agent
technology
center

Architecture of Software Systems
Functional Programming

Jan Michelfeit

2017

Functional Programming

Why should | care?
What is it?

Practical functional
orogramming

~unctional principles in
software architecture

Advanced topics
Takeaways

WHY DO YOU LIKE FUNCTIONAL
PROGRAMMING S0 MUCH? WHAT
DOES IT ACTUALLY GET YOU?

TAIL RECURSION 1S
IT5 OWN REWARD.

L

WHY FUNCTIONAL PROGRAMMING?

What’s wrong with these snippets?

DateFormat format = new SimpleDateFormat("yyyy-MM-dd");
ExecutorService threadPool = Executors.newFixedThreadPool(5);
List<Future<Date>> results = new ArraylList<>();
for(int 1 =0 ; 1 < 10 ; i++){
results.add(threadPool.submit(
() -> format.parse("2017-10-22")));

}

for(Future<Date> result : results){
System.out.println(result.get());

} void printItems(Iterator<String> items) {
- int itemsCount = Iterators.size(items);

class Person
{ for (int i = @; i < itemsCount; i++) {

private String name;

Y System.out.println(items.next());
@Override }
public boolean equals(Object o) }
@Override
public int hashCode() { .. }
}

Set<Person> set = new HashSet<>();
Person p = new Person();
set.add(p);

p.setName("Daniel");

What’s wrong with these snippets?

DateFormat format = new SimpleDateFormat("yyyy-MM-dd");
ExecutorService threadPool = Ex " madPool(5);
List<Future<Date>> results = ne
for(int 1 =0 ; 1 < 10 ; i++){
results.add(threadPool.submit
() -> format.parse("2017-10=22")));

}

for(Future<Date> result : results){
System.out.println(result.get());

} void printItems(Iterator<String> items) {
- int itemsCount = Iterators.size(items);

class Person
{ for (int i = @; i < itemsCount; i++) {

private String name;

/] . System.out.println(items.next());
@Override }
public boolean equals(Object o) }
@Override
public int hashCode() { .. }
}

Set<Person> set = new Hast
Person p = new Person();
set.add(p);
p.setName("Daniel");

What’s wrong with these snippets?

new SimpleDateFormat("yyyy-MM-dd");

DateFormat format
ExecutorService th;
List<Future<Date>>
for(int i =0 ; 1
results.add(thr
() -> format.p\

}

for(Future<Date> result : results){
System.out.println(result.get());

} void printItems(Iterator<String> items) {
class Person { - int itemsCount = Iterators.size(items);
private String name; for (int i = @; i < itemsCount; i++) {

/] . System.out.println(items.next());

@Override }
public boolean equals(Object o) }

@Override
public int hashCode() { .. }

¥

Set<Person> set = new HashSet<>();
Person p = new Person();
set.add(p);

p.setName("Daniel");

What’s wrong with these snippets?

* What did the examples have in common?
— Mutable state

* Do you like global variables?
* Should String be mutable?

Mutable state can make things
really hard to reason about, debug, ...

Functional Programming

e Basic idea:
— avoid mutable state and side-effects

— compose programs from functions that always
give the same result for the same arguments

* Advantages
— |leads to code that is safer, modular, composable
— easier to reason about, test, and debug
— well suited for parallelization

WHAT IS FUNCTIONAL PROGRAMMING?

Basic Terminology

Immutability
— Data structure (object) is immutable if it's (observable)
state cannot be modified after it is created.

— Examples (Java): String, ImmutableList (Guava library), any
class with all fields final & immutable

Referential transparency

— An expression e is referentially transparent if for all
programs p every occurrence of e in p can be replaced
with the result of evaluating e, without affecting the
observable result of p.

— E.g., replace all occurrences of “1+2” with “3”

— Allows creation of local state, as long as it's not observable

Basic Terminology

Pure function

— Function fis pure if the expression f(x,, ..., x,) is referentially

transparent for all referentially transparent inputs x,, ..., x,

— Function output may depend only on arguments, not on external
mutable state

— Typically "no side-effects" - only observable output should be the
return value

— Example: mathematical functions (sin, max, +, ...)

