Artificial Neural Networks

NeuroEvolution = ANN + EA

Jan Drchal
drchaj@fel.cvut.cz

Computational Intelligence Group
Department of Computer Science and Engineering
Faculty of Electrical Engineering
Czech Technical University in Prague
Motivation

- Learning ANNs = optimization of weights or potentially architecture.
- Problem of local extremes → unable to learn hard task/large networks.
- Use of **Evolutionary Algorithms** → slower, but more robust than classic gradient methods like Back-Propagation.
Evolutionary Algorithms (EAs)

- Genetic Algorithms: binary strings
- Evolutionary Strategies: real vectors, only mutation.
- Genetic Programming: evolution of program trees.
- Evolutionary Programming: evolving FSMs.
- NeuroEvolution
What is Neuro Evolution?

- Neuro-evolutionary algorithm is just another special kind of EA → the task is to evolve (learned) neural networks.
- Both parameters (weights) and topology can be optimized by evolution.
- But how to encode a network into a genome? → A network with fixed topology is described by a vector/matrix of all its weights (real numbers)...

Direct Encoding of Neural Network

- Directly encode the weights as a bit string:

0101001001101011001001101101

- Can we do it better? Yes.
Floating-Point Encoding

- Motivation: simplicity, precision

```
1 0 1 1 0 0 0 1
```

Binary string encodes vector of 2 numbers.

```
 11 1
```

The same encoded using floating-point encoding.

What about mutation? -> Gaussian noise.

Idea:
small changes with *higher* probability, *large* changes with *lower*.

\[
y = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{x^2}{2\sigma^2}}
\]

- Useful for integers and floats …
Competing Conventions Problem

- Problem of competing conventions:
 - Same solution can be represented by many genomes → ordering of weights matters.
 - Error (fitness) landscape contains many optima representing the same solution.
 - Crossover of two such individuals will most probably lead to “crippled” offspring.
Multimodal Domains

- Multimodal functions:
 - multiple optima,
 - many local.

- Too many attractors → hard optimization :(

- ANN fitness/error landscapes look like this.
Reinforcement Learning & EAs

• *Supervised learning* (Back-Propagation).
• *Unsupervised learning* (SOM).
• **Reinforcement learning** – typical for control tasks.

• Unlike in supervised learning, we don't know the desired output signal, we have only *signal* determining the state of a system.

• EA is an ideal tool for reinforcement learning.
Why to Evolve the Topology?

• Motivation:
 - spare experimenters time → finding correct number of layers/neurons,
 - well designed algorithm can find globally optimal topology (smallest but sufficient).

• TWEANNs: Topology & Weight Evolving Artificial Neural Networks.
GNARL

- **GeNeralized Aquisition of Recurrent Links.**
- Evolution of general recurrent networks.
- Based on evolutionary strategies → no crossover operator → no competing conventions.
- Starts with population of random networks.
- **Two kinds of mutation operators:**
 - **Parametric** – weight mutations (Gaussian noise),
 - **Structural** – add/remove neurons/links between.

Angeline, P.J. Saunders, G.M. Pollack, J.B. : *An Evolutionary Algorithm That Constructs Recurrent Neural Networks*
GNARL 2

- Sample of GNARL's initial random network:

Note, disconnected neuron does not affect network evaluation, it is available as a resource for future structural mutations.
SANE

- Symbiotic, Adaptive Neuro-Evolution.
- 1998: Moriarty, Miikkulainen.
- Based on coevolution:
 - simultaneous evolution of multiple populations, mutually influencing each other:
 - neurons – weights of links incoming to neuron,
 - blueprints - „plans“ of connecting neurons to whole networks.
- How to compute fitness:
 - neuron – fitness of 5 best networks, which it appeared in
 - blueprint – fitness of the describing network.
- Evolution at the level of neurons – no problem with competing conventions

David E. Moriarty, Risto Miikkulainen: Forming Neural Networks Through Efficient and Adaptive Coevolution
This way the neurons are encoded. SANE works with networks having single hidden layer and fixed input/output layers.

