
Decision making, Markov decision processes

Solved tasks
Collected by: Jǐŕı Kléma, klema@fel.cvut.cz

Spring 2017

The main goal:

The text presents solved tasks to support labs in the A4B33ZUI course.

1 Simple decisions, Bayesian decision making

Example 1. (AIMA, 16.10): A used car buyer can decide to carry out
various tests with various costs (e.g., kick the tires, take the car to a qualified
mechanic) and then, depending on the outcome of the tests, decide which car
to buy. We will assume that the buyer is deciding whether to buy car a1 and
that there is time to carry out at most one test t1 which costs 1,000 Kč and
which can help to figure out the quality of the car. A car can be in good shape
(s+) or in bad shape (s−), and the test might help to indicate what shape the
car is in. There are only two outcomes for the test: pass (t1+) or fail (t1−).
Car a1 costs 30,000 Kč, and its market value is 40,000 Kč if it is in good
shape; if not, 14000 Kč in repairs will be needed to make it in good shape.
The buyers estimate is that a1 has 70% chance of being in good shape. The
test is uncertain: Pr(t1+(a1)|a1+) = 0.8 a Pr(t1+(a1)|a1−) = 0.35.

Calculate the expected net gain from buying car a1, given no test.

EU(buy + |{}) =
∑

s∈{+,−} U(s)Pr(s|buy+) = 40, 000 − (0.7 × 30, 000 + 0.3 ×
44, 000) = 40, 000− 34, 200 = 5, 800 Kč

An analogy in classic decision making:
d∗(t) = argmin

buy+,buy−

∑
s∈{+,−} l(d, s)Pr(s|t) = argmin

buy+,buy−

∑
s∈{+,−} l(d, s)Pr(s) =

= argmax
buy+,buy−

(10000× 0.7− 4000× 0.3, 0) = argmax(5800, 0) = buy+

Conclusion 1: It pays-off to buy the car without a test.

1

Use Bayes’ theorem to calculate the probability that the car will pass or fail
its test and hence the probability that it is in good or bad shape.

Pr(a1+|t1+(a1)) = Pr(t1+(a1)|a1+)×Pr(a1+)
Pr(t1+(a1)) = 0.8×0.7

0.8×0.7+0.35×0.3 = 0.56
0.665 = 0.842

Pr(a1+|t1−(a1)) = Pr(t1−(a1)|a1+)×Pr(a1+)
Pr(t1−(a1))

= 0.2×0.7
0.2×0.7+0.65×0.3 = 0.14

0.335 = 0.418

Calculate the optimal decisions given either a pass or a fail, and their ex-
pected utilities.

EU(αt1 |t1+(a1)) = 40, 000−(0.842×30, 000+0.158×44, 000) = 40, 000−32, 240 =
7, 788 Kč
EU(αt1 |t1−(a1)) = 40, 000−(0.418×30, 000+0.582×44, 000) = 40, 000−38, 120 =
1, 852 Kč

An analogy in classic decision making:
d∗(t1+(a1)) = argmin

buy+,buy−

∑
l(d, s)Pr(s|t) = argmin

buy+,buy−
(10, 000 × 0.842 − 4, 000 ×

0.158, 0) = argmin
buy+,buy−

(7788, 0) = buy+

d∗(t1−(a1)) = argmin
buy+,buy−

∑
l(d, s)Pr(s|t) = argmin

buy+,buy−
(10, 000 × 0.418 − 4, 000 ×

0.582, 0) = argmin
buy+,buy−

(1852, 0) = buy+

Conclusion 2: It pays-off to buy the car without for both the test outcomes. This

immediately suggests zero VPI of the test – the test has no potential to change buyer’s

decision.

Calculate the value of (perfect) information of the test. Should the buyer
pay for t1?