Side effect

— Modifies state outside of its scope, or has an observable interaction
with its calling functions or the outside world
— examples
* reassigning a variable, modifying a data structure in place
* throwing an exception or halting with an error (depends on context)
* user interaction
* reading/writing a file

Programming Paradigms
Imperative Programming

Program: sequence of commands changing state

Commands usually don't have value
=> data exchanged through state

“Functions” - subroutines (unit of modularity)

Function invocation can give different results at
different times

— depending on the state of the executing program
Closer to hardware / traditional programmer thinking

Programming Paradigms
(Pure) Functional Programming

Models computation as the evaluation of
expressions, using pure functions and
immutable data

Avoids mutable state and side-effects

Programming Paradigms
(Pure) Functional Programming

e Based on Lambda Calculus

— Turing-complete computation model
e (Closer to human thinking (unless obfuscated))

e Special case of declarative programming

— expresses the logic of a computation without
describing its control flow

— describing what the program must accomplish, rather
than how

— e.g., HTML, Excel, most parts of functional languages

Typical Features of Functional Languages

Functions as first-class citizens

— can be passed as arguments to other functions or
be returned as a result of a function

— functions accepting and/or returning functions are
higher-order functions

List("1list", "of", "words").map(word => word.length)
// List(4,2,5)

val f = (x: Int) => -x
val g = f.compose((x: Int) => x * x)

g(3) // -9

Typical Features of Functional Languages

Lazy evaluation
— expression evaluation delayed until the value is

needed
— evaluation order is irrelevant with pure functions

(no side-effect can ever change expression value)

-- infinite data structure
numsFrom n = n : numsFrom (n+1)

take 5 (numsFrom 0)
-- result: [0,1,2,3,4]

Source.fromFile("numbers.txt")
.map(line => line.toInt)

.exists(n => n < Q)
// file is read only until first negative number

Functional Programming Advantages

Parallel with structured vs. unstructured programming:

e Structured programming forbids
— goto
— multiple entries or exits from a block of code

=> seemingly less power?

But:
— encourages modular design => simpler, smaller modules
e easier, quicker to code
* easier toreuse
* easier to test

— mathematically more tractable (easier to analyze, tooling)

Functional Programming Advantages |

FP forbids side-effects in functions, mutable variables
* seemingly less power?

But:
* Lack of side effects eliminates a major source of bugs
e Evaluation order irrelevant

— parallelization friendly

— enables practical lazy evaluation

 Higher order functions & lazy evaluation are a new "glue" for
composition of modules

Functional Programming Advantages Il

FP forbids side-effects in functions, mutable variables

seemingly less power?

But:

encourages even better modularization, composability
easier testing (input values determine output, avoids setup of state)

declarative (captures intention), usually more conscious and
understandable (unless obfuscated)

immutable data structures - thread-safe, cacheable
mathematically more tractable
easier debugging, ...

PRACTICAL
FUNCTIONAL PROGRAMMING

Sum - Imperatively

private int sum(List<Integer> list) {
int result = 0;
for (int i = 0; 1 < list.size(); i++) {
result += list.get(i);
}

return result;

¥

 Why is this not functional?

 Mutable variables result, i
(but no externally visible state)

Sum - functionally

private int sum(List<Integer> list) {
int result = 0;
for (int 1 = @; i < list.size(); i++) {
result += list.get(i);
}

return result;

}

Functional version?
(Hint: think of mathematical induction)

def sum(list: List[Int]): Int = {
if (list.empty) ©
else list.head + sum(list.tail)

}

Count - functionally

def sum(list: List[Int]): Int = {
if (list.empty) ©
else list.head + sum(list.tail)

}

Functional version of computing list size?

def count(list: List[Int]): Int = {
if (list.empty) ©
else 1 + count(list.tail)

}

Generalizing...

def sum(list: List[Int]): Int = {
if (list.empty) ©
else list.head + sum(list.tail)

}

 What was specific for sum()?

