Neural Networks

30.11.2015

Lecturer: J. Matas
Authors: J. Matas, B. Flach, O. Drbohlav

Talk Outline

- Perceptron
- Combining neurons to a network
- Neural network, processing input to an output
- Learning
- Cost function
- Optimization of NN parameters
- Back-propagation (a gradient descent method)
- Present and future

A Formal Neuron / Perceptron (1)

Binary-valued threshold neuron (McCulloch and Pitts '49)

$$
\begin{aligned}
& y=f\left(\sum_{i=1}^{n} w_{i} x_{i}+b\right)=f(\boldsymbol{w} \cdot \boldsymbol{x}+b) \\
& f(z)=\left\{\begin{array}{r}
-1 \text { if } z<0 \\
1 \text { if } z \geq 0
\end{array}\right.
\end{aligned}
$$

- $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \quad$ input
- $\boldsymbol{w}=\left(w_{1}, \ldots, w_{n}\right) \in \mathbb{R}^{n}$ weights
- $b \in \mathbb{R}$
- $y \in\{-1,1\}$ bias output

Given the weights \boldsymbol{w} and the bias b, the neuron produces an output $y \in\{-1,1\}$ for any input \boldsymbol{x}.
Note: This is a linear classifier, can be learned by the Perceptron Algorithm or SVM methods.

A Formal Neuron / Perceptron (2)

As usual, put the bias term b into the weights \boldsymbol{w} :

$$
\begin{aligned}
y & =f(\boldsymbol{w} \cdot \boldsymbol{x}+b) \\
& =f\left(\boldsymbol{w} \cdot \boldsymbol{x}+w_{0} \cdot 1\right) \\
& =f\left(\boldsymbol{w}^{\prime} \cdot \boldsymbol{x}^{\prime}\right)
\end{aligned}
$$

input
weights
modified sign function
output

Neuron - Why That Name?

CENTER ROP MACHINE

- A single neuron combines several inputs to an output
- Neurons are layered (outputs of neurons are used as inputs of other neurons)

- A simple neuron model:

- Perceptron (Rosenblatt, 1956) with its simple learning algorithm generated a lot of excitement
- Minsky and Papert (1969) showed that even a simple XOR cannot be learnt by a perceptron, this lead to skepticism

- The problem was solved by layering the perceptrons to a network (Multi-Layer Perceptron, MLP)
- Historically, the commonly used activation function $f(\cdot)$ is the sigmoid (cf. logistic regression)

$$
f(z)=\frac{1}{1+e^{-z}}
$$

- Its crucial properties are:
- It is non-linear : if the activation function were linear, the multi-layer network could be rewritten (and would work the same as) a single-layer one
- Differentiable : useful for fitting the coefficients of NN by gradient optimization

Three-Layer Neural Network (1/2)

- Input \boldsymbol{x}
- Output y_{1}

$$
\text { Layer 1, input } \quad \text { Layer 2,hidden } \quad \text { Layer 3, out }
$$

A 2-4-1 net
 (incl. the bias term), followed by a non-linear

Three-Layer Neural Network (2/2)

Layer 1, input Layer 2, hidden Layer 3, out

- Generalization: multidimensional output \boldsymbol{y}
- Notation:

$$
\begin{aligned}
& \boldsymbol{a}^{(1)}=[1, \boldsymbol{x}] \\
& \boldsymbol{a}^{(3)}=\boldsymbol{y}
\end{aligned}
$$

Three-Layer Neural Network (2/2)

Layer 1, input Layer 2, hidden Layer 3, out

- Generalization: multidimensional output \boldsymbol{y}
- Notation:
$\boldsymbol{a}^{(1)}=[1, x]$
$\boldsymbol{a}^{(3)}=\boldsymbol{y}$
- All just works:

Given $\boldsymbol{a}^{(1)}$ (input) $\mathbf{z}^{(2)}=\mathbf{W}^{(1,2)} \boldsymbol{a}^{(1)}$
$\boldsymbol{a}^{(2)}=\left[1, f\left(\mathbf{z}^{(2)}\right)\right]$
$\mathbf{z}^{(3)}=\mathbf{W}^{(2,3)} \boldsymbol{a}^{(2)}$
$\boldsymbol{a}^{(3)}=f\left(\mathbf{z}^{(3)}\right)$
(= output)

Note: $f(\mathbf{z}) \stackrel{\text { def }}{=}\left(f\left(z_{1}\right), f\left(z_{2}\right), \ldots f\left(z_{n}\right)\right)$
(f is applied element-wise)