Blueprints contain list of pointers to neurons.
SANE 3

- Example of encoded network:

- Connect to input if \(\leq 127 \)
- Connect to output if \(> 127 \)

<table>
<thead>
<tr>
<th>label</th>
<th>weight</th>
<th>label</th>
<th>weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>1.242</td>
<td>143</td>
<td>-2.21</td>
</tr>
<tr>
<td>212</td>
<td>5.811</td>
<td>32</td>
<td>-3.41</td>
</tr>
<tr>
<td>65</td>
<td>-0.04</td>
<td>100</td>
<td>2.556</td>
</tr>
</tbody>
</table>

- 65 mod (# of inputs)
- 134 mod (# of outputs)
SANE 4

Standard Neuro-Evolution

<table>
<thead>
<tr>
<th>Neural Networks</th>
<th>Stage 1</th>
<th>Stage 2</th>
<th>New Neural Networks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Evaluation</td>
<td>Selection and Recombination</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Evaluation</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SANE

<table>
<thead>
<tr>
<th>Neurons</th>
<th>Stage 1a</th>
<th>Stage 1b</th>
<th>Stage 1c</th>
<th>Stage 2</th>
<th>New Neurons</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Combination into Networks</td>
<td>Evaluation of Networks</td>
<td>Normalization of Fitness</td>
<td>Selection and Recombination</td>
<td></td>
</tr>
</tbody>
</table>
NEAT

• **NeuroEvolution of Augmenting Topologies:** Kenneth O. Stanley, 2001, The University Of Texas at Austin

• Complexification – start from small topologies: evolution add neurons/links as needed by task.

Kenneth O. Stanley and Risto Miikkulainen: *Evolving Neural Networks Through Augmenting Topologies*
NEAT 2

- Topology is augmented by adding neurons and links between.
 → Variable genome length.

- Mutations:
 - parametric – Gaussian noise,
 - structural – adding neurons & links (no pruning), switch on/off links.

- Mating – special crossover two parents → single child.

Note, some newer implementations use pruning. However, it is not essential.
Minimal Substrate

- Initial population is formed of the simplest topologies: fully connected feed-forward networks without hidden layers: the minimal substrate.
NEAT Genome

Genome (Genotype)

Node Genes

<table>
<thead>
<tr>
<th>Node 1</th>
<th>Node 2</th>
<th>Node 3</th>
<th>Node 4</th>
<th>Node 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor</td>
<td>Sensor</td>
<td>Output</td>
<td>Output</td>
<td>Hidden</td>
</tr>
</tbody>
</table>

Connect. Genes

<table>
<thead>
<tr>
<th>In 1</th>
<th>In 2</th>
<th>In 3</th>
<th>In 2</th>
<th>In 5</th>
<th>In 1</th>
<th>In 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Out 4</td>
<td>Out 4</td>
<td>Out 4</td>
<td>Out 5</td>
<td>Out 4</td>
<td>Out 5</td>
<td>Out 5</td>
</tr>
<tr>
<td>Weight 0.7</td>
<td>Weight -0.5</td>
<td>Weight 0.5</td>
<td>Weight 0.2</td>
<td>Weight 0.4</td>
<td>Weight 0.6</td>
<td>Weight 0.6</td>
</tr>
<tr>
<td>Enabled</td>
<td>Enabled</td>
<td>Enabled</td>
<td>Enabled</td>
<td>Enabled</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>Innov 1</td>
<td>Innov 2</td>
<td>Innov 3</td>
<td>Innov 4</td>
<td>Innov 5</td>
<td>Innov 6</td>
<td>Innov 11</td>
</tr>
</tbody>
</table>

Network (Phenotype)

- link enabled/disabled flag
- innovation number - historical marking
Add Link Mutation

Mutate Add Connection
Add Neuron Mutation

The weights of new neuron's incoming/outgoing links are set in a way which minimizes the difference between original and mutated networks.
Historical Markings

• **Q:** How to *align* two genomes of different size representing two different networks?

• **A:** let's use “the creation date” of a particular gene (caused by a structural mutation) – historical marking (innovation number).

• Aligning two genomes:
 - when two genes with matching HMs are found, it is likely they have similar function in the network.

• HM is a counter, the same value is assigned for the same innovation within a single generation (i.e. adding a link between neurons #3 and #4).
Mating

Let's use historical marking.

Parent 1

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1→4</td>
<td>2→4</td>
<td>3→4</td>
<td>4→2</td>
<td>5→4</td>
<td>1→5</td>
</tr>
<tr>
<td>DISAB</td>
<td>DISAB</td>
<td>DISAB</td>
<td>DISAB</td>
<td>DISAB</td>
<td></td>
</tr>
</tbody>
</table>

Parent 2

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1→4</td>
<td>2→4</td>
<td>3→4</td>
<td>4→2</td>
<td>5→4</td>
<td>5→6</td>
<td>6→4</td>
<td>3→5</td>
<td>1→6</td>
</tr>
<tr>
<td>DISAB</td>
<td>DISAB</td>
<td>DISAB</td>
<td>DISAB</td>
<td>DISAB</td>
<td>DISAB</td>
<td>DISAB</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Offspring