—Q0and +

Fold

def foldRight(
list: List[Int],
initial: Int,
op: (Int, Int) => Int): Int = {
if (list.isEmpty) initial
else op(
list.head,
foldRight(list.tail, initial, op)
)

Using Fold

def sum(list:List[Int]) = foldRight(list, 0, (a, b) => a + b)
def prod(list:List[Int]) = foldRight(list, 1, (a, b) =>a * b)
def count(list:List[Int]) = foldRight(list, O, (a, b) => 1 + b)

def exists(list:List[Int], condition: Int=>Boolean) =
foldRight(list, false, (n, b) => condition(n) | | b)

def copy(list:List[Int]) =
foldRight(list, List(), (n, list) => n +: list)

Fold - Observations

foldRight() is a higher-level function

sum(), count(), ... are composed from smaller
reusable building blocks

Is this possible in Java?

— yes, but functional language made the
modularization easier and more obvious

— functional thinking is more important than a
particular language

Notice the similarity with algebra (monoid)

Typical Operations on Collections

Imperative programming: add(), get(), set()/put()

Functional Programming (examples for Traversable[T] in Scala - e.qg., List[T]; simplified)
 map(f: A=>B) : Traversable[B]

« flatMap(f: A=>Traversable[B]) : Traversable[B]

e filter(f: A=>Boolean) : Traversable[B]

* foldLeft(zero: B)(op: (B, A) =>B): B

* foldRight(), fold()

e head: A

e tail : Traversable[A]

« groupBy(f: A=>K): Map[K, Traversable[A]]

* ++(t: Traversable[A]) : Traversable[A]

 ...many more - take(), drop(), takeWhile(), slice(), zip(), grouped(), ...

* Methods do not change inputs, but return new collections as result !
 Computation may be lazy

C
C
C
C

Collections Operations - Examples

Proper Scala syntax for sum(), prod(), ...

ef sum(list:List[Int]) = list.foldRight(0)((a, b) => a + b)
ef prod(list:List[Int]) = list.foldRight(1)((a, b) =>a * b)

ef count(list:
ef exists(list:
list.fold

st
st

Rig

def copy(list:List|
list.foldRig

Int]) = list.foldRight(0)((a, b) => 1 + b)
Int], condition: Int=>Boolean) =
ht(false)((n, b) => condition(n) | | b)
nt]) =

nt[List[Int]](List())((n, list) => n +: list)

Collections Operations - Examples

Print all middle names (JavaScript)

var names = |
"James Paul McCartney", "William Bradley Pitt",
"Laura Witherspoon", "Hannah Dakota Fanning"];

names
.map(function(name) { return name.split(" "); })
filter(function(parts) { return parts.length >=3; })
.map(function(parts) { return parts[1]; })
forEach(log)

// forEach not functional !!

Collections Operations - Examples

Get length of the longest word (Scala)

val lines = List("Scala collections"”, "have nice methods")
lines
.flatMap(line => line.split(" ").tolList)

// List(Scala, collections, have, nice, methods)
.map(word => word.length)

// List(5, 11, 4, 4, 7)
.fold(-1) (Math.max)

// 11

lines
.map(line => line.split(™ ").tolList)
// List(List(Scala, collections), List(have, nice, methods))

.map(x => x.length)
// List(2, 3)

FP-oriented Languages

Haskell
Scala
FH
Erlang
R

Some features in traditional
OO languages

— Java 8, LINQ, C++11

CODE WRITTEN IN HASKELL
15 GUARANTEED TO HAVE
NO SIDE EFFECTS.

...BECAUSE NO ONE
UILL EVER RUN IT?

i

Going Parallel - Imperative

How to make this parallel?

private int sum(List<Integer> list) {
int result = 0;
for (int i = @; i < list.size(); i++) {
result += list.get(i);
}

return result;
}
General approach:
1. (Recursively) split to subtasks
2. Execute subtasks in parallel
3. Re-combine results of subtasks

Going Parallel - Imperative
Does this work?

private int result;

public int sum(List<Integer> list) {
result = 0;

for (Integer n : list) {
threadPool.submit(() -> result += n);

}
// ... wait for tasks finished ...
return result;

¥

No! Access to mutable variable result is not
synchronized
— Results will be non-deterministic

Going Parallel - Functional

In Scala:

list.par.sum
list.par.fold(®)((a,b) => a+b)

Internally:

1. Recursively splits list

2. Folds each part in parallel

3. Applies fold operation to partial results

Going Parallel - Functional

Combining partial results may be non-deterministic
— E.g. List(1,2,3,4):
((0+1)+2)+3)+4

or ((0+1)+2)+((0+3)+4)
=> Fold operation must be associative
— (a+b)+c = a+(b+c)
— remember monoid
Notice we used fold () instead of foldRight ()
— fold () expects associative operation

Exercise:
try parallelizing imperative & functional QuickSort

Going Parallel - Takeaways

Parallelization can get complex, frameworks help

Side effects & parallelism may lead to non-determinism
Parallel access to mutable state requires synchronization

— e.g. AtomicInteger, ConcurrentHashMap, synchronized,

— synchronization is costly

Non-associative re-combination of results may lead to non-determinism
— (commutativity is not required)

Parallelization with immutable data is much easier &
efficient

— avoids synchronization

FUNCTIONAL PRINCIPLES
IN SOFTWARE ARCHITECTURE

Functional Principles

e Statelessness
* Immutability & parallelization
e Functional APlIs

MapReduce

* Framework for parallel processing of big data
(multi-terabyte)
on large clusters of commodity hardware

* Executes MapReduce jobs

1. Split input data (on a distributed file system) into
records

2. Process each record with a map task
(considering data locality)

3. Merge results with a reduce task

« map: (K1,V1)=> List[(K2,V2)];
 reduce: (K2, List[V2]) => List[V3]

Map Shuffle Reduce

Ik —fill

Ik a s

1Nk —1

Image from - http://mm-tom.s3.amazonaws.com/blog/MapReduce.png

MapReduce - Observations

* Distributed computation
— no shared memory => cannot share state

 Map and reduce are higher-level functions

— mappers and reducers are first class citizens,
preferably immutable

* The principle can be applied even when
programming with threads

— basically parallel map() + fold() (or reduce())

MapReduce - Example

* Word count
— Map: for each word emit tuple (word, 1)

— Reduce: Sum 1s for each word
* Higher level frameworks often used in practice - e.g. Scalding

class WordCountJob(args: Args) extends Job(args) {

TypedPipe.from(TextLine(args("input")))

.flatMap { line => line.tolLowerCase.split("\\s+") }
.groupBy { word => word } // use each word for a key
.size // in each group, get the size
.write(TypedText.tsv[(String, Long)](args("output"”)))

Stateless Components

Service Statelessness principle

— “Guidelines in favor of making the service stateless by shifting away
the state management overhead from the services to some other
external architectural component” (wiki)

State can be externalized to a dedicated component

(database, distributed in-memory cache, ...)
Why

— lower component complexity
— makes high availability and horizontal scaling easier

* E.g., consider a customer-facing web server and sticky sessions

Why not
— can increase overall system complexity
— affects performance, response times

Functional Framework APIS

E.g., D3.s

var paragraphs = document.getElementsByTagName("p");
for (var i = @0; i < paragraphs.length; i++) {
var paragraph = paragraphs.item(i);
paragraph.style.setProperty("color", "white", null);
}

d3.selectAll("p").style("color", "white");

d3.selectAll("p").style("color”, function(d, 1) {
return 1 % 2 ? "#fff" : "#Heee";

})s

ADVANCED TOPICS

Side-effects in Practice

* FP discourages side-effects

— But what about the user? What can the program do?

* Some languages allow side-effects as
programmer’s responsibility

* Pure FP languages (e.g., Haskell) allow only
explicit side-effects wrapped as monads

Monad

Represents a computation with a sequential
structure and possible side-effect
— Defines what it means to chain operations together

Allows refactoring side-effects out of functions
“Promise” to produce a value of a certain type

Allows separating computation description
and execution

Monad

 Formally: type constructor, bind & return
operations, monad laws [1], [2]

* Informally:

— generic data structure M[A]

— with constructorof () : A => M[A]

— Operation flatMap() : (A=>M[B]) => M[B]
* E.g.,, Optional<T>In Java:

— static <T> Optional<T> of (T wvalue)

— Optional<U> flatMap (
Function<T, Optional<U>>
mapper)

Monad - Examples

* |/O Monad in Haskell - wraps all computations
with a global effect

— getChar :: IO Char
* pure function that returns a side-effecting computation

* does not necessarily cause an immediate effect
e =>can be used in another pure function

