agent
technology
center

Architecture of Software Systems — Lecture 4
Design Patterns for Distributed Systems

Martin Rehak

Overview

* Selected Design & Architectural patterns for
Distributed/Multiplatform computing

* Content based on:
— Douglas C. Schmidt, Pattern Oriented Software
Engineering

— Gang of Four: Gamma, Helm, Johnson, Vlissides;
Design Patterns: Elements of Reusable Object-
Oriented Software

— Guerraoui/Rodrigues: Introduction to Reliable
Distributed Programming

Paradigm Shift

From local to distributed
Explicit vs. implicit
Latency

Failures

— Safety: a property is a safety property if it can never
be restored once it is broken (e.g. the link will never
insert a non-existing message into the media)

— Liveliness: can be restored anytime in the future (e.g.
subsystem will answer the request)

o Uk W E

Distribution Issues

Remote resource localization

Remote resource creation and usage

. State synchronization management

-ailure detection

ailure management, recovery and failover

Resource destruction

Facade

e Facade pattern hidesthe |
complexity and
heterogeneity of system, [l T
subsystem or library e L sssometin| e[
behind asimple interface [e doSome;n‘go{

* Typically replaces/hides = cics 2ot

c1.doStuffic2);

more than one object 3 200(E1 aeb)

return c3.getY();

— Simplifies client access

— Allows transparent
resource management

— Allows transparent lazy
initialization

Facade vs. Interface

* |Interface (in Java sense) is far more restricted
than Facade

* Only defines a contract between the library/
implementing class and its user — programmer

* Facade pattern allows active handling of more
complex issues than actual business logic

— Most of the code in distributed applications is
NOT directly related to business logic

(Wrapper) Facade Example: JDBC

Java Database Connectivity provides a unified
APl for most database work in Java

Unified methods and constants

Uses the Adapter pattern to incorporate third-
party DBMS drivers

Successfully hides most of the connection

complexity/decisions from the Application
Developer

Adapter/Wrapper

* The Adapter pattern provides mapping
between two (isofunctional) interfaces

* Ensures syntactic and semantic compatibility
of calls

Wrapper Facade

 The Wrapper Facade
design pattern
encapsulates the
functions and data
provided by existing non-
object-oriented APIs
within more concise,
robust, portable,
maintainable, and
cohesive object-oriented

class interfaces
Douglas C. Schmidt, C++ Report 1999

client

Y 1: method k()

Wrapper 2: function k()

Facade Functions

method 1() function 1()

method m()

function n()

Usages:
* Java Swing
« ACE/ORB

Platform independent threading/
synchronization libraries

 ACE Library

Proxy

* Proxy pattern is a local
representation of a
remote object,
interface or library

* Rarely used alone,
frequently combined
with Facade, Wrappers
and other Patterns

Client

AbstractService

service

?

Proxy

Service

service

servi

ce

The Proxy Pattern (Douglas Schmidt, POSA)

Proxy example — Symbian (1)

ProxylPCClient ProxylPCServer
--- 3
End User \iff
RemotelnflmpDIl

Ericsson. http://www.newlc.com/en/when-symbian-met-design-patterns-2-proxy-pattern

Proxy Example — Symbian (2)

MRemotelnfHunter CRemotelnfimp

¥GetRemotelnf() <1
®SaveToFile()

¥SaveToFile])
/‘-?

s

’

- Delegate

CRemotelnfProxy

EndUserview 2]

®GetRemotelnf()
®SaveToFile])

Proxy Example — Symbian (3)

MRemotelnfHunter

CRemotelnflmp

¥GetRemotelnf() <]

‘ .
¥SaveToFile) 2avelof i)
T
_-* Delegate
CRemotelnfProxy CProxylPCServerSession
EndUserView
¥GetRemotelnf() ®Servicel()
®SaveToFile() ¥Get Remotelnfl()
RRemotelnfServer CProxylPCServer
Connect() B RS :
®Close() Inter process communication ‘ggfnsoizggggion()
*GetRemotelnf()

Proxy Example — Symbian (4)

MRe motelnfHunt er

CRemotelnfimp

‘GetRemotelnfO -<:} N]
®SaveToFile() SaveToFile()

7.

’

_-* Delegate

s

CRemotelnfProxy

EndUserView

‘GetRemoteInfO
‘SaveToFileO

Roocket RSocket2
$Bind() .
Connect
Shceop) [eoneeeeneeees 3l (LOECHO
Send() Network operations e
QReceivel) %
Get Remotelnf() GetRemotelnfL{)

Implicit vs. Explicit Distribution

Alert! This ancient trifle retrieved from the o/ on Software archive is well-paft its expiration date. Proceed with care.

