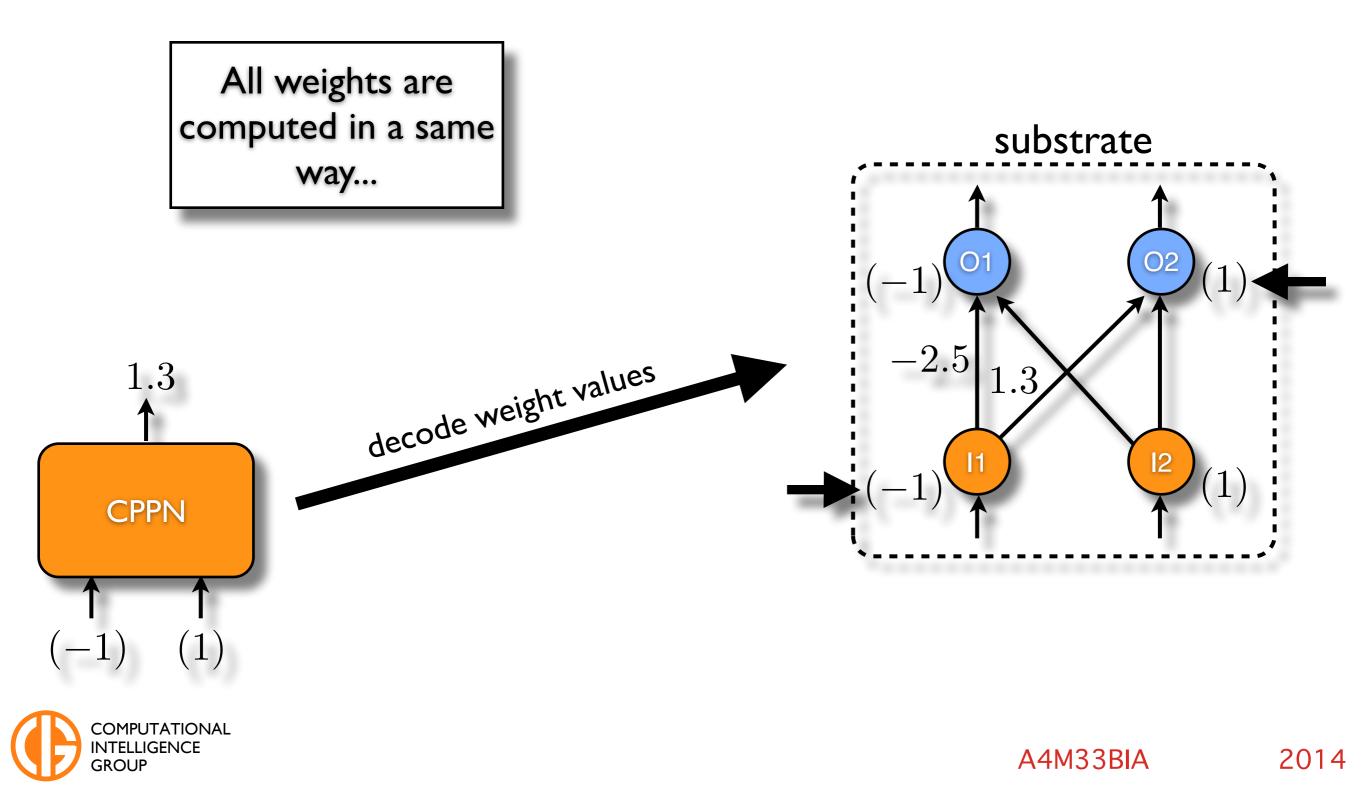
• Stanley et al. 2007: Hypercube-based encoding.



