Informed State Space Search
A4B33ZUl, LS 2017

Branislav Bosansky, Karel Horak, Ondrej Vanék
{name.surname}@agents.fel.cvut.cz
Artificial Intelligence Center, Czech Technical University



Informed Search Problems /\I

CENTER

* Problem

’ Initial state — s,

. Successor function—x € S — succ(x) € 2°
. Goaltest-x €S — goal(x) =T | F

. Arc cost —c(x, succ(x))

{ Heuristic s € S: h(s) > R }

g(s): cost to reach the state s

h(s): estimated cost to get from state s to goal state




Best-first Search Algorithms AN

CENTER

e Evaluation function f(n) for each state/node

f(n) =gn) + h(n)

HEURISTIC

- Selecting best node first — “best-first search”

4 )
Uniform cost search: h(N) =
Greedy search: g(N) = 0, h(N) arbitrary

A* search: g(N), h(N) admissible

- J




H(N) — Heuristic function /\I

CENTER

 We know the cost to the node g(n) — nothing to tune here

 We don’t know the exact cost from n to goal h(n) — if we knew,
no need to search — estimate it!

 H(N) - admissible and consistent heuristic

* Admissible = optimistic — it never overestimates the cost to the
goal

_ 0 < h(N) < h*(N) N

* Consistent = Triangle inequality is valid d \\C
—a+b=c M Y
— g(N,M) + h(M) = h(N) SO
— =» once a node is expanded, the cost b~ \

by which it was reached is the lowest possible



Consistent Heuristic /\I

CENTER




Modifications of A* /\I

CENTER

A* finds optimal path for admissible heuristic h.
* A*is optimally efficient for any heuristic h.

* But...

* The number of expanded nodes might still be huge.
0(b%)

(b — branching factor, d — depth of optimal solution)



Modifications of A* /\I

CENTER

* Question: What if we do have limited memory and the goal is
deep?



Modifications of A* /\I

CENTER

* Question: What if we do have limited memory and the goal is
deep?

* |IDA* (lterative Deepening A*)
— Space complexity linear in depth
— Lot of work done multiple time (despite same time complexity)
— Inefficient use of available memory



Modifications of A* /\I

CENTER

* Question: What if we do have limited memory and the goal is
deep?

* |IDA* (lterative Deepening A*)
— Space complexity linear in depth
— Lot of work done multiple time (despite same time complexity)
— Inefficient use of available memory

e SMA* (Simplified Memory-Bounded A*)
— Works as A* until free memory is available
— Then it drops node that is the least likely to lead to solution



Simplified Memory-Bounded A* AN

CENTER

 |deas:

— Generate one node at a time by expanding node with the least
f-value (the “most promising node”)

— If the expansion exhausted memory, forget node with greatest
f-value (the “least promising node”)

— Values are backed up:
* Refined version of f when all children of a node are expanded

* Values of “forgotten” alternative D X S

xX X X X



Simplified Memory-Bounded A* AN

CENTER

Example from: https://dtai.cs.kuleuven.be/education/ai/Exercises/Session2/Solutions/solution.pdf



Modifications of A* /\I

CENTER

* Question: What if the time for planning is bounded? e.g.
— graph is huge like in your assignment
— you need to plan really quickly (e.g. in real-time games)



Modifications of A* /\I

CENTER

* Question: What if the time for planning is bounded? e.g.
— graph is huge like in your assignment
— you need to plan really quickly (e.g. in real-time games)

* We can sacrifice optimality for performance.
* We can sacrifice admissibility of the heuristic.



Modifications of A* /\I

CENTER

Question: What if the time for planning is bounded? e.g.
— graph is huge like in your assignment
— you need to plan really quickly (e.g. in real-time games)

* We can sacrifice optimality for performance.
* We can sacrifice admissibility of the heuristic.

 Lower number of expanded nodes.
* Faster search



Modifications of A* /\I

CENTER

* e-admissible heuristic (¢ > 1)

f(n) = gn) +e€.h(n)

e Using it leads to bounded approximation of the optimal path (no
worse than € times worse)

X X X X X



Bidirectional Search Qplz

» Unidirectional search - 0(b%) nodes need to be expanded

 What if we search simultaneously from start in the forward
sense and from the goal backwards?

— If we search to the depth d/2 in both direction and happen to
meet in the middle, the complexity becomes 0 (b%/?)

* Question: What do we need for doing bidirectional search?



Bidirectional Search /\I

CENTER

* Heuristics in bidirectional search:

* Front-to-Front

— Heuristics estimate distance needed to “meet”
(i.e. distance to any node in the open list for opposite direction)

— Computationally expensive
— Proof that the searches meet in the middle missing

 Front-to-End
— Standard heuristics

— Distance to the goal (when searching forward) or the start (when
searching backwards)



MM Search /\I

CENTER

Far from start

Remote

Near to start

Near to goal

* |sthere a Front-to-End algorithm that guarantees that searches
meet in the middle?

— “Bidirectional Search That Is Guaranteed to Meet in the Middle”
by Holte et al. AAAI 2016

— Best-paper award



MM Search /\I

CENTER

e The modification is rather simple _Algorithm 1: Pscudocode for 11

b1 _g)p(start) :{: ggg(}qoa.i) := 0; Openrp := {start};
—_ | = U =
— p = max (f (n)' Zg(n)) 2 wli:ielsji()pe:rf;a# 0) and ??)pe-ng # () do
.3

C := min(prming, prming)
if U < max(C, fming, fminp, gminr + gming + €)
then
L s | return U
if C = prming then
// Expand in the forward direction
choose n € Openr for which prr(n) = prming
! and gp(n) is minimum
L9 move n from Openp to Closedp
' 10 for each child ¢ of n do
D X S |11 if ¢ € Openrp U Closedr and
: gr(c) < gp(n) + cost(n, c) then
X X L 12 | continue
13 if ¢ € Openr U Closedr then
X P14 | remove ¢ from Openr U Closedr
15 gr(c) == gr(n) + cost(n,c)
X 16 add ¢ to Openp
17 if ¢ € Openp then
X X 18 | U :=min(U,gr(c) + ga(c))
19 else
20 | // Expand in the backward direction, analogously

21 return oc