Joel on Software

Three Wrong Ideas From

Computer Science
by Joel Spolsky

Tuesday, August 22, 2000

Not to rain on everybody's parade, but there are three important ideas
from computer science which are, frankly, wrong, and people are
starting to notice. Ignore them at your peril.

I'm sure there are more, but these are the three biggies that have been
driving me to distraction:

1. The difficult part about searching is finding enough results,

2. Anti-aliased text looks better, and

3. Network software should make resources on the network behave
just like local resources.

Well, all I can say is,
1. Wrong,
2. Wrong,
3. WRONG!

Let us take a quick tour.

Implicit vs. Explicit Distribution

Alert! This ancient trifle retrieved from the o/ on Software archive is well-paft its expiration date. Proceed with care.

Joel on Software

Three Wrong Ideas From

Computer Science
by Joel Spolsky

Tuesday, August 22, 2000

Not to rain on everybody's parade, but there are three important ideas
from computer science which are, frankly, wrong, and people are
starting to notice. Ignore them at your peril.

I'm sure there are more, but these are the three biggies that have been
driving me to distraction:

1. The difficult part about searching is finding enough results,

3. Network software should make resources on the network behave

just like local resources.

Well, all T can say is,

1. Wrong,
o)

Let us take a quick tour.

Stateful vs. Stateless design

» State consistency and resource management are
the points where most abstractions break in real
life:

— CORBA
— COM/DCOM/OLE

* Alternative approaches make the distribution

EXPLICIT and incorporate it into the design from
the beginning

— Messaging
— HTTP-based communication

Active Object

_>§ m = act_queue .dequeue

* The Active Object design 3 oo ﬁ

pat.tern decouples method P PI‘O\\ O\\ :if(m.guard())m.call()
execution from method } Fuwem20 | “”\@fi‘f“l I
invocation to enhance e Scheduler\ =77 < Queue
concurrency and simplify s (i‘.ﬂi{i?ft.‘i:i;i i dt’
synchronized access to 1~ 2 enqueueuy"l e A
objects that reside in their Gomant o / e
INVISIBLE S ml0) /Vlethod ¢ \12
own threads of control. Vom0) (Request % MR
D. Schmidt, et al. 2007 T i) & gard) M)\u,

7 4mlg) \\””() _/

* Agents/Multi-Agent -
Systems and OLTP systems
are most frequently based
on Active Objects
(Messaging)

-

Active Object

Client Scheduler M1
Proxy "'\cm'f't'fm Servant

5 = | . ueuc
3 S INVOKE qmlo JI |
SO I I
& ® CREATE METHOD ienqueue(new M1)
g g REQUEST > |

£ — . future() |
S S RETURN FUTURE | :

enqueue(M1)
—» |

———y

l
I
I
N INSERT INTO :
S & ACTIVATION QUEUE | rard() |
~
~ E DEQUEUE SUITABLE } =t '
g § METHOD REQUEST | dequeue(Ml)
I .
N EXECUTE 1 « dispatch(M1)
s | @l 1 i
! | LIV
g RETURN RESULT <reply_to_future() l l
S | i |
Q T I 1 I I

Reactor

The Reactor architectural pattern allows event-driven
applications to demultiplex and dispatch service requests
that are delivered to an application from one or more clients.

(Schmidt)
Reactor % Event Handler
handle_events() dispatches handle_event ()
register_handler() et_handle()
remove_handler() % owns get
| Handle
— A
| * notifies L|A
handle set .
<<uses>>
Concrete Event Handler A| | Concrete Event Handler B
Synchronous
Event Demuxer
handle_event () handle_event ()
select () get_handle() get_handle()

Proactor

 The Proactor architectural pattern allows event-driven
applications to efficiently demultiplex and dispatch service
requests triggered by the completion of asynchronous operations,
to achieve the performance benefits of concurrency without
incurring certain of its liabilities. (Schmidt)

r T Initator [— — — — — — — — — — .
. <uses>> T T <uses>> ‘
| |
| <<uses>> <<invokes>>
| \‘V \y is associated with \V
| Asynchronous Asynchronous Handle Completion
| Operation Processor Operation I Handler
: execute_async_op() async_op() *|handle_event()
! <<demultiplexes
| \'v<<enqueues>> L <<executes>> ﬁ | &dispatchrzes» A
| Completion Asynchronous Proactor Concrete
| Eventhueue Event Demuxer .
| T handle_events() Completion
L @ ~ |get_completion_event() Handler

<<dequeues>>

Reactor/Proactor — Web server

Concurrency — The server must
perform multiple client requests
simultaneously;

Efficiency — The server must
minimize latency, maximize
throughput, and avoid utilizing
the CPU(s) unnecessarily.
Programming simplicity — The
design of the server should
simplify the use of efficient
concurrency strategies;

Adaptability — Integrating new or
improved transport protocols
(such as HTTP 1.1 [3]) should
incur minimal maintenance costs.

