agent
technology
center

Architecture of Software Systems
HTTP Protocol

Martin Rehak

HTTP Protocol

Hypertext Transfer Protocol

Designed to transfer hypertext information over the
computer networks

Hypertext: Structured text with embedded logical
links to other texts or resources.

— Concept dates back to 1960s, previously included in many
software products (help systems in particular, or Gopher)

Specification maintained by the IETF and W3C

RFC 2616
— Hyperlink included intentionally...

What made it special?

e Several internal factors have contributed to HTTP dominance

HTTP + HTML + Browser combination

Technical simplicity of the text form (Easy debugging&Integration!)
Elegance of the URI/URL model

Simple technical model

Unidirectional connection method

Available open source implementations/stacks

HTTPS/TLS security model (1994, Netscape)
* Originally proprietary, opened (RFC 2818)

 External factors:

Explosive increase in available bandwidth thanks to the massive
investments in fiber optics & new encoding techniques

Change of security posture on Internet/Enterprise Networks

Below and Around HTTP

Traditional OSI Model

De-Facto HTTP Model

7 - Application HTTP Web applications

6 - Presentation | (JPEG/UTF/ASCII) 7 _HTTP Content types

5 - Session (RPC/SQL/NFS) Cookies/Proxy/Auth
4 - Transport TCP 4 - Transport TCP

3 - Network IP 3 - Network IP

2 — Data Link Ethernet 2 — Data Link Ethernet

1 - Physical Electrons/Photons 1 - Physical Electrons/Photons

Protocol Versions

WorldWideWeb — 1989 - Tim Berners Lee
HTTP 0.9 — 1991 — initial version formally described

HTTP 1.0 — 1996 — added additional methods, headers and
meta-fields

HTTP 1.1 — 1996 (de-facto)/1997 (official). Introduces

persistent connections, improves efficiency and latency

HTTP 1.1. updated in 2014 — 6 RFCs describing the spec
HTTP 2.0 — 2014 — approved and waiting for publication

URI/URL

Departure from the name service/service directory concept

URL became a standard way how to identify resources, APIs
and their methods on internet/intranet

Reused in other standards as well

http:// :8080/my/resource

URL has five parts:

protocol: http or https,...

hostname or IP address: to locate the host providing the service
(TCP) port number: to identify the process bound to the port
resource identification/filename: to request a specific resource

s e

parameters — Interpreted by scripts/resources or the server to
transfer the information (method/service parameters)

https://tools.ietf.org/html/rfc3986

L_‘ {

o
2L
=

EIRS]

AEINCIRE

& |-

€ 1] @

(Simple) HTTP Request(s) for wikipedia.org

www.wikipedia.org

load.php?debug=false&lang=en&modules...
bits.wikimedia.org/meta.wikimedia.org
Wikipedia_wordmark_1x.png
upload.wikimedia.org/wikipedia/meta/6/6d
Wiktionary-logo_sister_1x.png
upload.wikimedia.org/wikipedia/meta/3/3b
Wikinews-logo_sister_lx.png
upload.wikimedia.org/wikipedia/meta/a/aa
Wikiquote-logo_sister_lx.png
upload.wikimedia.org/wikipedia/meta/c/c8
Wikibooks-logo_sister_lx.png
upload.wikimedia.org/wikipedia/meta/7 /74
Wikidata-logo_sister_lx.png
upload.wikimedia.org/wikipedia/meta/0/00
Wikispecies-logo_sister_1x.png
upload.wikimedia.org/wikipedia/meta/8/8c
Wikisource-logo_sister_lx.png
upload.wikimedia.org/wikipedia/meta/2/27
Wikiversity-logo_sister_lx.png
upload.wikimedia.org/wikipedia/meta/a/af
Wikivoyage-logo_sister_lx.png
upload.wikimedia.org/wikipedia/meta/7/74
Commons-logo_sister_1x.png
upload.wikimedia.org/wikipedia/meta/9/90
MediaWiki-logo_sister_lx.png
upload.wikimedia.org/wikipedia/meta/1/16
Meta-logo_sister_lx.png
upload.wikimedia.org/wikipedia/meta/f/f2
wikimedia-button.png
bits.wikimedia.org/images
Wikipedia-logo-v2_1x.png
upload.wikimedia.org/wikipedia/meta/0/08
Bookshelf-40x201_6.png
upload.wikimedia.org/wikipedia/commons...