K-Layer Neural Network

- Multilayer perceptron (MLP)
- Feed-forward computation
- Init:

$$
a^{(1)}=[1, x]
$$

- Loop:
for $k=1$: $\mathrm{K}-1$

$$
\begin{aligned}
& \boldsymbol{z}^{(k+1)}=\mathbf{W}^{(k, k+1)} \boldsymbol{a}^{(k)} \\
& \boldsymbol{a}^{(k+1)}=\left[1, f\left(\boldsymbol{z}^{k+1}\right)\right]
\end{aligned}
$$

- End:

Layer 1, input Layer 2, hidden

Layer K, out

$$
\begin{aligned}
\boldsymbol{y}=\left[\boldsymbol{a}^{(K)}\right]_{\emptyset} \longleftarrow & \text { Operator }[\cdot]_{\varnothing}: \mathbb{R}^{D+1} \rightarrow \mathbb{R}^{D} \\
& {\left[\left(p_{0}, \ldots, p_{D}\right)\right]_{\emptyset}=\left(p_{1}, \ldots, p_{D}\right) }
\end{aligned}
$$

Function approximation by a MLP

- Consider a simple case of K-layer NN with a single output neuron
- Such NN partitions space to two subsets \mathcal{R}_{1} and \mathcal{R}_{2}

2-Layer NN: linear boundary between \mathcal{R}_{1} and \mathcal{R}_{2}

K-Layer NN: can approximate increasingly more complex functions with increasing K Images taken from Duda, Hart, Stork: Pattern Classification

Note: Remember the Adaboost example with weak linear classifiers? The strong classifier has been constructed as a linear combination of these. This is similar to what happens inside a 3-layer NN.

- NNs can be employed for function approximation. Approximation from sample (training) points is the regression problem. Classification can be approached as a special case of regression.
- So far, the weight matrices \mathbf{W} have been assumed to be already known.
- Learning the weight matrices is formulated as an optimization problem. Given the training set $\mathcal{T}=\left\{\left(\boldsymbol{x}_{i}, \boldsymbol{y}_{i}\right), i=1 . . N\right\}$, we optimize

$$
J_{\text {total }}(\{\mathbf{W}\})=\sum_{i=1}^{N} J\left(\boldsymbol{y}_{i}, \boldsymbol{y}\left(\{\mathbf{W}\}, \boldsymbol{x}_{i}\right)\right),
$$

where $\boldsymbol{y}\left(\{\mathbf{W}\}, \boldsymbol{x}_{i}\right)$ is the output of NN for \boldsymbol{x}_{i}, and $J(\cdot, \cdot)$ is the cost function.

- For a 2-class classification, the last layer has one neuron, and the output $\boldsymbol{y}\left(\{\mathbf{W}\}, \boldsymbol{x}_{i}\right)$ is thus 1-dimensional.
- For K-class classification, a common choice is to encode the class by an M-dimensional vector:

$$
y=(0,0, \ldots, 1, \ldots, 0)^{T},
$$

1 at k-th coordinate if \boldsymbol{x} belongs to k-th class.
Each class $k \in\{1,2, . ., K\}$ has an associated weight vector w_{k}.
The conditional probability for the k-th function is computed using the softmax function:

$$
\begin{equation*}
p(k \mid x)=\frac{e^{w_{k} x}}{e^{w_{1} x}+e^{w_{2} x}+\ldots+e^{w_{K} x}} \tag{40}
\end{equation*}
$$

Regression, Classification, Learning (3)

- A frequent choice for $J(\cdot, \cdot)$ is the quadratic loss:

$$
J(\boldsymbol{y}, \boldsymbol{y}(\{\mathbf{W}\}, x))=\frac{1}{2}\|\boldsymbol{y}(\{\mathbf{W}\}, x)-\boldsymbol{y}\|^{2}
$$

- Other possibility: cross entropy, etc.