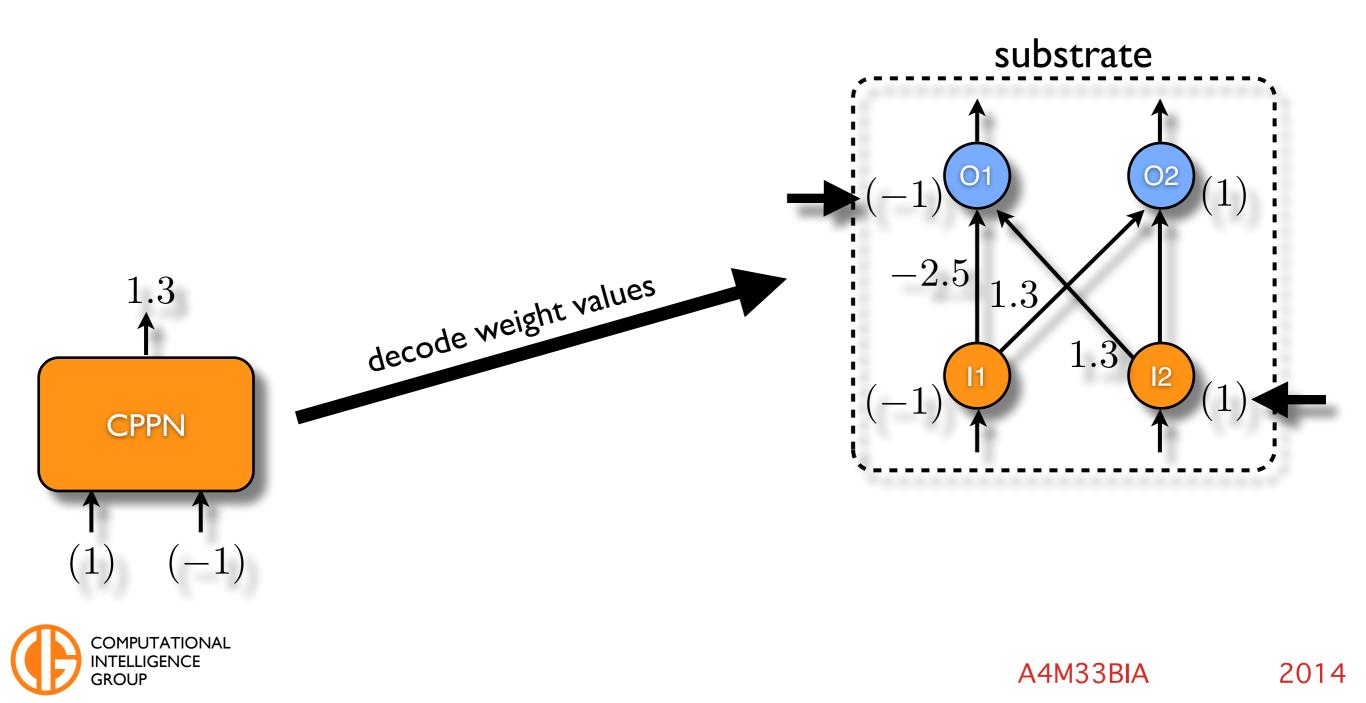
Stanley et al. 2007: Hypercube-based encoding.



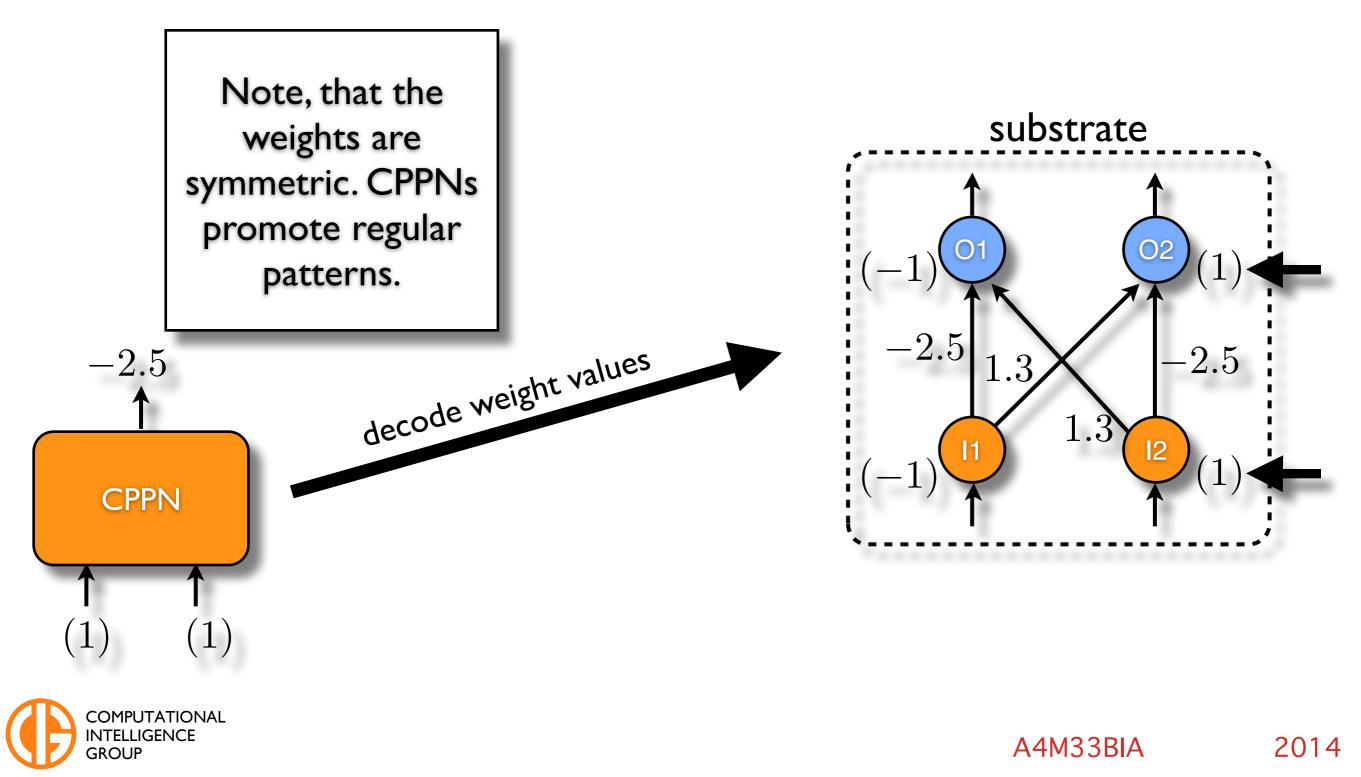
Stanley et al. 2007: Hypercube-based encoding.