EU(α|{}) = max(5800, 0) = 5800 Kč
EU(αt1 |t1+(a1)) = max(7788, 0) = 7788 Kč
EU(αt1 |t1−(a1)) = max(1852, 0) = 1852 Kč

V PI(t1(a1)) = (Pr(t1+(a1))×7788+Pr(t1−(a1))×1852)−5800 = (0.665×7788+
0.335× 1852)− 5800 = 5800− 5800 = 0 Kč
It is ”hard” zero, can be confirmed as follows:
Pr(t1+(a1))×(10000×Pr(a1+|t1+(a1))−4000×Pr(a1−|t1+(a1)))+Pr(t1−(a1))×
(10000×Pr(a1+|t1−(a1))−4000×Pr(a1−|t1−(a1))) = 10000×(Pr(a1+, t1+(a1))+
Pr(a1+, t1−(a1)))−4000×(Pr(a1−, t1+(a1))+Pr(a1−, t1−(a1))) = 10000×Pr(a1+)−
4000× Pr(a1−) = 5800 Kč
V PI(t1(a1))− Cost(t1(a1)) = −1000 < 0

2

Conclusion 3: A logical resolution. The test cannot change decision, it has zero value,
when considering its cost it brings negative outcome. The best strategy is to buy the
car without the test. The test would need better sensitivity to pay-off. Accuracy of the
test (note that the trivial ”good state” classifier shows accuracy 0.7):
Pr(t1+(a1), a1+) + Pr(t1−(a1), a1−) = 0.8× 0.7 + 0.65× 0.3 = 0.755

Example 2. You are going on a trip from San Francisco to Oakland. You
have two options to get to Oakland, you want to get there as soon as possible.
You can drive your car across the Bay Bridge or go by train through the
tunnel under the bay. Bay Bridge is often jammed (on the given part of
the day it is in about 40 % of cases). During normal operation, it takes
30 minutes drive. If there is traffic congestion, it takes 1 hour. The train
journey always takes 40 minutes.

When having no traffic information, does it pay off to drive or take a train?

EU(train|{}) = 40 min
EU(car|{}) =

∑
z∈{+,−} U(z)Pr(z|car) = 0.4× 60 + 0.6× 30 = 42 min

Conclusion 1: The train journey is faster.

Let us assume, that the traffic information for Bay Bridge is available on
web, you can get it in 5 minutes. You know, that for congested bridge, the
web page says the same with 90% probability. For normal traffic, the page
indicates a traffic jam in 20% cases.

What is the congestion probability when having the traffic information?

We employ Bayes theorem (z . . . congestion, real . . . real situation, pred . . . traffic in-
formation prediction):

P (zreal|zpred) =
P (zpred|zreal)P (zreal)

P (zpred)
= 0.9×0.4

P (zpred)
= 0.36

P (zpred)

P (¬zreal|zpred) =
P (zpred|¬zreal)P (¬zreal)

P (zpred)
= 0.2×0.6

P (zpred)
= 0.12

P (zpred)

P (zreal|zpred) = 0.36
0.36+0.12 = 0.75

P (¬zreal|zpred) = 0.12
0.36+0.12 = 0.25

Note: P (zpred) = 0.48, and P (¬zpred) = 0.52.

P (zreal|¬zpred) =
P (¬zpred|zreal)P (zreal)

P (¬zpred) = 0.1×0.4
0.52 = 0.07

P (¬zreal|¬zpred) =
P (¬zpred|¬zreal)P (¬zreal)

P (¬zpred) = 0.8×0.6
0.52 = 0.93

3

What should we do if the traffic information predicts normal operation /
congestion?

EU(car|zpred) = P (zreal|zpred)×60+P (¬zreal|zpred)×30 = 0.75×60+0.25×30 =
52.5 min
EU(car|¬zpred) = P (zreal|¬zpred)×60+P (¬zreal|¬zpred)×30 = 0.07×60+0.93×
30 = 32 min

Conclusion 2: If congestion is predicted, we will take train, otherwise we will go by
car.

Is it efficient to spend 5 minutes by finding out the traffic information or is
it better to simply set out?

If congestion is predicted, we will take train and vice versa. The train journey takes 40
min, the drive through the free bridge takes 32 minutes. These times must be weighted
by their probability given by the probability of both the states of traffic information
and add 5 min to both for the time needed to find out the prediction. On average, we
would reach Oakland in:

U(zpred) = 5 + P (zpred)× 40 + P (¬zpred)× 32 = 5 + 0.48× 40 + 0.52× 32 = 40.8
min

This travel time needs to be compared with the default option without any information.
This option is the train journey in 40 minutes.