Schmidt, 1997

Web

Browse

Browser

(" Web Server

2: connect

> CSync Acceptor)
R N
3: HTTP DL . At
_tequest Liaccept| . Patse
\’\ ’_::_.1 >
6: send file h
5:read
file

J

Web
Browser

X
Web File
Browser System

(NOT a Proactor/Reactor)

Reactor

4) e B
Web Server Web Server
1: GET
/etc/passwd 3: read request
3: connect Acceptor 4: parse request
Web
Web HTTP - P 4 new Browser Handler
Browser Handler | °° CTeate connection 2: read
1 R 7: write ready
6: register Initiation . ready
new connection Dispatcher
Ll Initiation
Ik registeri i 2: handle Dispatcher_’é
Acceptor events (Reactor)

3: connect

Web
Browser

Reactor — Connection

Web Server

HTTP
Handler

6: register
new connection

A A
1:registery 4 2:handle
Acceptor!; é events

‘ Acceptor ’

connection

- 4: new
5: create

Initiation o<
Dispatcher
(Reactor)

The Web Server registers an Acceptor with
the Initiation Dispatcher to accept new
connections;

The Web Server invokes event loop of the
Initiation Dispatcher;

A client connects to the Web Server;

The Acceptor is notified by the Initiation
Dispatcher of the new connection request
and the Acceptor accepts the new
connection;

The Acceptor creates an HTTP Handler to
service the new client;

HTTP Handler registers the connection with
the Initiation Dispatcher for reading client
request data (that is, when the connection
becomes “ready for reading”);

The HTTP Handler services the request from
the new client.

Reactor — Request Processing

The client sends an HTTP GET request;

The Initiation Dispatcher notifies the HTTP
Handler when client request data arrives at the
server;

The request is read in a non-blocking manner
such that the read operation returns
EWOULDBLOCK if the operation would cause the
calling thread to block (steps 2 and 3 repeat until
the request has been completely read);

The HTTP Handler parses the HTTP request;

The requested file is synchronously read from the
file system;

The HTTP Handler registers the connection with
the Initiation Dispatcher for sending file data
(that is, when the connection becomes “ready for
writing”);

The Initiation Dispatcher notifies the HTTP
Handler when the TCP connection is ready for
writing;

The HTTP Handler sends the requested file to the
client in a non-blocking manner such that the
write operation returns EWOULDBLOCK if the
operation would cause the calling thread to block
(steps 7 and 8 will repeat until the data has been
delivered completely).

Web
Browser

File
System

I: GET

/etc/passwd

file

Web Server

HTTP

Handler

LA

7: write
ready

6: register
connection

3: read request
4: parse request

2: read
ready

Initiation L
Dispatcher

(Reactor)

4: connect
Web -
Browser

Proactor

7: create

8: read (connection,

Web Server

2: accept
(Acceptor,
Dispatcher)

6:
accept
complete

Handler, Dispatcher)
Completion " Operating File
Dispatcher] System System
@ 3:-handle 5:accept
L events complete)

~
1: accept 1: GET
connections /etc/passwd
Web o
Browser

-/
5: read (File)

Web

8: write

Completion_,°
Dispatcher

Server

6: write (File, Conn._,
Handler, Dispatcher)

complete

7: write
complete
e
< —

Operating
System

2:

read complete

4: connect

Web
Browser

(=

Proactor - Connection

8: read (connection,
Handler, Dispatcher)

Web Server 1: accept

~

connections

2: accept
(Acceptor,
Dispatcher)

accept
complete

Completion_, Operating
Dispatcher] System
i 3: handle 5: accept
L events complete P

The Web Server instructs the Acceptor to initiate
an asynchronous accept;

The Acceptor initiates an asynchronous accept
with the OS and passes itself as a Completion
Handler and a reference to the Completion
Dispatcher that will be used to notify the
Acceptor upon completion of the asynchronous
accept;

The Web Server invokes the event loop of the
Completion Dispatcher;

The client connects to the Web Server;

When the asynchronous accept operation
completes, the Operating System notifies the
Completion Dispatcher;

The Completion Dispatcher notifies the Acceptor;
The Acceptor creates an HTTP Handler;

The HTTP Handler initiates an asynchronous
operation to read the request data from the
client and passes itself as a Completion Handler
and a reference to the Completion Dispatcher
that will be used to notify the HTTP Handler
upon completion of the asynchronous read.

