
Two Player Games
A4B33ZUI, LS 2017

Branislav Bošanský, Karel Horák, Ondřej Vaněk
{name.surname}@agents.fel.cvut.cz

Artificial Intelligence Center, Czech Technical University

 function minimax(node, depth, Player)
 if (depth = 0 or node is a terminal node) return evaluation value of node

 if (Player = MaxPlayer)

 for each child of node

 v := max(v, minimax(child, depth-1, switch(Player)))



 return v

 else

 for each child of node

 v := min(v, minimax(child, depth-1, switch(Player)))



 return v

Minimax

 function alphabeta(node, depth, α, β, Player)
 if (depth = 0 or node is a terminal node) return evaluation value of node

 if (Player = MaxPlayer)

 for each child of node

 v := max(v, alphabeta(child, depth-1, α, β, switch(Player)))

 α := max(α,v); if (β≤α) break

 return v

 else

 for each child of node

 v := min(v, alphabeta(child, depth-1, α, β, switch(Player)))

 β := min(β,v); if (β≤α) break

 return v

Alpha-Beta Pruning

Game

 function negamax(node, depth, α, β, Player)
 if (depth = 0 or node is a terminal node) return evaluation value of node

 if (Player = MaxPlayer)

 for each child of node

 v := max(v, -negamax(child, depth-1, -β, -α, switch(Player)))

 α := max(α,v); if (β≤α) break

 return v

 else

 for each child of node

 v := min(v, alphabeta(child, depth-1, α, β, switch(Player)))

 β := min(β,v); if (β≤α) break

 return v

Negamax

 enhancement of the alpha-beta algorithm

 assumes some heuristic that determines move ordering

 the algorithm assumes that the first action is the best one

 after evaluating the first action, the algorithm checks whether the
remaining actions are worse

 the “test” is performed via null-window search

 [α, α+1]

 the algorithm needs to re-search, if the test fails (i.e.,
there might be a better outcome for the player when
following the tested action)

•

NegaScout – Main Idea

function negascout(node, depth, α, β, Player)

 if ((depth = 0) or (node is a terminal node)) return eval(node)

 b := β

 for each child of node

 v := max(v,-negascout(child, depth-1, -b, -α, switch(Player))))

 if ((α < v) and (child is not the first child))

 v := max(v,-negascout(child, depth-1, -β, -α, switch(Player))))

 α := max(α, v)

 if (β≤α) break

 b := α + 1

 return v

NegaScout

function negascout(node, depth, α, β, Player)

 if ((depth = 0) or (node is a terminal node)) return eval(node)

 b := β

 for each child of node

 v := max(v,-negascout(child, depth-1, -b, -α, switch(Player))))

 if ((α < v < β) and (child is not the first child))

 v := max(v,-negascout(child, depth-1, -β, -v, switch(Player))))

 α := max(α, v)

 if (β≤α) break

 b := α + 1

 return v

NegaScout

• Extracting selected moves

• Cache for previous results (transposition tables)

• Iterative deepening (using previous results in game playing)

• Implementation of game states (bit operations, modifications
have to be as quick as possible)

Alpha Beta and Negascout in Practice

• TEST on alpha beta and negascout

– 3.4. and 4.4. 2017 on seminars

Alpha Beta and Negascout in Practice

