Motivation

- Learning ANNs = optimization of weights or potentially architecture.
- Problem of local extremes → unable to learn hard task/large network.
- Use of Evolutionary Algorithms → slower, but more robust than classic gradient methods like Back-Propagation.

Evolutionary Algorithms (EAs)

- Genetic Algorithms:
 binary strings
- Evolutionary Strategies: real vectors, only mutation.
- Genetic Programming: evolution of program trees.
- Evolutionary Programming: evolving FSMs.
- NeuroEvolution

What is Neuro Evolution?

- Neuro-evolutionary algorithm is just another special kind of EA → the task is to evolve (learned) neural networks.
- Both parameters (weights) and topology can be optimized by evolution.
- But how to encode a network into a genome? → A network with fixed topology is described by a vector/matrix of all its weights (real numbers)...

Direct Encoding of Neural Network

• Directly encode the weights as a bit string:

• Can we do it better? Yes.

COMPUTATIONAL INTELLIGENCE

GROUP

Artificial Neural Networks NeuroEvolution = ANN + EA

Jan Drchal drchajan@fel.cvut.cz

Computational Intelligence Group Department of Computer Science and Engineering Faculty of Electrical Engineering Czech Technical University in Prague

Floating-Point Encoding

Motivation: simplicity, precision

Binary string encodes vector of 2 numbers .

The same encoded using floating-point encoding.

What about mutation? -> Gaussian noise.

Idea:

COMPUTATIONAL

INTELLIGENCE

small changes with *higher* probability, *large* changes with *lower*.

Useful for integers and floats ...

Competing Conventions Problem

• Problem of competing conventions:

COMPUTATIONAL

NTELLIGENCE

- Same solution can be represented by many genomes → ordering of weights matters.
- Error (fitness) landscape contains many optima representing the same solution.
- Crossover of two such individuals will most probably lead to "crippled" offspring.

Multimodal Domains

- Multimodal functions:
 - multiple optima,
 - many local.
- Too many attractors → hard optimization :(
- ANN fitness/error landscapes look like this.

COMPUTATIONAL INTELLIGENCE

GROUP

Reinforcement Learning & EAs

- Supervised learning (Back-Propagation).
- Unsupervised learning (SOM).
- Reinforcement learning typical for control tasks.
- Unlike in supervised learning, we don't know the desired output signal, we have only signal determining the state of a system.
- EA is an ideal tool for reinforcement learning.

Why to Evolve the Topology?

- Motivation:
 - spare experimenters time \rightarrow finding correct number of layers/neurons,
 - well designed algorithm can find globally optimal topology (smallest but sufficient).
- TWEANNs: Topology & Weight Evolving Artificial Neural Networks.

GNARL

- GeNeralized Aquisition of Recurrent Links.
- 1994: Angeline, Saunders, Pollack.
- Evolution of general recurrent networks.
- Based on evolutionary strategies \rightarrow no crossover operator \rightarrow no competing conventions.
- Starts with population of random networks.
- Two kinds of mutation operators:

COMPUTATIONAL

- **Parametric** weight mutations (Gaussian noise),
- Structural add/remove neurons/links between.

Angeline, P.J. Saunders, G.M. Pollack, J.B.: An Evolutionary Algorithm That Constructs Recurrent Neural Networks

2013

GNARL 2

• Sample of GNARL's initial random network:

Note, disconnected neuron does not affect network evaluation, it is available as a resource for future structural mutations.

- Symbiotic, Adaptive Neuro-Evolution.
- 1998: Moriarty, Miikkulainen.
- Based on **coevolution**:
 - simultaneous evolution of multiple populations, mutually influencing each other:
 - **neurons** weights of links incoming to neuron,
 - **blueprints** "plans" of connecting neurons to whole networks.
- How to compute fitness:

INTELLIGENCE

- **neuron** fitness of 5 best networks, which it appeared in
- **blueprint** fitness of the describing network.
- Evolution at the level of neurons no problem with competing conventions

David E. Moriarty, Risto Miikkulainen: Forming Neural Networks Through Efficient and Adaptive Coevolution

This way the neurons are encoded. SANE works 1.0 2.153 with networks having single I1:2.1 hidden layer and fixed 01:.4 I2:1.0 03:-2.4 I3:-5.3 -2.4 input/output layers. Neuron Population Network Blueprint Population w 1 w w 1 W 1 w w Blueprints contain list of pointers to neurons. 1 W W w W w w w Т w w w T W W w 1 w w w 11 W w

• Example of an encoded network:

Standard Neuro-Evolution

SANE

NEAT

- NeuroEvolution of Augmenting Topologies: Kenneth O. Stanley, 2001, The University Of Texas at Austin
- Complexification start from small topologies: evolution add neurons/links as needed by task.