— putChar :: Char -> I0 ()
e Scala
— Option[T], Future[T], Set[T], List[T]

* LINQ operators - e.g.,

M<T> SelectMany(this M<S> src, Func<S, M<T>> f)

Monad - Examples

object OrderService {
def loadOrder(username: String): Future[Order] = ???
}
object PurchaseService {
def purchase(order : Order) : Future[PurchaseResult] = ???

def logPurchase(result:PurchaseResult) : Future[LogResult]
= ??? }

val logResult = OrderService.loadOrder("customerUsername")
.flatMap(order => PurchasingService.purchase(order))
.flatMap(result => PurchaseService.logPurchase(result))

Replacing Imperative Loops

public int factorial(int n) {
int result = 1;
while (n > @) {
result *= n--;

¥

return result;

¥

How to replace mutable variables?

def factorial(n: Int) = {
if (n == 1) 1
else n * factorial(n - 1)

Recursion

def factorial(n: Int) = {
if (n == 1) 1
else n * factorial(n - 1)

}
* Evaluation:
_ i WHY DO YOU LIKE. FUNCTIONAL
fafto rialc4) PROGRAMMING 50 MUCH? LHAT
— 4 *factorial 3, DOES IT ACTUALLY GET YOU?
— 4* 3 *factorial(2)) THL RECURGION 19
IT5 OWN REWARD.

— 4% (3*2*factorial(1))

_47':(37':(27‘:1)) /
- 47 (37 (2))

— 4""(6)

— 24

e Stack size dependent on input argument

Tail Recursion

* Tail recursive function - recursive action as the last action
— variables on the stack will no longer be used

* =>Compiler can replace recursion with a loop

* How to pass intermediate results?
— “Accumulator” argument

def factorial(n: Int, accumulator: Int = 1) = {
if (n == 1) accumulator
else factorial(n - 1, accumulator * n)

¥

* Evaluation:
— factorial(4, 1) -> factorial(3, 4) -> factorial(2, 12) -> factorial(1, 24) -> 24

CONCLUSION & TAKEAWAYS

Functional Programming - Comparison

Basic unit
Computation
Mutability
Side-effects

Function

Program
describes

Command
Command execution
Mutable data
Allowed

Unit of modularity;
can depend on
external state

How to accomplish a
task

Expression

Expression evaluation
Immutable data
Externalized via Monads

Pure function;
cannot depend on
external state

What to accomplish

Cons & Pitfalls

Functional language may be more distant to a traditional programmer's
thinking
— Functional code can be obfuscated by the programmer (beware of “write-only” code)

Possible stack overflows if recursion used wrong
— Use tail recursion if the language supports it

Negative impact on performance if used wrong
— Non-tail recursion has a cost

— Memory allocations & garbage collection of many immutable objects (but: short-lived
immutable objects may be better for GC than long-lived mutable objects)

— http://flvingfrogblog.blogspot.cz/2016/05/disadvantages-of-purely-functional.html

Some algorithms hard to write efficiently

— Some problems solvable in O(n) time with state mutation can require Q(n log n) time in
pure, non-lazy functional language

Difficult to predict the time and space costs of evaluating a lazy functional program

But remember: premature optimization is the root of all evil [1], [2]

Why Functional Programming

Features
— Avoids mutable state and side-effects

— New "glue" for composition: functions as first-class
citizens, lazy evaluation

— Declarative

Parallelization friendly

Thread-safe, cacheable data structures

Pure functions are safer, modular, composable
Easier to reason about, test, and debug

Further Reading

Functional Programming in Scala (Chiusano & Bjarnason)
(book)

Series of articles by Libor Skarvada

Why Functional Programming Matters (Hughes) (paper)

Functional programming in JavaScript in Eloquent JavaScript (book
chapter)

Haskell documentation

Comparison of Functional, Declarative and Imperative
programming on Stack Overflow

Programming in Scala (2008, book available online)
Scala cheat sheets: one, another

The End ...

I COULD WRITE SOME
GETTERS AND SETTERS
\
OR USE ONE LITTLE
PUBLIC FIELD INSTEAD
\

b

EH, SCREW GQOD PRACTICE.
HOW BADCAN T BE?

\public string Name;

.

* COMPILE*