Conclusion 3: Traffic information helps to increase quality of our decision. However,
the 5 minute time for its acquisition is too large. The best option is to simply set out
by train.

2 Markov decision processes

Example 3. Concern an episodal process with three states (1, 2, 3). The
rewards in individual states are -2,-1 and 0, the process terminates by reach-
ing state 3. In the states 1 and 2, actions a and b can be applied. Action
a keeps the current state with 20% probability, with 80% probability it leads
to transition from 1 to 2 resp. from 2 to 1. Action b keeps the current state
with 90% probability, with 10% probability it leads to state 3.

Try to guess the best policy qualitatively for states 1 and 2.

We maximize our reward, the rewards are not positive, the process should be terminated
as soon as possible, i.e., state 3 should be reached. At the same time, the transition

4

to 3 by b is relatively improbable. The expected number of b trials to terminate the
process is 10 (for p = 0.1: E = p + 2p(1 − p) + 3p(1 − p)2 + · · · = 1/p = 10). It
pays off to switch to state 1 first and employ a to terminate the process by transition
to state 3.

Conclusion 1: The best policy seems to be π∗ = (b, a,NULL).

Formalize as MDP. Apply policy iteration. Start with the policy π0 =
(b, b,NULL) and illustrate its convergence to th optimal policy in detail.

Init: π0 = (b, b,NULL), U0 = (0, 0, 0).
Iteration 1:
Evaluation: U1(1) = −1 + 0.9× U1(1), U1(2) = −2 + 0.9× U1(2), U1(3) = 0,

U1(1) = −10, U1(2) = −20,
(can be solved by DP, an analytical solution is available too).

Improvement: Q1(a, 1) = −1 + 0.2× U1(1) + 0.8× U1(2) = −19,
Q1(b, 1) = −1 + 0.9× U1(1) + 0.1× U1(3) = −10,
Q1(a, 1) < Q1(b, 1)→ for state 1 we pick b,
Q1(a, 2) = −2 + 0.8× U1(1) + 0.2× U1(2) = −14,
Q1(b, 2) = −2 + 0.9× U1(2) + 0.1× U1(3) = −20,
Q1(a, 2) > Q1(b, 2)→ for state 2 we pick a,

π1 = (b, a,NULL).
Iteration 2:
Evaluation: U2(1) = −1 + 0.9× U2(1), U2(2) = −2 + 0.8× U2(2) + 0.2× U2(1),

U2(1) = −10, U2(2) = −12.5,
(analytical solution again).

Improvement: Q2(a, 1) = −1 + 0.2× U2(1) + 0.8× U2(2) = −13,
Q2(b, 1) = −1 + 0.9× U2(1) + 0.1× U2(3) = −10,
Q2(a, 1) < Q2(b, 1)→ for state 1 we pick b,
Q2(a, 2) = −2 + 0.8× U2(1) + 0.2× U2(2) = −12.5
Q2(b, 2) = −2 + 0.9× U2(2) + 0.1× U2(3) = −13.25
Q2(a, 2) > Q2(b, 2)→ for state 2 we pick a,

π2 = (b, a,NULL), no policy change, STOP.

Conclusion 2: We confirmed our qualitative guess, the optimal policy is π∗ = (b, a,NULL).

Reapply policy iteration. Start with π0 = (a, a,NULL). What happens?
What is the solution?

Init: π0 = (a, a,NULL), U0 = (0, 0, 0).
Iteration 1:

5

Evaluation: U1(1) = −1 + 0.2× U1(1) + 0.8× U1(2),
U1(2) = −2 + 0.8× U1(1) + 0.2× U1(2),
(this system of equations has no solution)
(DP solution diverges, the state values grow towards ∞).

Conclusion 3: The solution is to introduce a discount factor γ. The system of linear
equations will not be singular any longer. But, a bit different task gets solved, the best
policy can be different, especially for small discount factors. With a small γ, immediate
reward gets preferred, one can find b as the best option even in state 2.

Example 4. Consider a two-player game on a four-field board. Each player
has one stone, the goal is to move its stone to the opposite side of the board
(A player moves from field 1 to filed 4, B player from field 4 to field 1). The
player that first reaches its goal field wins. The players may move one filed
left or right, they cannot skip their move nor move out of the board. If a
neighbor field is occupied by the opponent’s stone, the stone can be jumped.
(example: if A is in the position 3 and B in the position 2 and A moves left,
it ends up in position 1).