• Stanley et al. 2007: Hypercube-based encoding.

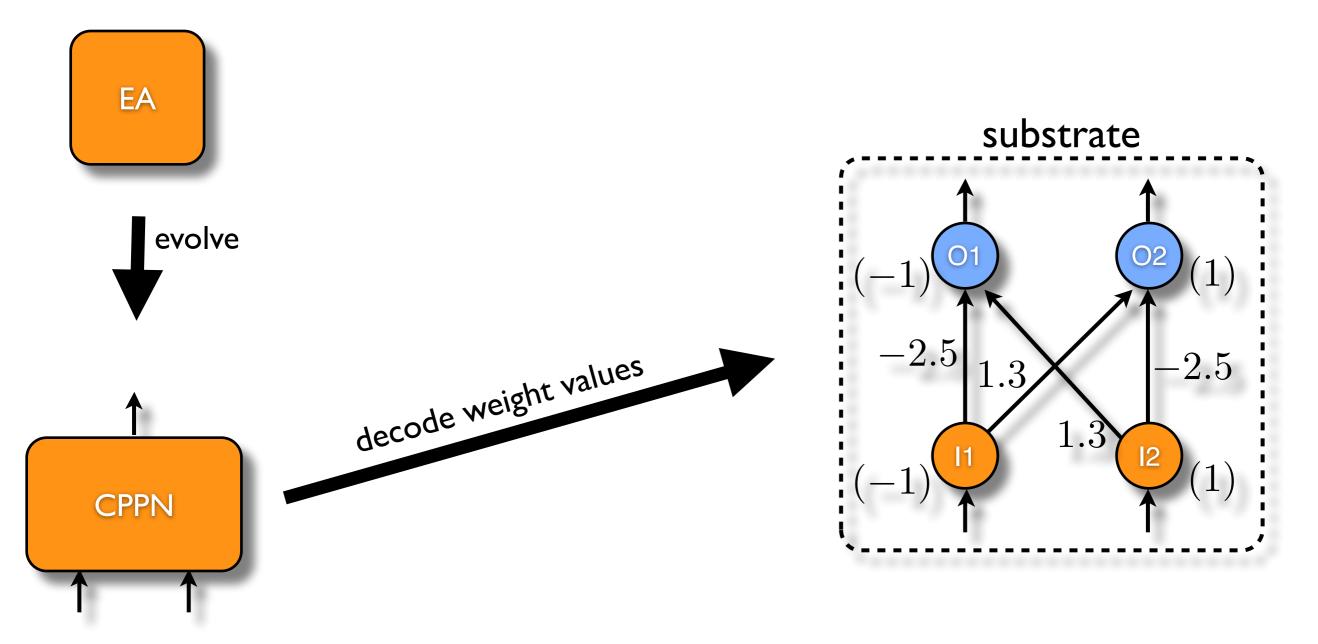


Stanley et al. 2007: Hypercube-based encoding.