COMPUTATIONAL

NTELLIGENCE

Kenneth O. Stanley and Risto Miikkulainen: Evolving Neural Networks Through Augmenting Topologies

NEAT 2

- Topology is augmented by adding neurons and links between.
 - \rightarrow Variable genome length.
- Mutations:

Note, some newer implementations use pruning However, it is not essential.

- parametric Gaussian noise,
- structural adding neurons & links (no pruning), switch on/off links.
- Mating special crossover two parents → single child.

Minimal Substrate

 Initial population is formed of the simplest topologies: fully connected feed-forward networks without hidden layers: the minimal substrate.

NEAT Genome

Genome (Genotype)								
Node Genes	Node 1 Nod Sensor Sen	de 2 Node 3 sor Sensor	Node 4 Node Output Hide	e 5 den				
Connect. Genes	In 1 Out 4 Weight 0.7 Enabled Innov 1	In 2 Out 4 Weight-0.5 DISABLED Innov 2	In 3 Out 4 Weight 0.5 Enabled Innov 3	In 2 Out 5 Weight 0.2 Enabled Innov 4	In 5 Out 4 Weight 0.4 Enabled Innpv 5	In 1 Out 5 Weight 0.6 Enabled Innov 6	In 4 Out 5 Weight 0.6 Enabled Innov 11	
Network (Phenotype) 1 2 3 4 1 5 3 4 1 1 2 3 4 1 1 1 1 1 1 1 1 1 1 1 1 1						abled	innovation number - historical marking	

Add Link Mutation

Add Neuron Mutation

The weights of new neuron's incoming/outgoing links are set in a way which minimizes the difference between original and mutated networks.

Historical Markings

- Q: How to *align* two genomes of different size representing two different networks?
- A: let's use "the creation date" of a particular gene (caused by a structural mutation) – historical marking (innovation number).
- Aligning two genomes:
 - when two genes with matching HMs are found, it is likely they have similar function in the network.
- HM is a counter, the same value is assigned for the same innovation within a single generation or more generations (i.e. adding a link between neurons #3 and #4).

Mating

Let's use historical markings.

Niching

• There are networks of different sizes in the population.

- Adding a new structure:
 - likely lowers the fitness,
 - larger networks \rightarrow longer genome \rightarrow more time needed to optimize parameters.
- New topologies must be protected → niching.
- Here we use Explicit Fitness Sharing:

Separate the population into species \rightarrow selection and reproduction only among similar individuals \rightarrow HMs again used to compute similarity of two genomes.

Similarity – Distance

$$d_{ij} = \frac{c_1 E}{N} + \frac{c_2 D}{N} + c_3 \cdot \overline{W}$$

- Using historical markings again.
- E ... # of excess genes,
- D ... # of disjoint genes,
- W ... averaged difference of matching weights,
- *N* ... the length of the longer genome,
- $c_1, c_2, c_3 \dots$ balancing constants.

Explicit Fitness Sharing

- Simplified fitness sharing: O(n) vs. $O(n^2)$.
- Using sharing function *sh*.
- 1. Start with a single species spread over whole population choose a random representative.
- 2. New individual x is assigned to a first appropriate species, satisfying: $d(x, representative) < \delta$
- 3. If no such species exist, create a new one and make *x* its representative.
- 4. Adjust fitness: divide it by the species size.
- 5. Average species fitness determines its offspring count.

Explicit Fitness Sharing 2

generations \rightarrow

NEAT Overview

- 1. Initialize population.
- 2. Compute fitness for all individuals.
- 3. Speciate by means of Explicit Fitness Sharing.
- 4. Adjust fitness $f' = f / species_size$.
- 5. Determine offspring count for all species proportionally to *f*'.
- 6. Eliminate inferior individuals of current generation.
- 7. Reproduce replace current generation by its offspring.
- 8. While not satisfied, go to 2.

COMPUTATIONAL INTELLIGENCE

The Three Most Important Ideas Behind NEAT

- Complexification start with small networks, gradually add neurons/links (reminds GMDH or GAME approaches).
- Concept of historical markings cross/match only corresponding genes → deals with competing conventions.
- Use of niching allows the survival of larger, recently structurally innovated networks → gives them time to optimize their weights and "show" that the structural innovation was beneficial.

Thanks for Attention

- What's next?
 - large-scale ANNs,
 - direct vs. indirect encodings.

