
Informed State Space Search
A4B33ZUI, LS 2017

Branislav Bošanský, Karel Horák, Ondřej Vaněk
{name.surname}@agents.fel.cvut.cz

Artificial Intelligence Center, Czech Technical University



• Problem

• Initial state – 𝑠0
• Successor function – 𝑥 ∈ 𝑆 → 𝑠𝑢𝑐𝑐 𝑥 ∈ 2𝑆

• Goal test –𝑥 ∈ 𝑆 → 𝑔𝑜𝑎𝑙 𝑥 = 𝑇 | 𝐹

• Arc cost –𝑐 𝑥, 𝑠𝑢𝑐𝑐(𝑥)

• g(s): cost to reach the state s 

• h(s): estimated cost to get from state s to goal state

Informed Search Problems

Heuristic  𝒔 ∈ 𝑺: 𝒉 𝒔 → 𝑹



• Evaluation function f(n) for each state/node

𝑓 𝑛 = +

•  Selecting best node first – “best-first search”

Best-first Search Algorithms

COST HEURISTIC

Uniform cost search: h(N) = 0
Greedy search: g(N) = 0, h(N) arbitrary
A search: g(N), h(N) arbitrary
A* search: g(N), h(N) admissible



• We know the cost to the node g(n) – nothing to tune here

• We don’t know the exact cost from n to goal h(n) – if we knew, 
no need to search – estimate it!

• H(N) – admissible and consistent heuristic

• Admissible = optimistic – it never overestimates the cost to the 
goal

– 0 ≤ ℎ 𝑁 ≤ ℎ∗(𝑁)

• Consistent = Triangle inequality is valid

– 𝑎 + 𝑏 ≥ 𝑐

– 𝑔 𝑁,𝑀 + ℎ 𝑀 ≥ ℎ(𝑁)

–  once a node is expanded, the cost 

by which it was reached is the lowest possible

H(N) – Heuristic function

a c

b

N

M



Consistent Heuristic

a

d

b

c

e20

1

1

1

5

h(a)=10

h(b)=22

h(c)=21

h(d)=5

h(e)=0



• A* finds optimal path for admissible heuristic h.

• A* is optimally efficient for any heuristic h.

• But…

• The number of expanded nodes might still be huge.

𝑂 𝑏𝑑

(b – branching factor, d – depth of optimal solution)

Modifications of A*



• Question: What if we do have limited memory and the goal is 
deep?

Modifications of A*



• Question: What if we do have limited memory and the goal is 
deep?

• IDA* (Iterative Deepening A*)

– Space complexity linear in depth

– Lot of work done multiple time (despite same time complexity)

– Inefficient use of available memory

Modifications of A*



• Question: What if we do have limited memory and the goal is 
deep?

• IDA* (Iterative Deepening A*)

– Space complexity linear in depth

– Lot of work done multiple time (despite same time complexity)

– Inefficient use of available memory

• SMA* (Simplified Memory-Bounded A*)

– Works as A* until free memory is available

– Then it drops node that is the least likely to lead to solution

Modifications of A*



• Ideas:

– Generate one node at a time by expanding node with the least
f-value (the “most promising node”)

– If the expansion exhausted memory, forget node with greatest
f-value (the “least promising node”)

– Values are backed up:

• Refined version of f when all children of a node are expanded

• Values of “forgotten” alternative

Simplified Memory-Bounded A*

D X S

X X

X

X

X X



Simplified Memory-Bounded A*

Example from: https://dtai.cs.kuleuven.be/education/ai/Exercises/Session2/Solutions/solution.pdf



• Question: What if the time for planning is bounded? e.g.

– graph is huge like in your assignment

– you need to plan really quickly (e.g. in real-time games)

Modifications of A*



• Question: What if the time for planning is bounded? e.g.

– graph is huge like in your assignment

– you need to plan really quickly (e.g. in real-time games)

• We can sacrifice optimality for performance.

• We can sacrifice admissibility of the heuristic.

Modifications of A*



• Question: What if the time for planning is bounded? e.g.

– graph is huge like in your assignment

– you need to plan really quickly (e.g. in real-time games)

• We can sacrifice optimality for performance.

• We can sacrifice admissibility of the heuristic.

• Lower number of expanded nodes.

• Faster search

Modifications of A*



• 𝝐-admissible heuristic (𝜖 > 1)
𝑓 𝑛 = 𝑔 𝑛 + 𝜖 . ℎ 𝑛

• Using it leads to bounded approximation of the optimal path (no 
worse than 𝜖 times worse)

Modifications of A*

D X S

X X

X

X

X X



• Unidirectional search - 𝑂(𝑏𝑑) nodes need to be expanded

• What if we search simultaneously from start in the forward 
sense and from the goal backwards?

– If we search to the depth d/2 in both direction and happen to 

meet in the middle, the complexity becomes 𝑂(𝑏𝑑/2)

• Question: What do we need for doing bidirectional search?

Bidirectional Search



• Heuristics in bidirectional search:

• Front-to-Front

– Heuristics estimate distance needed to “meet”
(i.e. distance to any node in the open list for opposite direction)

– Computationally expensive

– Proof that the searches meet in the middle missing

• Front-to-End

– Standard heuristics

– Distance to the goal (when searching forward) or the start (when 
searching backwards)

Bidirectional Search



• Is there a Front-to-End algorithm that guarantees that searches 
meet in the middle?

– “Bidirectional Search That Is Guaranteed to Meet in the Middle” 
by Holte et al. AAAI 2016

– Best-paper award

MM Search



• The modification is rather simple

– 𝑝 = 𝑚𝑎𝑥 (𝑓(𝑛), 2𝑔(𝑛))

MM Search

D X S

X X

X

X

X X