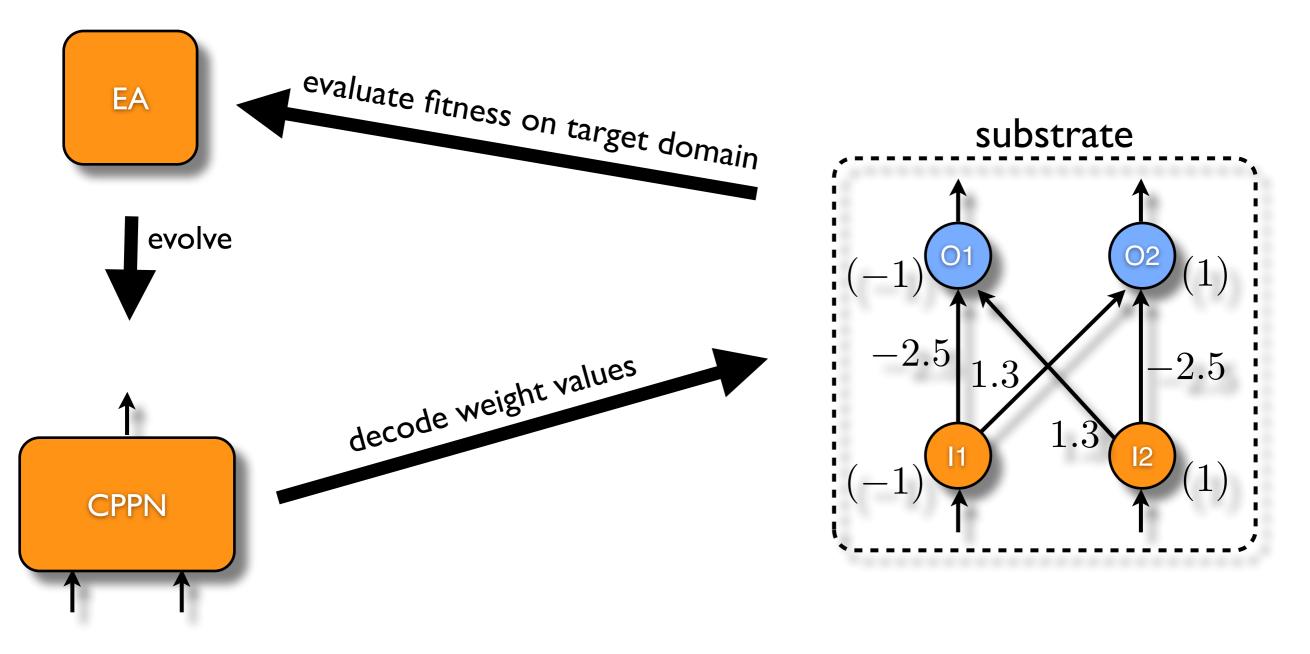
HyperNEAT

• Stanley et al. 2007: Hypercube-based encoding.

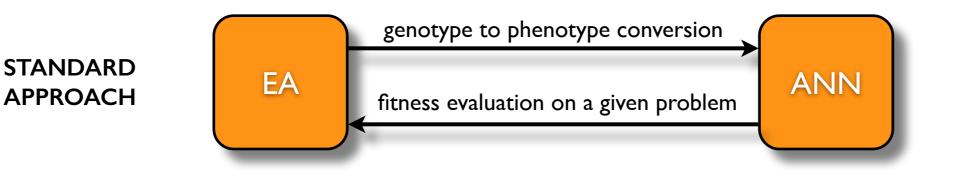


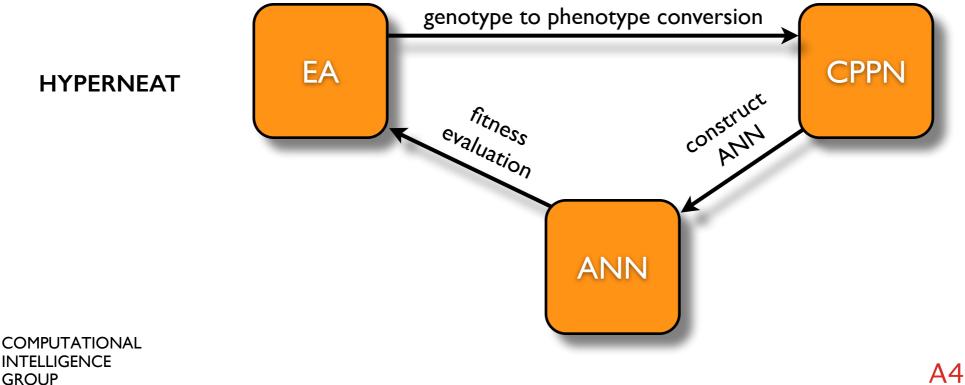
HyperNEAT

Stanley et al. 2007: Hypercube-based encoding.



HyperNEAT vs. Standard Approaches

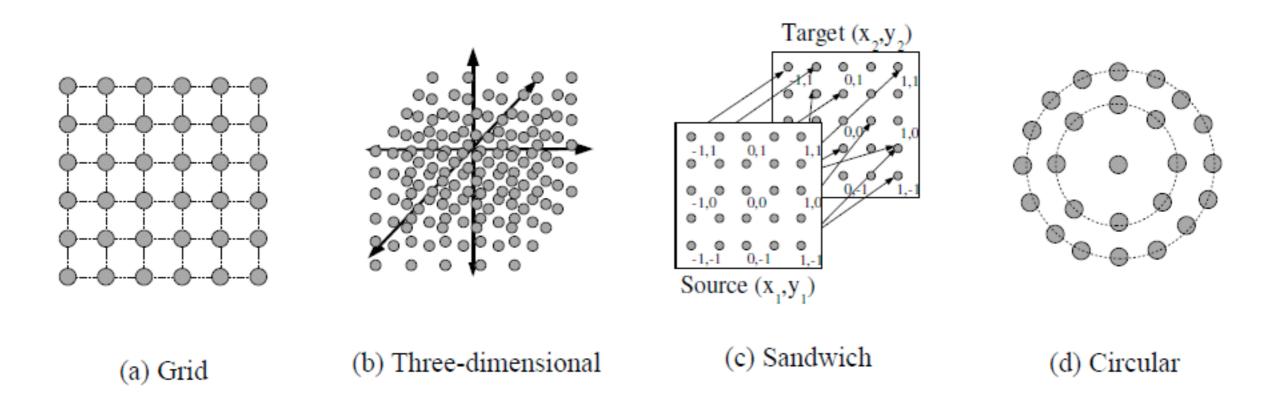




A4M33BIA 2014

Types of Substrate?