Which player wins? Demonstrate the classic solution based on state space
search first.

The state of the game can be represented by the position of both the stones, it can be
written down as an ordered pair (sA, sB). There are 11 reachable states (state (4, 1)
is not reachable). The standard solution is by MiniMax procedure. The game tree is in
figure below (the evaluation is for A player, who is a maximization player).
The only bottleneck lies in the fact that the game contains cycles and the standard
depth-first MiniMax would fall into an infinite loop. For this reason, we will put the
expanded states on a stack. As soon as a cycle is detected, the value of the state is
denoted as “?” and the current branch is terminated. When propagating the evaluation
we assume that max(1,?)=1 and min(-1,?)=-1. This improvement is sufficient for the
given game which does not distinguish beyond wins and losses.

6

Conclusion 1: Two-player games can be solved by MiniMax. If keeping the optimal

game strategy, A player wins (the player who moves first).

Can we formalize this game as MDP? Is it a good choice?

Conclusion 2: Every search problem can be formalized as MDP. The transformation
is routine: states and actions do not change, the goal states map to terminal MDP
states, the transition matrix is deterministic and the reward is inverted evaluation.
However, MDP is not a good choice in the case of deterministic actions. Its formalism
is too heavy and time demanding. It is a good choice for stochastic problems.

Formalize this game as MDP. Let VA(s) be the state s value if A player is
on move, VB(s) be the state s value if B player is on move. Let R(s) be
the reward in state s, for the terminal states where wins A it is 1, for the
terminal states where wins B it is -1. Draw a state space diagram. Put
down Bellman equations for both the players and apply these equations in
terms of value iteration. Formulate the iteration termination condition.

The state space diagram is in figure below. The moves of A player are in solid red, the
moves of B player in dashed blue.

7

Bellman equations stem from the MiniMax principal:
VA(s) = R(s) + maxa P

a
ss′VB(s′)

VB(s) = R(s) + mina P
a
ss′VA(s′)

R(s) will only be used in terminal states, the value of the rest of the states is given
solely by its descendants. A player maximizes evaluation, B player does the opposite.
As the actions are deterministic, each action has the unit probability for one of the
descendant states and zero probability for remaining states.

The players take moves in turns, we apply the individual Bellman equations in turns
too. In the beginning, the terminal states start with their R(s), the rest of the states
has zero value. The values gradually propagate, the state space diagram is used, see
the table below:

s (1,4) (2,4) (3,4) (1,3) (2,3) (4,3) (1,2) (3,2) (4,2) (2,1) (3,1)
VA 0 0 0 0 0 +1 0 0 +1 -1 -1
VB 0 0 0 0 -1 +1 0 -1 +1 -1 -1
VA 0 0 0 -1 +1 +1 -1 +1 +1 -1 -1
VB -1 +1 +1 -1 -1 +1 -1 -1 +1 -1 -1
VA +1 +1 +1 -1 +1 +1 -1 +1 +1 -1 -1
VB -1 +1 +1 -1 -1 +1 -1 -1 +1 -1 -1

The termination condition is no change in value vector for one of the players (i.e., the
match between the current VA(s) vector and the VA(s) vector generated two moves
before, or the same match for VB(s)). In the table above, we observe the match in two
last VB(s) vector instances. Obviously, no change may appear for the next VA(s) too
as it will be derived from the identical VB(s).
Note that VA(s) and VB(s) vectors do not have to match. VA(s) assumes that A
player is on move and vice versa (e.g., (3,2) state switches its value in principle as the
player on move always wins whoever it is).

8

Conclusion 3: MDP solves the problem concurrently for both the players taking the
first move. The value of the terminal states is given apriori. In states (2,4) and (3,4),
A player wins disregarding turns. In states (1,3) and (1,2), B player wins disregarding
turns. In states (1,4), (2,3) and (3,2), the player on move wins.
MiniMax tree shown earlier employs different state values at different tree levels, the
tree de facto combines VA(s) and VB(s) according to the tree depth.

9