Method

GET

CET

GET

GET

GET

GET

GET

GET

GET

GET

GET

GET

GET

GET

GET

GET

Status
Text

304
Not Modified

200
OK

200
OK

200
OK

200
OK

200
OK

200
OK

200
OK

200
OK

200
OK

200
OK

200
OK

200
OK

OK

200
OK

200
OK

200
OK

200
OK

Type

text/html|

text/css

image/png

image/png

image/png

image/png

image/png

image/png

image/png

image/png

image/png

image/png

image/png

image/png

image/png

image/png

image/png

image/png

Initiator

Other

www.wikipedia.org/:12

Parser

www.wikipedia.org/:23

Parser

www.wikipedia.org/:539

Parser

www.wikipedia.org/:543

Parser

www.wikipedia.org/:547

Parser

www.wikipedia.org/:551

Parser

www.wikipedia.org/:555

Parser

www.wikipedia.org/:559

Parser

www.wikipedia.org/:563

Parser

www.wikipedia.org/:567

Parser

www.wikipedia.org/:571

Parser

www.wikipedia.org/:575

Parser

www.wikipedia.org/:579

Parser

www.wikipedia.org/:583

Parser

www.wikipedia.org/:530

Parser

www.wikipedia.org/:1

Parser

www.wikipedia.org/:1

Parser

Size
Content

587B
41.3KB

(from cache)

(from cache)

(from cache)

(from cache)

(from cache)

(from cache)

(from cache)

(from cache)

(from cache)

(from cache)

(from cache)

(from cache)

(from cache)

(from cache)

(from cache)

(from cache)

(from cache)

Time

Latency
340ms
339ms

Oms
Oms

Oms
Oms

Oms
Oms

Oms
Oms

Oms
Oms

Oms
Oms

Oms
Oms

Oms
Oms

Oms
Oms

Oms
Oms

Oms
Oms

Oms
Oms

Oms
Oms

Oms
Oms

Oms
Oms

Oms
Oms

Oms
Oms

Timeline

100 ms

150 ms

200ms

250 ms

300ms

350 ms

HTTP Request Structure

GET / HTTP/1.1

Host: microsoft.com

Accept: text/html, application/xhtml+xml, */*
Accept-Language: en-US

User-Agent: Mozilla/5.0 (Windows NT 6.3; Trident/
7.0; rv:11.0) like Gecko

Accept-Encoding: gzip, deflate
Proxy-Connection: Keep-Alive

Methods

A Method must be specified for any request.

— Commonly used methods are specified below. Other exist (TRACE),
but are not typically used

GET —retrieve the information (resource) described by URI

HEAD — retrieve the header of the information described by
URI, without the actual content

POST — modifies the information on the server

PUT — uploads/overwrites the resource on the server (API)
DELETE — removes the resource on the server (API)

CONNECT — opens a tunnel (proxy/persistent connection)

Method properties

methods: (must) never change the state
of the resource accessed. No side-effects in
the functional sense.

* ldempotent methods. Repetitive calls should

result in identical result and state. Allows
refresh/caching.

, PUT, DELETE

HTTP is stateless

* Efficiency achieved through simplicity, and
parallelism allowed by statelessness.

* Low level inefficiency (payload encoding,
repetitive transfer of information) simplifies
the servers and clients enough to achieve
high-level efficiencies of scale.

So, how do we handle state when we need it?

Jual)

Header Fields: Cookies

GET http://waw.example.com/ HTTP/1.1

N

<
HTTP/1.1 200 OK
Set-Cookie: session-1d=12345;

13A12G

GET hutp://waw.example.com/ HTTP/1.1
Cookie: session-id=12345;

According to RFC 6265

Header Fields: Cookies

Provide information to the server about the requesting entity and the
context of the request. And can carry state.

The use of cookies transfers the responsibility for state management from
server to user (browser).

Cookies are the most complex header fields — separate RFC 6265.

Typical cookie size has increased from small (one token) to very large, with
actual state stored in the cookie

Cookie types:

Session cookies: Identify one session and/or carry the information
relevant for a single session, e.g. shopping basket.