• The list of neurons' coordinates along with possible connections between them.



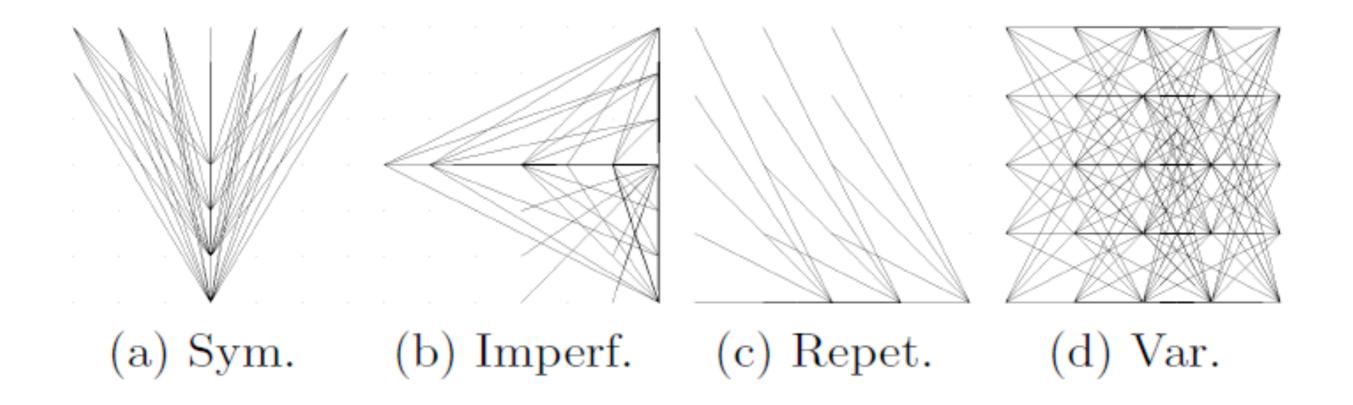
Create or not Create a Link?

- Substrates are often fully connected → lots of links → computationally infeasible → pruning is used.
- If CPPN outputs weights in range [-3; 3] then
- links with weights < 0.2 are not expressed,
- >= 0.2 are scaled to magnitude between 0 and 3.

 \rightarrow when using this approach the final ANN is a sub-graph of a substrate.

Connectivity Patterns

• Patterns evolved using interactive evolution:



Spatial Representation

- HyperNEAT exploits spatial representation of a problem. The same happens in Nature:
 - connection of eyes to brain hemispheres,
 - similar things processed nearby.
- We have to assign coordinates.
- Does every problem have a reasonable spatial representation?
 - It seams that most problems have. The others would not probably benefit from regularities in ANNs.

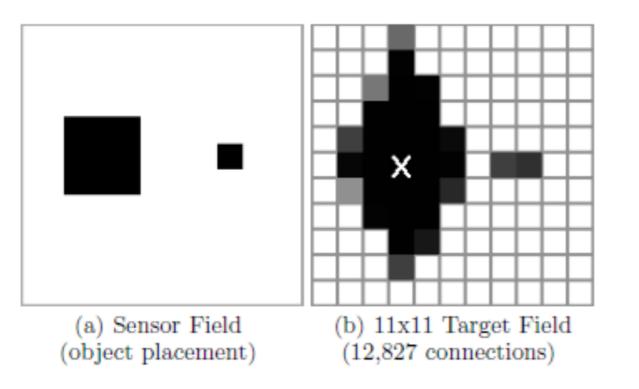
NEAT in HyperNEAT

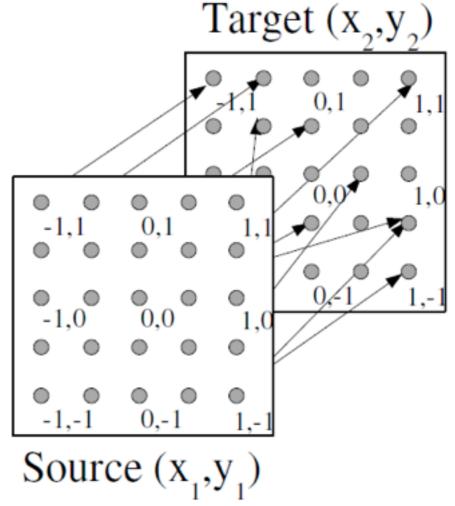
- HyperNEAT uses a slightly modified NEAT (Stanley 2001) as a base algorithm to evolve CPPNs.
- NEAT is neuro-evolutionary algorithm able to evolve ANNs of arbitrary topologies.