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1→4</td>
<td>2→4</td>
<td>3→4</td>
<td>4→2</td>
<td>5→4</td>
<td>5→6</td>
<td>6→4</td>
<td>5→6</td>
<td>3→5</td>
<td>1→6</td>
</tr>
<tr>
<td>DISAB</td>
<td>DISAB</td>
<td>DISAB</td>
<td>DISAB</td>
<td>DISAB</td>
<td>DISAB</td>
<td>DISAB</td>
<td>DISAB</td>
<td>DISAB</td>
<td></td>
</tr>
</tbody>
</table>

disjoint or **excess**
- inherit more fit
- if equal fitness inherit randomly
other
- inherit randomly
Niching

- There are networks of different sizes in the population.
- Adding a new structure:
 - likely lowers the fitness,
 - larger networks → longer genome → more time needed to optimize parameters.

- **New topologies must be protected** → niching.
- Here we use Explicit Fitness Sharing: *Separate the population into species* → selection and reproduction only among similar individuals → HMs again used to compute similarity of two genomes.
Similarity – Distance

\[d_{ij} = \frac{c_1 E}{N} + \frac{c_2 D}{N} + c_3 \cdot \overline{W} \]

• Using historical markings again.
• \(E \) … \# of excess genes,
• \(D \) … \# of disjoint genes,
• \(W \) … averaged difference of matching weights,
• \(N \) … the length of the longer genome,
• \(c_1, c_2, c_3 \) … balancing constants.
Explicit Fitness Sharing

- Simplified fitness sharing: $O(n)$ vs. $O(n^2)$.
- Using sharing function sh.

1. Start with a single species spread over whole population – choose a random representative.

2. New individual x is assigned to a first appropriate species, satisfying:

 $d(x, \text{representative}) < \delta$

3. If no such species exist, create a new one and make x its representative.

4. Adjust fitness: divide it by the species size.

5. Average species fitness determines its offspring count.
Explicit Fitness Sharing 2

distribution of population between species

generations →
NEAT Overview

1. Initialize population.
2. Compute fitness for all individuals.
4. Adjust fitness $f' = f / \text{species}_\text{size}$.
5. Determine offspring count for all species proportionally to f'.
7. Reproduce – replace current generation by its offspring.
8. While not satisfied, go to 2.
The Three Most Important Ideas Behind NEAT

- **Complexification** – start with small networks, gradually add neurons/links (reminds GMDH or GAME approaches).

- Concept of **historical markings** - cross/match only corresponding genes → deals with competing conventions.

- Use of **niching** - allows the survival of larger, recently structurally innovated networks → gives them time to optimize their weights and “show” that the structural innovation was beneficial.
ANNS and Game AI

- AI opponents.
- Modeling player behaviour.
- Strategy estimation.
- Realistic motion.
Fields of Battle (1995)
Battlecruiser 3000AD (1996)
Creatures (1996-)
Blondie 24 Chess (1999)

- David B. Fogel.
- Combination of minmax. & neuroevolution.
- Coevolution.
- Defeated 99.61% of 165 online players.
Colin McRae Rally 2.0 (2001)

- Opponents AI.
- MLPs, RPROP learning.
- ANN driving model follows optimal track.
- Different models for different cars and road conditions
- Different networks for steering and speed control.

http://www.ai-junkie.com/misc/hannan/hannan.html
Black & White (2001)
Forza Motorsport 2 (2007)

- Opponent AI.
NERO

- NeuroEvolving Robotic Operatives.
- Evolve your own robot army by tuning their artificial brains for challenging tasks, then pit them against your friends' teams in online competitions!
- http://www.nerogame.org/
NERO: Robots

(a) Enemy Radars

(b) Rangefinders

(c) On-Target Sensor

(d) Line-of-fire sensors

Evolved Topology

Left/Right Forward/Back Fire

Enemy Radars On Target Object Rangefinders Enemy LOF Sensors Bias
NERO: Arena & Task Complexification

Scenario 1: Enemy Turret

Scenario 2: 2 Enemy Turrets

Scenario 3: Mobile Turrets & Walls

Battle
NERO: Fitness

• No separation between generations – robots are bred and die continuously.

• Fitness computed also continuously → based on fulfilling tasks (which can be dynamically changed).

• User interactively influences the shape of the fitness function (i.e. prefer attackers/defenders): interactive evolution.
RTNEAT (RealTime NEAT)
Direct vs. Indirect Encodings

- **Direct encoding** → each link (weight) is represented by a dedicated gene.
- Not suitable for Large-scale ANN's.

