
Architecture of software systems

Course 9: Streams, serialization, externalization, network communication

David Šišlák

david.sislak@fel.cvut.cz

mailto:sislakd@fel.cvut.cz

Streams

» represents an input source or an output destination

» represent different kinds of data sources

» disk files, devices, other programs, network connection, memory arrays

» support different kinds of data

» bytes, primitives, localized characters, objects

» can just pass data or manipulate/transform in useful ways

» use simple model for usage

» sequence of data elements

» streams can be chained

4/10/2012 2 A4B77ASS – Course 7

Streams

» types

» byte vs. character

» input vs. output

» source or destination

» node vs. filter (processing)

» reading/writing from a specific location like files, memory, pipes

» or transformation, managing data in the stream

» typical layered usage (more than 60 different stream types)

» one node stream

» chained with several

 filter/processing streams

» user manipulates with top stream

» system streams (console I/O)

» System.in – is instance of InputStream

» System.out and System.err – is instance of PrintStream

4/10/2012 3 A4B77ASS – Course 7

Streams – byte stream

» java.io defines two basic root abstract stream classes for byte streams

 (8-bit values)

» InputStream

» int read(), int read(byte b[]), int read(byte b[], int off, int len)

» long skip(long n)

» int available()

» close()

» boolean markSupported(), mark(int readlimit), reset()

» OutputStream

» write(int b), write(byte b[]), write(byte b[], int off, int len)

» flush() – force buffered output to be written

» close()

4/10/2012 4 A4B77ASS – Course 7

Streams – byte stream

» is n = b ?

4/10/2012 ? 5 A4B77ASS – Course 7

Streams – byte stream

» is n = b ?

NO

» byte is signed 8-bit type with values from -128 to 127

» sign bit can be set even if original value is not negative

» read/write use int to allow signal -1 (EOF)

» reader should test value and if not -1 then it should cast to a byte !

4/10/2012 ? 6 A4B77ASS – Course 7

Streams – character stream

» character streams (similar methods but works with 16-bit chars) two root
abstract classes

» Reader

» int read(), int read(char c[]), int read(char c[], int off, int len)

» int read (CharBuffer b)

» long skip(long n), close()

» boolean markSupported(), mark(int readlimit), reset()

» Writer

» write(int c), write(char c[]), write(char c[], int off, int len)

» write(String s), write(String s, int off, int len)

» Writer append(char c), two append with CharSequence

» flush(), close()

» bridge from byte stream to character streams – do character translation

» java.io.InputStreamReader

» java.io.OutputStreamWriter

4/10/2012 7 A4B77ASS – Course 7

Streams – class hierarchy

4/10/2012 8 A4B77ASS – Course 7

Streams

» each class has very focused responsibility

» you need combine several streams together (through constructor)

» decorator (wrapping idiom) pattern is used

» e.g. FileInputStream with DataInputStream, usage of buffered stream

4/10/2012 9 A4B77ASS – Course 7

Streams – file example

4/10/2012 10 A4B77ASS – Course 7

Streams – file example 2

4/10/2012 11 A4B77ASS – Course 7

Serialization

» usefull for

» persisting object graphs – all members to disk or database

» network transmission

» other – e.g. compute object signature

» key classes:

» java.io.Serializable (no method definitions, only marker)

» ObjectInputStream

» ObjectOutputStream

» produce special binary stream

» serialization uses reflection of all non-static members except transient

» class definition is not saved !!!

» store field names

» constructor and members can be also private, sub-classes requires
protected/public constructors

4/10/2012 12 A4B77ASS – Course 7

Serialization

» all subclasses are automatically Serializable

» non-serializable class can be made serializable in any sub-type

» but there has to be accessible no-arg constructor

» data from parent are not automatically serialized !

» identification of non-serializable object when traversing a graph

» NotSerializableException

4/10/2012 13 A4B77ASS – Course 7

Serialization

» each Seraializable class has

» generated based on class name, modifiers, interfaces, methods, etc.

» BEWARE of changes of class definitions

» InvalidClassException – different serialVersionUID !

» define own serialVersionUID using serialver tool

» define serialization fields – can be used for evolving objects

» non-transient and non-static

» serialPersistentFields (ObjectStreamField[])

» suitable for compatibility with old versions

4/10/2012 14 A4B77ASS – Course 7

Serialization

» special handling of classes (exact signature)

» additional information

» initialization of non-serialized fields

» solve incompatibility of versions

private void writeObject(ObjectOutputStream out) throws IOException

- can call out.defaultWriteObject (default nebo serialPersistentFields)

private void readObject(ObjectInputStream in) throws IOException

- can call in.defaultReadObject (default nebo serialPersistentFields)

private void readObjectNoData() throws ObjectStreamException

- given class is not listed as a superclass of deserialized object

- receiver’s version extends classes that are not extended by the
sender’s version

» anyway serialization continue with superclass serialization automatically

4/10/2012 15 A4B77ASS – Course 7

Serialization

» use alternative objects

ANY-MODIFIER Object writeReplace() throws ObjectStreamException

- serialize different object than this

ANY-MODIFIER Object readResolve() throws ObjectStreamException

- after deserialization the object is replaced

4/10/2012 16 A4B77ASS – Course 7

Externalizable

» faster than Serialization

» usually produce shorter binary stream

» control object graph traversal, but what about repeating objects?

» but you loose flexibility, add more bugs, class object is usually longer

» Externalization doesn’t continue with superclass serialization automatically!

» requires public no-arg constructor

public void writeExternal(ObjectOutput out) throws IOException

public void readExternal(ObjectInput in) throws IOException

 VS.