- It is based on:
 - **complexification** \rightarrow evolving gradually more complex ANNs,
 - innovation numbers → track structural innovations,
 - niching → allows simultaneous evolution of small and large ANNs in one population. Requires to define a distance measure for ANNs.

Visual Discrimination

- Visual targeting: distinguish the larger object.
- "Sandwich substrate".





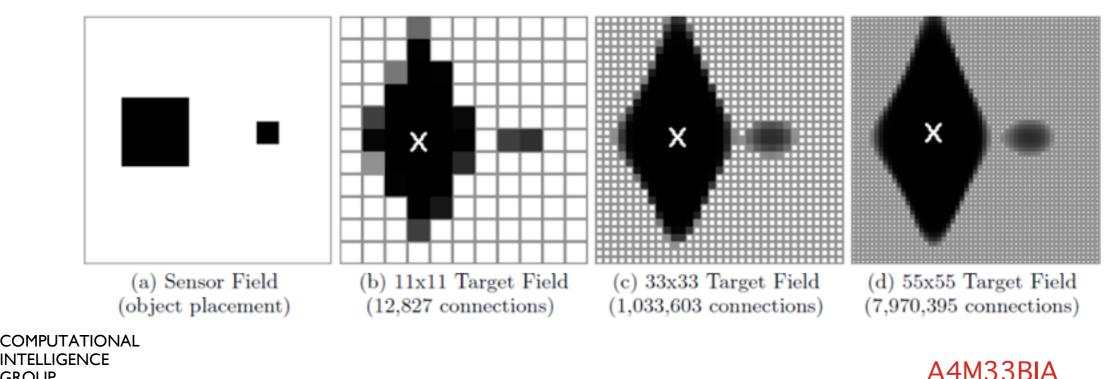
Jason J. Gauci and Kenneth O. Stanley (2007):

A4M33BIA

Visual Discrimination II: Scaling the Substrate

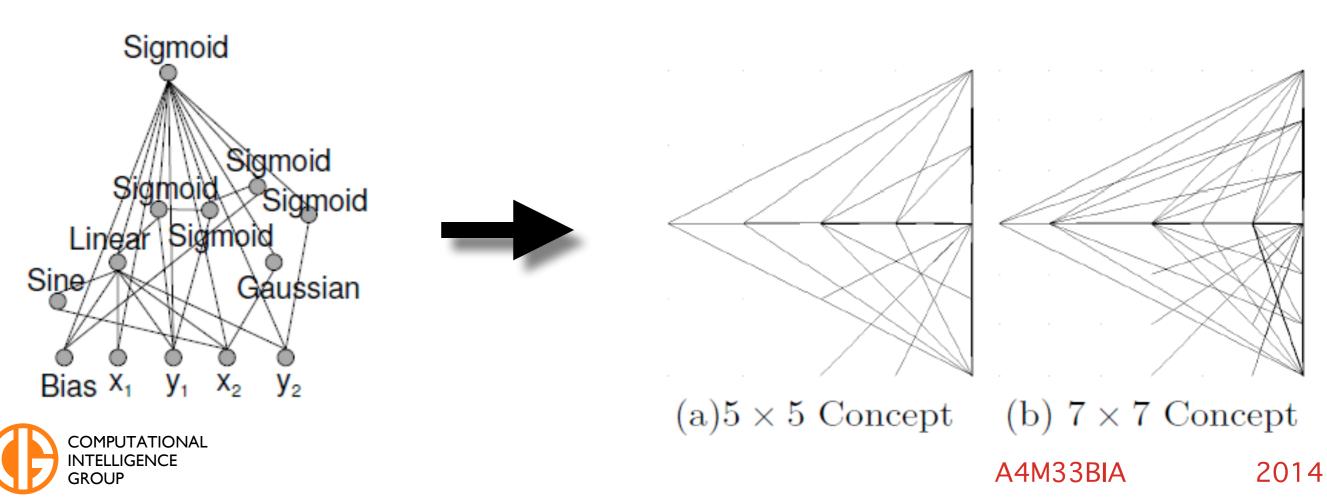
- The substrate density can be scaled using the same CPPN.
- The function of the final ANN is approximately preserved.
- We can train on small \rightarrow get large.