- **Indirect encoding** → developmental approaches:
 - Cellular encoding,
 - HyperNEAT/HyperGP.

Genome built of genes representing real-valued weights.
Cellular encoding (CE)

- 1993, Fréderic Gruau: indirect encoding example.
- Inspiration in embryo-genesis (cell division and differentiation). Cells → neurons.
- Program to “grow” ANN is represented by a tree (Genetic Programming).
- Operations: parallel/sequential divisions, connections change, change of weights/bias...
Cellular Encoding 3

- May use operation which reads a sub-tree repeatedly → evolved a network representing parity of arbitrary number of inputs.
- Allows ANNs of arbitrary size: neural module reuse.
Evolving Large-scale ANNs

• 1000+ neurons (& corresponding # of links).
• Most optimization methods fail → the curse of dimensionality.
• Modularity, regular patterns.
• Why to do that?
 – complex models,
 – ability to process huge amount of input/outputs, without hand-coding features (i.e. pattern recognition)...
• HyperNEAT can do this...
How does it work in nature?

- Human genome ->
 30,000 genes describing 100 billion neurons each linked to as many as 10,000 others (plus the rest of organism!).
- We need some kind of compression.
- But we also need a regularity in compressed “data”.
- Q: What are the regularities found in living organisms?
Symmetry
Imperfect Symmetry
• Note that all these regularities happen at all scales of an organism.
How are organisms built?

- **Development** from a single cell (zygote).
- **Evolutionary Development** “Evo-Devo”.

![Development stages of an organism](image-url)
Compositional Pattern Producing Networks (CPPNs)

- Stanley 2006
- Can we create such regular patterns without development in time?
- We can ask a special function called CPPN, where the cells are, using absolute coordinates.

Kenneth O. Stanley (2006):
Compositional Pattern Producing Networks: A Novel Abstraction of Development
Regularities by CPPNs

- Nature uses concentration gradients of regulatory proteins to determine position.
- **CPPN** is a composition of symmetric, periodic and other functions.
Regularities by CPPNs II

- Common CPPN building block functions:

<table>
<thead>
<tr>
<th>Name</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bipolar Sigmoid</td>
<td>$\frac{2}{1+e^{-4.9x}} - 1$</td>
</tr>
<tr>
<td>Linear</td>
<td>x</td>
</tr>
<tr>
<td>Gaussian</td>
<td>$e^{-2.5x^2}$</td>
</tr>
<tr>
<td>Absolute value</td>
<td>$</td>
</tr>
<tr>
<td>Sine</td>
<td>$\sin(x)$</td>
</tr>
<tr>
<td>Cosine</td>
<td>$\cos(x)$</td>
</tr>
</tbody>
</table>
Picbreeder

- Interactive evolution of images.
- CPPN output: level of grey.
- CPPNs evolved using NEAT.
- http://picbreeder.org/

(a) Eye warped left (b) Symmetric eye (c) Eye warped right

Picbreeder: Repetition with Variation
Picbreeder: Spaceship

(a) 4 func., 17 conn. (b) 5 func., 24 conn. (c) 6 func., 25 conn. (d) 8 func., 28 conn.

(e) 8 func., 30 conn. (f) 8 func., 31 conn. (g) 8 func., 32 conn. (h) 8 func., 34 conn.

(i) 8 func., 36 conn. (j) 9 func., 36 conn. (k) 9 func., 38 conn.
HyperNEAT

- Stanley 2007
- Uses CPPNs in a similar way to Picbreeder: creates **Connectivity Patterns**.
- Places neurons on a **substrate** assigning them **spatial coordinates**.
- CPPN takes coordinates of two neurons and computes the **weight** of a connection.
What Exactly is the Substrate?

- The list of neurons’ coordinates along with possible connections between them.
Create or not to Create a Link?

- Substrates are often fully connected → lots of links → computationally infeasible → pruning is used.
- If CPPN outputs weights in range $[-3; 3]$ then
 - links with weights < 0.2 are not expressed,
 - ≥ 0.2 are scaled to magnitude between 0 and 3.