Proactor - Processing

The client sends an HTTP GET request;

The read operation completes and the Operating

System notifies the Completion Dispatcher;
The Completion Dispatcher notifies the HTTP

Handler (steps 2 and 3 will repeat until the entire

request has been received);
The HTTP Handler parses the request;

The HTTP Handler synchronously reads the
requested file;

The HTTP Handler initiates an asynchronous
operation to write the file data to the client
connection and passes itself as a Completion
Handler and a reference to the Completion
Dispatcher that will be used to notify the HTTP
Handler upon completion of the asynchronous
write;

When the write operation completes, the
Operating System notifies the Completion
Dispatcher;

The Completion Dispatcher then notifies the

Completion Handler (steps 6-8 continue until the

file has been delivered completely).

Browser

1: GET
/etc/passwd

Web Server

Web | — -~ 4: parse request

7/ 6: write (File, Conn._,

8:write Handler, Dispatcher)

5:read (File) | 3:read complete
complete 7- wri?\x

File Completion_,,. f;o] mp lete' Operating
‘\ System Dispatcher 9 System

2: read complete

Reactor vs. Proactor

Processing connections in web server. Reactor (left) vs. Proactor (right)

1: GET
/etc/passwd

Web
Browser

8- send

file

File file

System

Web Server

3: read request
4: parse request

HTTP
Handler

2: read
ready

7: write
ready

6: register
connection

Initiation L
Dispatcher
(Reactor)

1: GET
/ete/passwd

Web -—
Browser

5: read (File)

File
System

8:

Web Server
’ 4: parse request

6: write (File, Conn._,
Handler, Dispatcher)

write

3:read | [complete
complete 7- write
Completion_, fo] mp lete. Operating
Dispatcher , System
L 2: read complete

Proactor (Details)

: Initiator

1.Initiate
operation
2.Process
operation
3.Run event
loop
4.Generate &
queue
completion
event
5.Dequeue
completion
event &
perform
completion
processing

t Asynchronous t Asynchronous t Completion : Proactor Completion
Operation Operation Event Queue Handler
Processor

Completion
Handler
Completion
Ev. Queue - hsync_operation()
exec_async_
operation () /i/ri/ i handle_events()
A >
-
—_ = event
| Result |
Result event
- I
= — — — | — — — — 4 : 2
-l <>
|Result j Result service()
handle_
event() B
- - -’
I|i\' |

Distributing Workload

* Single server — baseline, obviously prone to failures

* Single server with standby backup
— Activity/liveliness monitoring
— Consistency Update
e Quality tiers:
— : HW ready and wired, no SW stack
: Wired, installed, powered, with no state

— Hot: State maintained, system operational, but not
servicing request

: Load Balanced, parallel processing of
requests

HW Cost Implications

Configuration HW Config/requirements

Cold N+1 (or N+x). Resources can be pooled.
Failover to AWS/cloud possible.

Warm N + 1 (or x) per each system tier, (web
server, app server, db server)

Hot 2N (or more) — system duplicated

Active-Active N + 1 (or N+x)

Why not use Active-Active all over?

Load-balancing

Easy for isolated, stateless oo
requests
More complex for sticky e
sessions

— We need to maintain per
session state

Consistent distribution for (s

long-term-stage :

— Individual duplication 'Sg;gglA' °Sy_,;g;«;'8" : euat |
necessary for each unique
resource

Corollaly

* Uniqueness is expensive
* Pooling is efficient and scalable

» State persistence/management incurs non-
trivial costs and constraints

1.

3.

4.

hd

Conclusion

Remote resource localization
1. Yellow pages, Singleton

Remote resource creation and usage
1. Factory, Facade, Reactor, Proactor, Half-Sync/Async

State synchronization management
1. Facade, Proxy, Active Object

~ailure detection
-ailure management, recovery and failover

Resource destruction
1. Proxy, Facade, Garbage collection, ...