GROUP



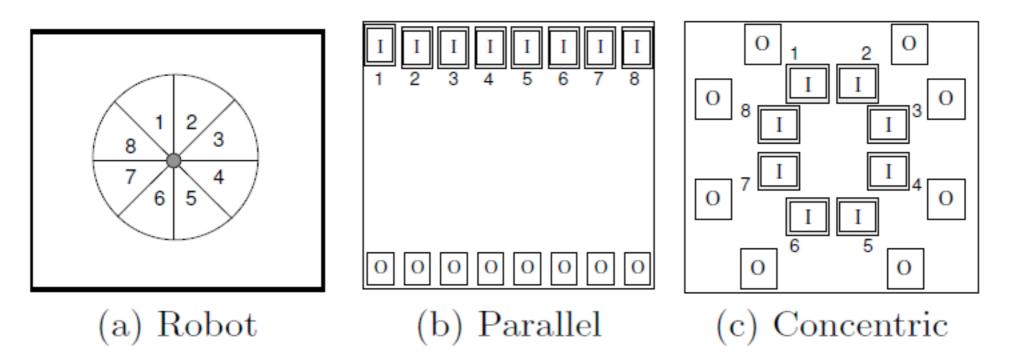
Visual Discrimination III: Scaling the Substrate

- An equivalent connectivity concept at different
- substrate resolutions.



Food Gathering Problem

- Range-finder sensors detect food.
- More food eaten \rightarrow higher fitness.
- Experiments with different sensor/effector placement exploiting geometric relationships with "outer world".



David B. D'Ambrosio and Kenneth O. Stanley (2007) A Novel Generative Encoding for Exploiting Neural Network Sensor and Output Geometry

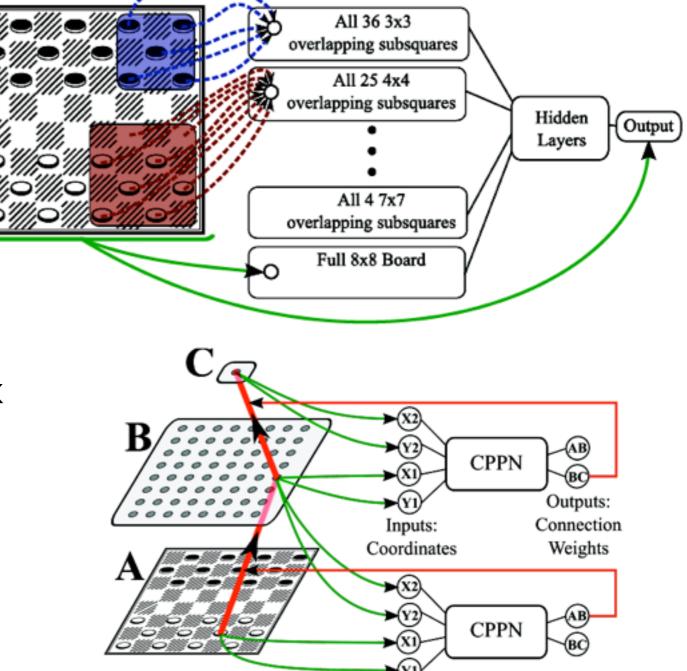
A4M33BIA

Food Gathering Problem II

- Parallel worked better than Concentric because less computation is needed for CPPN.
- New CPPN inputs added: the distances
- (*x1-x2*) and (*y1-y2*)
- When CPPN is provided the distances, both work the same.

Checkers

- Comparison with classic NEAT.
- HyperNEAT is faster + generalizes.
- Single CPPN with multiple outputs.

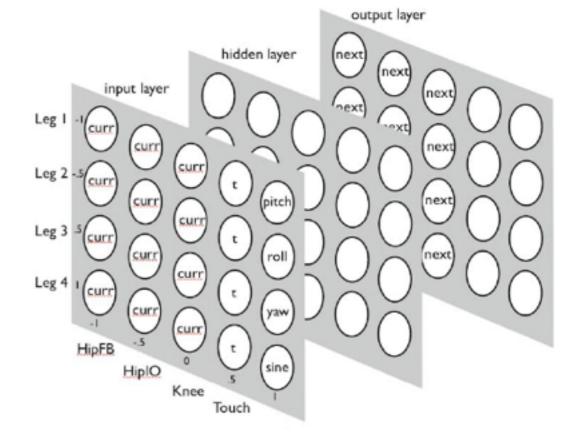


• The output of the final net is a heuristic score for the minimax algorithm.

Jason Gauci and Kenneth O. Stanley (2008): A Case Study on the Critical Role of Geometric Regularity in Machine Learning

HyperNEAT Coordinated Quadruped Gaits

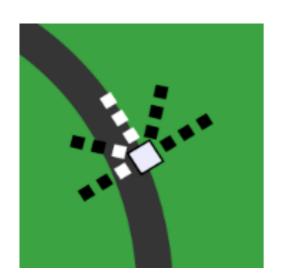
- Simulation of four legged walker robot.
- Comparison with classic NEAT.
- Other experiments show that HyperNEAT can deal with random substrates.