Graded Activation Function $\boldsymbol{f}(\cdot)$

$$
J_{\text {total }}(\{\mathbf{W}\})=\sum_{i=1}^{N} J\left(\boldsymbol{y}_{i}, \boldsymbol{y}\left(\{\mathbf{W}\}, \boldsymbol{x}_{i}\right)\right)
$$

- Ready to optimize $J_{\text {total }}$?
$-J(\cdot, \cdot)$ is a quadratic loss (no problem)
- $\boldsymbol{y}^{(K)}$ is a composition of two types of functions:
- Linear combination (no problem)
- Activation function $f(\cdot)$ - must be differentiable (modified signum function is not)

Learning: Minimize J

$$
\left\{\mathbf{W}^{\prime}\right\}=\underset{\{\mathbf{W}\}}{\operatorname{argmin}} J_{\text {total }}(\{\mathbf{W}\})=\underset{\{\mathbf{W}\}}{\operatorname{argmin}} \sum_{i=1}^{N} J\left(\boldsymbol{y}_{i}, \boldsymbol{y}\left(\{\mathbf{W}\}, \boldsymbol{x}_{i}\right)\right)
$$

Apply gradient descent.
Compute gradient / partial derivatives w.r.t. all weights:

$$
\frac{\partial J_{\text {total }}}{\partial w_{p q}^{(k, k+1)}}=\sum_{i=0}^{N} \frac{\partial J\left(x_{i}\right)}{\partial w_{p q}^{(k, k+1)}}
$$

Gradient of $J(1 / 4)$

Example for NN with number of layers $K=3$, output dimensionality D, and quadratic loss function:

$$
\frac{\partial J(x)}{\partial w_{p q}^{(k, k+1)}}=\sum_{j=1}^{D}[y(W, x)-y]_{j} \frac{\partial[y(W, x)]_{j}}{\partial w_{p q}^{(k, k+1)}}=
$$

$$
\begin{aligned}
& =\sum_{j=1}^{D} \underbrace{[y(W, x)-y]_{j}}_{D_{j}} \frac{\partial a_{j}^{(3)}(x)}{\partial w_{p q}^{(k, k+1)}} \\
& \text { th component. } \quad \begin{array}{c}
\text { Output } \\
\text { discrepancy }
\end{array} \\
& \begin{array}{c}
\text { Dep. of } j \text {-th } \\
\text { output neuron on } \\
\text { that weight }
\end{array}
\end{aligned}
$$

Gradient of J (2/4)

$$
\frac{\partial J(x)}{\partial w_{p q}^{(k, k+1)}}=\sum_{j=1}^{D} D_{j} \frac{\partial a_{j}^{(3)}(x)}{\partial w_{p q}^{(k, k+1)}}
$$

Let us have a look at the gradient patterns, based on some examples (note: f^{\prime} is the derivative of $f, *$ is element-wise multiplication):

$$
\frac{\partial a_{j}^{(3)}}{\partial w_{14}^{(2,3)}}=\frac{\partial a_{j}^{(3)}}{\partial z_{j}^{(3)}} \frac{\partial z_{j}^{(3)}}{\partial w_{14}^{(2,3)}}= \begin{cases}f^{\prime}\left(z_{1}^{(3)}\right) a_{4}^{(2)} & \text { if } j=1 \\ 0 & \text { otherwise }\end{cases}
$$

Thus, for $\mathbf{W}^{(2,3)}$:

$$
\frac{\partial J(x)}{\partial w_{p q}^{(2,3)}}=D_{p} f^{\prime}\left(z_{p}^{(3)}\right) a_{q}^{(2)}
$$

In vector notation:

$$
\frac{\partial J(x)}{\partial W^{(2,3)}}=\left[D * f^{\prime}\left(z^{(3)}\right)\right] a^{(2) T}
$$

Gradient of \boldsymbol{J} (3/4)

So, we have that: $\quad \frac{\partial J(x)}{\partial w_{p q}^{(k, k+1)}}=\sum_{j=1}^{D} D_{j} \frac{\partial a_{j}^{(3)}(x)}{\partial w_{p q}^{(k, k+1)}}$
$\frac{\partial a_{j}^{(3)}}{\partial w_{30}^{(1,2)}}=\frac{\partial a_{j}^{(3)}}{\partial z_{j}^{(3)}} \frac{\partial z_{j}^{(3)}}{\partial a_{3}^{(2)}} \frac{\partial a_{3}^{(2)}}{\partial z_{3}^{(2)}} \frac{\partial z_{3}^{(2)}}{\partial w_{30}^{(1,2)}}=f^{\prime}\left(z_{j}^{(3)}\right) w_{j 3}^{(2,3)} f^{\prime}\left(z_{3}^{(2)}\right) a_{0}^{(1)}$
$\frac{\partial J(x)}{\partial w_{p q}^{(1,2)}}=\sum_{j=1}^{D} D_{j} f^{\prime}\left(z_{j}^{(3)}\right) w_{j p}^{(2,3)} f^{\prime}\left(z_{p}^{(2)}\right) a_{q}^{(1)}$
In vector notation:

$$
\begin{aligned}
\frac{\partial J(x)}{\partial W^{(1,2)}}= & {\left[W^{(2,3) T}\left[D * f^{\prime}\left(z^{(3)}\right)\right]\right]_{\emptyset} } \\
& * f^{\prime}\left(z^{(2)}\right) a^{(1) T}
\end{aligned}
$$