Persistent cookies: valid across sessions (persistent). Expiration date

provided by server.
— Set-Cookie: lang=en-US; Expires=Wed, 09 Jun 2021 10:18:14 GMT

RFC 6265

Cookie structure

Server -> Client
Set-Cookie: SID=31d4d96e407aad42; Path=/; Secure;
Set-Cookie: lang=en-US; Path=/; Domain=example.com

Client - Server
Cookie: SID=31d4d96e407aad42; lang=en-US

Scope (domain/path): Determines which sites are allowed to
read/modify the cookie
— Path=/; Domain=example.com

— Send this back for all subdomains of example.com
Secure: Only transmit this over HTTPS (simplified)
: Do not allow the use from javascript/apps

User Agent

e user-agent: determines the user agent used by the client
— Most often, this is a browser.

— Should have been formatted as product/version

— ... but this has shifted due to server-side logic

— Mozilla/5.0 became a near-universal browser UA prefix for
compatibility reasons

Mozilla/5.0 (compatible; MSIE 10.0; Windows NT 6.1; Win64; x64; Trident/6.0)

This is a

browser

A decent
browser...

But an IE
10.0

On Win 7
64 bit

Layout
engine
details

Host Header — server sharing and load balancing

 Mandatory since HTTP 1.1, even if request line contains the
full host info

e Allows the (non-dedicated) server to distinguish which
domain is the request directed towards.

* Allows co-location, easier load balancing and request routing
on the application layer.

 Important for HTTPS, where the requests are often to IP
addresses/shared load-balancers

 Example:
GET /pub/WWW/ HTTP/1.1

Host: www.example.org

Other Headers

* “Accept” Headers may specify the type of the
content/language/encoding/compression the
client is willing to accept
— Accept: text/html, application/xhtml+xml, */*

— Accept-Language: en-US
— Accept-Encoding: gzip, deflate

* Proxy-Connection: Keep-Alive

HTTP Response

HTTP/1.1 200 OK

Server: Apache

X-Powered-By: HHVM/3.3.1

Cache-control: s-maxage=3600, must-revalidate, max-age=0

X-Content-Type-Options: nosniff

Vary: Accept-Encoding

X-Varnish: 12043230 11839648, 2606063287, 3164310615
3161137176

Date: Wed, 08 Apr 2015 08:07:03 GMT

X-Cache: cpl055 hit (12521), cp4018 miss (0), cp4009
frontend hit (32068)

Transfer-Encoding: chunked

Content-Type: text/html; charset=utf-8

Last-Modified: Sat, 04 Apr 2015 21:23:59 GMT

Age: 2184

Via: 1.1 varnish, 1.1 varnish, 1.1 varnish, 1.1 [proxyXYZ]:
80 (Cisco-WSA/8.5.0-497)

Connection: keep-alive
Length: unspecified [text/html]

HTTP Response

 Headers do contain a large volume of
information/fields

* Key fields are:
— Status: Success/Error Code

— Content-type: What is being returned -> Informs
the client how to interpret/parse the content.

— Connection — keep alive options for performance
optimizations. Reduction of latency

Status Code

Status code reflects
the outcome of the
request. Category
breakdown:

— 2XX Success

— 200:Success,

— 3XX Redirect:

— 301: Permanent

— 4XX Client Error

— 5XX Server Error

Informational Status Codes

100 — Continue [The server is ready to receive
the rest of the request.]

101 — Switching Protocols [Client specifies
that the server should use a certain protocol and the
server will give this response when it is ready to
switch.]

Client Request Successful
2D =G o b e

201 — Created [Successfully created the URT
specified by the client.]

202 — Accepted [Accepted for processing but
the server has not finished processing it.]

203 — Non-Authoritative Information
[Information in the response header did not originate
from this server. Copied from another server.]

204 — No Content [Request is complete without
any information being sent back in the response.]
205 — Reset Content [Client should reset the

current document, Ie. A form with existing values.]

206 — Partial Content [Server has fulfilled the
partial GET request for the resource. Inresponse to a
Range request from the client, Or if someone hits stop.]

Request Redirected
300 — Multiple Choices [Requested resource

corresponds to a set of documents. Server sends
information about each one and a URL to request them
from so that the client can choose.]

301 — Moved Permanently [Requested
resource does not exist on the server. A Location
header is sent to the client to redirect it to the new URL.
Client continues to use the new URL in future

requests.]

302 — Moved Temporarily [Requested
resource has temporarily moved. A Location header is

sent to the client to redirect it to the new URL. Client
continues to use the old URL in future requests.]

303 — See Other [The requested resource can be
found in a different location indicated by the Location
header, and the client should use the GET method to
retrieve it.]

304 — Not Modified [Used to respond to the ITf-
Modified-Since request header. Indicates that the

requested document has not been modified since the the
specified date, and the client should use a cached copy.]