4/10/2012 17 A4B77ASS – Course 7

Network communication - introduction

» UDP/IP (User Datagram Protocol)

» datagram (packet) oriented

» order, delivery is not guaranteed

» TCP/IP (Transmission Control Protocol)

» connection-based protocol

» reliable bi-directional point-to-point channel

4/10/2012 18 A4B77ASS – Course 7

Network communication - introduction

» ports – 16-bit number

» IPv4

» IP – 32-bit address

» IPv6

» IP – 128-bit address (64-bit site, 64-bit host)

4/10/2012 19 A4B77ASS – Course 7

Network communication – JAVA mapping

» java.net package

» addressing

» InetAddress, InetSocketAddress

» UDP

» DatagramPacket

» DatagramSocket

» MulticastSocket

» TCP

» Socket

» ServerSocket

» URL

» URLConnection, HttpURLConnection

4/10/2012 20 A4B77ASS – Course 7

JAVA networking

» InetAddress

» get by name - InetAddress InetAddress.getByName(“google.com”)

» get by address - InetAddress InetAddress.getByAddress(byte ip[])

» get special - InetAddress InetAddress.getLocalHost()

» InetSocketAddress

» IP with port – complete address

» new InetSocketAddress(ia, port)

» InetSocketAddress.createUnresolved(“www.google.com”, 80)

» nonspecified address, automatic port – new InetSocketAddress(0)

» NetworkInterface

» NetworkInterface.getAll(), NetworkInterface.getByName(“eth0”)

» methods

» getDisplayName(), getHardwareAddress(), getInetAddresses()

4/10/2012 21 A4B77ASS – Course 7

JAVA networking - URL

» URL (java.net.URL) – Uniform Resource Locator

» protocol – most used http(s), ftp

» host – DNS name, IP

» port

» file

 http://www.google.com/search?q=a

» support creation (also relative from other), getters for different parts

» direct reading

InputStream url.openStream()

or

Object url.getContent()

4/10/2012 22 A4B77ASS – Course 7

JAVA networking – URL connection

» URLConnection

» URL Connection url.openConnection()

» can set timeouts, request properties, set input (POST data)

» can read content type and other parameters

» HttpURLConnection – connect(), getInputStream, getOutputStream

4/10/2012 23 A4B77ASS – Course 7

JAVA networking – Socket

» Socket

» end-point of network TCP/IP connection

» is bound to particular IP and port

» each TCP/IP connection is uniquely identified by its two end-points

» provides input/output streams

4/10/2012 24 A4B77ASS – Course 7

JAVA networking – Socket

4/10/2012 25 A4B77ASS – Course 7

JAVA networking – ServerSocket

» ServerSocket

» special socket representing listening TCP/IP end-point

» within constructor you specify the port, and optionally IP where it has
to be bound

» wait for establishing connection using method

Socket accept()

» handle multiple clients

4/10/2012 26 A4B77ASS – Course 7

JAVA networking – DatagramPacket, DatagramSocket

» DatagramPacket

» independent, self-contained message sent over the network

» like packet

» InetAddress address, int port – destination

» byte data[], int length, int offset

» SocketAddress sa – sender

» DatagramSocket

» sending or receiving point for a packet delivery service

» can be bound to any available port (using default constructor)

» connect(InetAddress,int) – can sent or receive packets only specified
host, if not set in DatagramPacket automatically fill

» send(DatagramPacket p), receive(DatagramPacket p) – blocking IO

» MulticastSocket

» additional capabilities for joining/leaving multicast groups, loopback

» multicast IP (IGMP – Internet Group Management Protocol)

224.0.0.0 – 239.255.255.255
4/10/2012 27 A4B77ASS – Course 7

JAVA networking – NIO

» NIO – new IO – implemented in java.nio starting from Java 1.4

» API for

» scalable I/O – asynchronous I/O requests and polling

» high-speed block-oriented binary and character I/O working – including
mapping files to the memory, using channels and selectors

» regular expressions

» charset conversion

» improved files ystem interface

» some functions are dependent on the underlying OS

» Channel is like a bit stream

4/10/2012 28 A4B77ASS – Course 7

JAVA networking – NIO - Buffer

» java.nio.Buffer

» linear, finite sequence of elements of a specific primitive type

» ByteBuffer, CharBuffer, DoubleBuffer, FloatBuffer, IntBuffer,
LongBuffer, ShortBuffer, MappedByteBuffer {FileChannel.map(…)}

» not thread safe, multi mode for the same buffer (read, write)

» key properties – 0 <= mark <= position <= limit <= capacity

» capacity – numbers of elements, never changing !

» limit – index of the first element that should not be read or written

» position – index of the next element to be read or written

» mark – index to which its position is set after reset()

» initial content is undefined !!!

» clear() – position=0, limit=capacity => ready for channel read (put)

» flip() – limit=position, position=0 => ready for channel write (get)

» rewind() – limit unchanged, position=0 => ready for re-reading

» mark() – mark = position

» reset() – position=mark

4/10/2012 29 A4B77ASS – Course 7

JAVA networking – NIO - Buffer

» write mode – channel.read(buf); buf.put(…);

» read mode – channel.write(buf); … buf.get();

4/10/2012 30 A4B77ASS – Course 7

JAVA networking – NIO - Buffer

» java.nio.Buffer

» isReadOnly() – can be read-only

» hasArray() – is backed by an accessible array (array())

» equals(), compareTo() – compare remainder sequence

» can be allocated to physical memory – direct OS operation over it !

ByteBuffer ByteBuffer.allocateDirect(int capacity)

» typical usage

Note: compact() – bytes between position and limit are copied to the
beginning of the buffer.

4/10/2012 31 A4B77ASS – Course 7