Cf.

$$
\frac{\partial J(x)}{\partial W^{(2,3)}}=\left[D * f^{\prime}\left(z^{(3)}\right)\right] a^{(2) T}
$$

$$
\begin{aligned}
& \left(a_{0}^{(1)}\right. \\
& \emptyset
\end{aligned}
$$

$a_{0}^{(2)}$

(6)

Define:

Compute gradient of J :

$$
\begin{aligned}
& \Delta^{(8,9)}=\boldsymbol{\delta}^{(9)} \boldsymbol{a}^{(8) T} \\
& \Delta^{(7,8)}=\boldsymbol{\delta}^{(8)} \boldsymbol{a}^{(7) T}
\end{aligned}
$$

$$
\Delta^{(1,2)}=\boldsymbol{\delta}^{(2)} \boldsymbol{a}^{(1) T}
$$

$$
\begin{aligned}
& \Delta^{(k, k+1)}=\frac{\partial J}{\partial \mathbf{W}^{(k, k+1)}} \\
& \text { output from desired } \\
& \text { Compute: } \\
& \boldsymbol{\delta}^{(9)}=\left(\left[\boldsymbol{a}^{(9)}(\boldsymbol{x})\right]_{\emptyset}-\boldsymbol{y}\right) * f^{\prime}\left(\mathbf{z}^{(9)}\right) \\
& \boldsymbol{\delta}^{(8)}=\left[\mathbf{W}^{(8,9) T} \boldsymbol{\delta}^{(9)}\right]_{\emptyset} * f^{\prime}\left(\mathbf{z}^{(8)}\right) \\
& \boldsymbol{\delta}^{(7)}=\left[\mathbf{W}^{(7,8) T} \boldsymbol{\delta}^{(8)}\right]_{\emptyset} * f^{\prime}\left(\mathbf{z}^{(7)}\right) \\
& \boldsymbol{\delta}^{(2)}=\left[\mathbf{W}^{(2,3) T} \boldsymbol{\delta}^{(3)}\right]_{\emptyset} * f^{\prime}\left(\mathbf{z}^{(2)}\right)
\end{aligned}
$$

Notes:

$K=9$ used as an example
$T=$ transposition

* = elementwise multiplication
$[\cdot]_{\emptyset}$: remove the first vector component

Given $(\boldsymbol{x}, \boldsymbol{y}) \in \mathcal{T}$
Do forward propagation. compute predicted output for x Compute the gradient.
Update the weights:
$\mathbf{W}^{(k, k+1)} \leftarrow \mathbf{W}^{(k, k+1)}+\beta \Delta^{(k, k+1)}$
β... learning rate
Repeat until convergence.

Notes:

$K=9$ used as an example
$T=$ transposition

* = elementwise multiplication

- Update computation was shown for 1 training sample only for the sake of clarity
- This variant of weight updates can be used (loop over the training set like in the Perceptron algorithm)
- Back-propagation is a gradient-based minimization method.
- Variants: construct the weight update using the entire batch of training data, or use mini-batches as a compromise between exact gradient computation and computational expense
- The step size (learning rate) could be found by line search algorithm as in standard gradient-based optimization
- Many variants for the cost function - logistic regression-type, regularization term, etc. This will lead to different update rules.

Advantages:

- Handles well the problem with multiple classes
- Can do both classification and regression
- After normalization, output can be treated as aposteriori probability

Disadvantages:

- No guarantee to reach the global minimum

Notes:

- Ways to choose network structure?
- Note that we assumed the activation functions to be identical throughout the NN. This is not a requirement though.

Deep NNs

- Deep learning - "hot" topic, unsupervised discovery of features
- Renaissance of NNs
- What is different from the past? Massive amounts of data, regularization, sparsity enforcement, drop-out
- Used in computer vision, speech recognition, general classification problems

Deep NNs

CENTER FOR MACHINE

- A common alternative to the sigmoid: RELU (rectified linear unit)