305 — Use Proxy [The client should use a proxy,
specified by the Location header, to rerieve the URL]

307 — Temporary Redirect [The requested
resource has been temporarily redirected to a different
location. A Location header is sent to redirect the client
to the new URL. The client continues to use the old
URL in future requests.]

Client Request Incomplete

400 — Bad Request [The server detected a syntax
error in the client’s request.]

401 — Unauthorized [The request requires user
authentication. The server sends the WWW-Authenticate
header to indicate the authentication type and realm for
the requested resource.]

402 — Payment Required [reserved for future.]
403 — Forbidden [Access to the requested

resource is forbidden. The request should not be repeated
by the client.]

404 — Not Found [The requested document does

not exist on the server.]

405 — Method Not Allowed [The request
method used by the client is unacceptable. The server
sends the Allow header stating what methods are
acceptable to access the requested resource.]

406 — Not Acceptable [The requested resource is
not available in a format that the client can accept, based
on the accept headers received by the server. If the
request was not a HEAD request, the server can send
Content-Language, Content-Encoding and Content-Type
headers to indicate which formats are available.]

407 — Proxy Authentication Required
[Unauthorized access request to a proxy server. The client
must first authenticate itself with the proxy. The server
sends the Proxy-Authenticate header indicating the
authentication scheme and realm for the requested
resource.]

408 — Request Time-Out [The client has failed
to complete its request within the request timeout period
used by the server. However, the client can re-request.]
409 — Conflict [The client request conflicts with
another request. The server can add information about the
type of conflict along with the status code.]

410 — Gone [The requested resource is permanently
gone from the server.]

411 - Length Required [The client must supply
a Content-Length header in its request.]

412 — Precondition Failed [When a client
sends a request with one or more If. .. headers, the server
uses this code to indicate that one or more of the
conditions specified in these headers is FALSE.]

413 - Request Entity Too Large [The server
refuses to process the request because its message body is
too large. The server can close connection to stop the
client from continuing the request.]

414 — Request-URI Too Long [The server
refuses to process the request, because the specified URT
istoo long]

415- Unsupported Media Type [The server
refuses to process the request, because it does not support
the message body’s format.]

417 - Expectation Failed [The server failed to
meet the requirements of the Expect request-header.]

Server Errors

500 — Internal Server Error [A server
configuration setting or an external program has
caused an error.]

501 — Not Implemented [The server
does not support the functionality required to
fulfill the request.]

502 — Bad Gateway [The server
encountered an invalid response from an upstream
server or proxy.]

503 — Service Unavailable [The service
is temporarily unavailable. The server can send a
Retry-After header to indicate when the service
may become available again.]

504 — Gateway Time-Out [The gateway

or proxy has timed out.]

505 — HTTP Version Not Supported
[The version of HTTP used by the client is not
supported.]

Unused status codes
306- Switch Proxy

416- Requested range not satisfiable
506- Redirection failed

HTTP protocol version 1.1 Server Response Codes

http://www.w3.org/Protocols/rfc2616/rfc2616.html
Chart created September 5, 2000 by Suso Banderas(suso@suso.org). Most of the summary information was
gathered from Appendix A of “Apache Server Administrator’s Handbook™ by Mohammed J. Kabir.

Header Fields (some)

Server: Name and version of the server

Content-type: MIME type of the content, according to IANA
classification.

Typically follows type/ : pattern, e.g.:
— text/ ;

— image/

— application/

— application/

— application/

— application/ or text/

HTTP Proxy

* How to use and handle proxies and load
balancers

Conditional request headers — for
REST

If-Match Only perform the action if the client supplied entity matches the same

entity on the server. This is mainly for methods like PUT to only update a resource

if it has not been modified since the user last updated it. [f-Match:

"737060cd8c284d8af7ad3082f209582d" Permanent

If-Modified-Since Allows a 304 Not Modified to be returned if content is

unchanged If-Modified-Since: Sat, 29 Oct 1994 19:43:31 GMT
Permanent

If-None-Match Allows a 304 Not Modified to be returned if content is

unchanged, see HTTP ETag If-None-Match:

"737060cd8c284d8af7ad3082f209582d" Permanent

If-Range If the entity is unchanged, send me the part(s) that | am missing;

otherwise, send me the entire new entity If-Range:

"737060cd8c284d8af7ad3082f209582d" Permanent