→ when using this approach the final ANN is a sub-graph of a substrate.
Connectivity Patterns by HyperNEAT

• Patterns evolved using interactive evolution:

(a) Sym. (b) Imperf. (c) Repet. (d) Var.
HyperNEAT vs. Standard Evolution of ANNs

Common approach: Evolution of ANNs

Evolutionary algorithm \hspace{5em} \xrightarrow{\text{Genotype to phenotype conversion}} \hspace{5em} \text{ANN} \hspace{5em} \xleftarrow{\text{Fitness evaluation on a given problem}} \hspace{5em} \text{ANN}

HyperNEAT

Evolutionary algorithm \hspace{5em} \xrightarrow{\text{Genotype to phenotype conversion}} \hspace{5em} \text{CPPN} \hspace{5em} \xrightarrow{\text{Construct ANN}} \hspace{5em} \text{ANN}

A special network, which can represent the regularities efficiently. It constructs the final network.

HyperNEAT was used to build networks with more then 8 000 000 connections!
Spatial Representation

- HyperNEAT exploits spatial representation of a problem. The same happens in the nature:
 - connection of eyes to brain hemispheres,
 - similar things processed nearby.
- We have to assign coordinates. Does every problem have a reasonable spatial representation?
 - It seems that most problems have. The others would not probably benefit from regularities in ANNs.
Object Targeting with HyperNEAT

- Visual targeting: distinguish the larger object.
- “Sandwich substrate”.

Generating Large-Scale Neural Networks Through Discovering Geometric Regularities
Object Targeting II: Scaling the Substrate

- The substrate density can be **scaled**.
- The function of final ANN is **approximately preserved**.
- We can train on small → get large.
Object Targeting III: Scaling the Substrate

- An equivalent connectivity concept at different substrate resolutions.
Food Gathering Problem

- Range-finder sensors detect food.
- More food eaten \rightarrow higher fitness.
- Experiments with different sensor/effector placement – exploiting geometric relationships with “outer world”.

A Novel Generative Encoding for Exploiting Neural Network Sensor and Output Geometry
Food Gathering Problem II

- Parallel worked better than Concentric because less computation is needed for CPPN.
- New CPPN inputs added: the distances (x_1-x_2) and (y_1-y_2)
- When CPPN is provided the distances, both work the same.
Our work

- CPPF
- HyperGP
- RoboNEAT

Drchal, Koutník and Šnorek (2009):
HyperNEAT Controlled Robots Learn How to Drive on Roads in Simulated Environment

Buk, Koutník and Šnorek (2009):
NEAT in HyperNEAT Substituted with Genetic Programming

Drchal, Kapral’, Koutník and Šnorek (2009):
Combining Multiple Inputs in HyperNEAT Mobile Agent Controller
HyperGP + Compositional Pattern Producing Functions

- **CPPN** = function represented by a network.
- **CPPF** (Compositional Pattern Producing Function) = general representation.
- **HyperGP** = NEAT replaced by Genetic Programming (GP):
 - faster than HyperNEAT
 - nodes:
 \[x + y, x - y, xy, \sin(x), \cos(x), \arctan(x), \sqrt{|x|}, |x|, e^{-x^2}, e^{-(x-y)^2} \]
 - atoms:
 \[x_1, x_2, y_1, y_2, \text{random}(-5,5) \]
RoboNEAT

- HyperNEAT/HyperGP for robot control.
- ViVAE Simulated 2D environment with rigid body physics.
RoboNEAT II

- Substrate uses polar coordinates.
- Input + 1 fully recurrent layer
- See VIDEO...
RoboNEAT III

- Obstacle avoidance.
- Object sensors added (two input layers)

\[f = \frac{\text{distanceTravelled}}{\text{simulationSteps}} + 1 \left(1 - \frac{\text{targetDistance}}{\text{initialDistance}} \right) \]
Q&A
Reinforcement Learning Demonstration

- Evolves both creature bodies (including sensors) and controlling networks...
- You can play with http://www.framsticks.com/
Checkers

- Comparison with classic NEAT.
- HyperNEAT is faster + generalizes.
- Single CPPN with multiple outputs.
- The output of the final net is a heuristic score for the minimax algorithm.

Multiagent Predator-Prey

- Predator team tries to catch Prey team in a coordinated fashion.
- Agents cannot see their team mates.

Generative Encoding for Multiagent Learning
Multiagent Predator-Prey II

- Multiple agent's ANNs using a single CPPN.
- Coordinate repeat $r(x)$.

VIDEOS:
http://eplex.cs.ucf.edu/multiagentHyperNEAT/

- Heterogeneous seeding.
HyperNEAT Coordinated Quadruped Gaits

Jeff Clune: *Evolving Coordinated Quadruped Gaits with the HyperNEAT Generative Encoding*

- Simulation of four legged walker robot.
- Comparison with classic NEAT.
- Other experiments show that HyperNEAT can deal with random substrates.