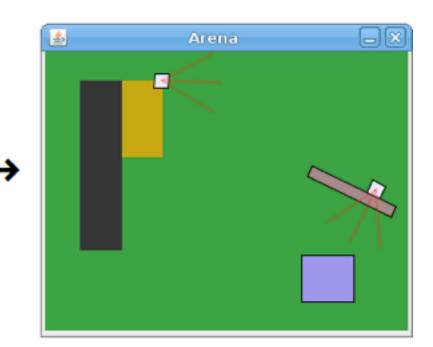
Jeff Clune: Evolving Coordinated Quadruped Gaits with the HyperNEAT Generative Encoding

Mobile Robot Navigation

- HyperNEAT/HyperGP for robot control.
- ViVAE Simulated 2D environment with rigid body physics.

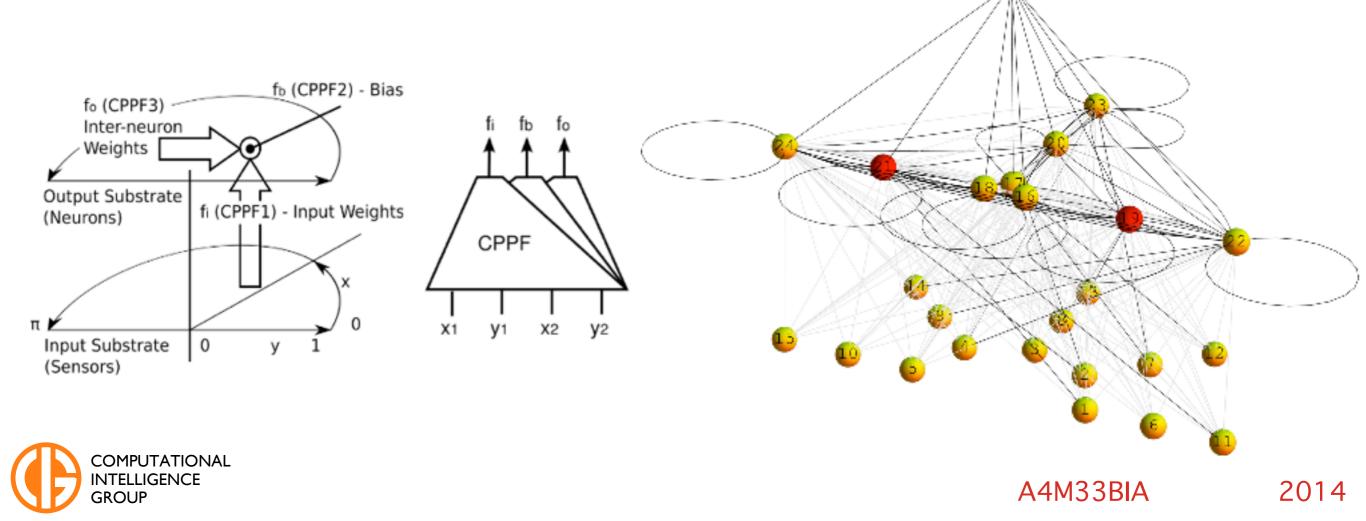


	minimal 8. svg - Inkscape	1 🛙
Ble Edt ⊻iew Layer D	oject gath Jext Effegts Whiteboard ⊟elp	
00100	1 🕒 🗠 🎢 🖉 🗸 🖉 🔍 🔍 🛅 🖄	v
🔯 🗎 🔯 👲 🕹 I	🕼 🚄 🛃 🛤 🖬 🛛 🕅 🗐 🕅 🖓 🖬 🖬	v
Para - Para		A
		^
N.E.		
4		
Q		
1 C		
6 3		
20 F	Object Properties (SI = C ×	
SP =	jd rect2391 Set	
12	Label Robot	1
A	TELE	
A	Description	
A.,		
N	☐ <u>H</u> ide ☐ Lgck	
1		-
		Ē
C Rit O: 10 C	© 3 •Layer 2 ○ Alt: click to select under: 2 55.09 Z 171%	



Mobile Robot Navigation II

- Substrate uses polar coordinates.
- Input + I fully recurrent layer
- See VIDEO...



Mobile Robot Navigation III

Obstacle avoidance.

GROUP

300 Object sensors added (two input layers) 209 CPPN(1) - Bias Obstacle CPPN(2) CPPN(4) Inter-neuron Target Weights Distance Output Substrate Grass CPPN(3) - Object Input Target (Neurons) Weights Agent Pi Start D Input Substrate 0 У Road (Objects) CPPN(0) - Surface Input Weights 30 Input Substrate (Surface) $f = \frac{distanceTravelled}{simulationSteps+1} \left(1 - \frac{targetDistance}{initialDistance}\right)$ COMPUTATIONAL INTELLIGENCE A4M33BIA 2014

Q&A

