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Talk Outline

● Perceptron 

● Combining neurons to a network 

● Neural network, processing input to an output

● Learning

– Cost function

– Optimization of NN parameters 

– Back-propagation (a gradient descent method)

● Present and future
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A Formal Neuron / Perceptron (1)

Binary-valued threshold neuron (McCulloch and Pitts ’49)

● � � ��, … , �� ∈ 	� input  

● 
 � ��, … , �� ∈ 	�	 weights

●  ∈ 	 bias

● � ∈ ��1, 1� output

Given the weights 
 and the bias , the neuron produces an 

output � ∈ ��1, 1� for any input �.
Note: This is a linear classifier, can be learned by the Perceptron 

Algorithm or SVM methods.

� � � ∑ �������� �  � � 
 ⋅ � � 
	 	 	

	� � � 	�	�1		��	� � 0
				1		��	� � 0																																									
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A Formal Neuron / Perceptron (2)

As usual, put the bias term  into the weights 
:
� � � 
 ⋅ � �  							

� �!
 ⋅ � � �" ⋅ 1#
� �!
′ ⋅ �′#														

● �′ � 1, ��, … , �� ∈ 	�%� input  

● 
′ � �", ��, … , �� ∈ 	�%�	 weights

● � ∶ 		 → �1, 1 modified sign function

● � ∈ ��1, 1� output

� …     net activation

� � �!�# … activation
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Neuron – Why That Name?

● A single neuron combines several inputs to an output

● Neurons are layered (outputs of neurons are used as inputs 

of other neurons)

● A simple neuron model:

inputs output 5



Historical perspective

● Perceptron (Rosenblatt, 1956) with its simple learning algorithm 

generated a lot of excitement

● Minsky and Papert (1969) showed that even a simple XOR 

cannot be learnt by a perceptron, this lead to skepticism

● The problem was solved by layering the perceptrons to a 

network (Multi-Layer Perceptron, MLP)
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Graded Activation Function ( ⋅

● Historically, the commonly used activation function �(⋅) is the 

sigmoid (cf. logistic regression)

� � = 	 1
1 + )*+

● Its crucial properties are: 

– It is non-linear : if the activation function were linear, the 

multi-layer network could be rewritten (and would work the 

same as) a single-layer one

– Differentiable : useful for fitting the coefficients of NN by 

gradient optimization
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Three-Layer Neural Network (1/2)

Layer 1, input

● Each neuron is a lin. combination of its inputs 

(incl. the bias term), followed by a non-linear 

transformation.

Weights between

Layer 1 and 2

Layer 2

Layer 2, hidden Layer 3, out

�,(-)

�,-�,-

A 2-4-1 net

● Input �
● Output ��
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Three-Layer Neural Network (2/2)

Layer 1, input Layer 2, hidden Layer 3, out

● Generalization: 

multidimensional 

output .
● Notation:

/ � = 01, �1
/ 2 � .
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Three-Layer Neural Network (2/2)

/ � 3 - / -

Layer 1, input Layer 2, hidden

3 2 / 2

Layer 3, out

4 -,24 �,-

● Generalization: 

multidimensional 

output .
● Notation:

/ � = 01, �1
/ 2 � .

● All just works: 

Given / � (input)

3 - = 4 �,- / �
/ - = 01, � 3 - 1
3 2 � 4 -,2 / -
/ 2 � �!3 2 #
(� output)

Note: � 3 ≝ � �� , � �- , … � ��
(� is applied element-wise) 10



6-Layer Neural Network

/ � 3 - / -

Layer 1, input Layer 2, hidden

3 8 / 8

Layer 9, out

4 �,-

⋅⋅⋅

Operator ⋅ ∅: 	;%� → 	;
!<", … , <;# ∅ � !<�, … , <;#

⋅⋅⋅

⋅⋅⋅
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● Multilayer 

perceptron (MLP)

● Feed-forward 

computation

● Init:

/(�) = 01, �1
● Loop:

for = = 1: K � 1
3!?%�# � 4 ?,?%� /!?#
/!?%�# � 01, � 3?%� 1

● End:

. = / 8
∅



Function approximation by a MLP

● Consider a simple case of 9-layer NN with a single output neuron

● Such NN partitions space to two subsets ℛ� and ℛ-

2-Layer NN: linear boundary 

between ℛ� and ℛ-
9-Layer NN: can approximate 

increasingly more complex 

functions with increasing 9
Images taken from Duda, Hart, Stork: Pattern Classification

Note: Remember the Adaboost example with weak linear classifiers? The strong 

classifier has been constructed as a linear combination of these. This is similar to 

what happens inside a 3-layer NN. 12



Regression, Classification, Learning (1)

● NNs can be employed for function approximation. 

Approximation from sample (training) points is the regression

problem. Classification can be approached as a special case of 

regression. 

● So far, the weight matrices 4 have been assumed to be already 

known. 

● Learning the weight matrices is formulated as an optimization 

problem. Given the training set A = { �� , .� , � = 1. . B}, we 

optimize

CDEDFG({4}) = ∑ C(.� , .( 4 , ��))
H
��� ,

where .( 4 , ��) is the output of NN for ��, and C(⋅,⋅) is the 

cost function.
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Regression, Classification, Learning (2)

● For a 2-class classification, the last layer has one neuron, and 

the output .( 4 , ��) is thus 1-dimensional.

● For 9-class classification, a common choice is to encode the 

class by an I-dimensional vector:

� = 0, 0,… ,1, … , 0 J , 

1 at =-th coordinate if � belongs to =-th class.
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Regression, Classification, Learning (3)

● A frequent choice for C(⋅,⋅) is the quadratic loss:

C ., .( 4 , �) = 	
1

2
. 4 , � − . -

● Other possibility: cross entropy, etc.
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Graded Activation Function ( ⋅

CDEDFG({4}) =KC(.� , .( 4 , ��))

H

���

● Ready to optimize CDEDFG ? 

– C(⋅,⋅) is a quadratic loss (no problem)

– . 8 is a composition of two types of functions: 

– Linear combination (no problem)

– Activation function �(⋅) – must be differentiable 

(modified signum function is not)
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Learning: Minimize L

4M = argmin4 	CDEDFG({4}) = 	argmin4 KC .� , .( 4 , ��)

H

���

Apply gradient descent.

Compute gradient / partial derivatives w.r.t. all weights:  

∂Jtotal

∂w
(k,k+1)
pq

=
N�

i=0

∂J(xi)

∂w
(k,k+1)
pq
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Gradient of  L (1/4)

Example for NN with number of layers 9 = 3, output 

dimensionality U, and quadratic loss function:  

Note: ⋅ V is W-th component.

∂J(x)

∂w
(k,k+1)
pq

=
D�

j=1

[y(W,x)− y]j
∂ [y(W,x)]j

∂w
(k,k+1)
pq

=

=

D�

j=1

[y(W,x)− y]j� �� �
Dj

∂a
(3)
j (x)

∂w
(k,k+1)
pq

Output 

discrepancy

Dep. of W-th
output neuron on 

that weight 
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Gradient of  L (2/4)

So, we have that:

Let us have a look at the gradient patterns, based on some examples 

(note: �′ is the derivative of �, ∗ is element-wise multiplication):

Thus, for 4 -,2 :

In vector notation: 

∂a
(3)
j

∂w
(2,3)
14

=
∂a

(3)
j

∂z
(3)
j

∂z
(3)
j

∂w
(2,3)
14

=

�
f ′(z

(3)
1 )a

(2)
4 if j = 1

0 otherwise

∂J(x)

∂w
(2,3)
pq

= Dpf
′(z(3)p )a(2)q

∂J(x)

∂W (2,3)
=
�
D ∗ f ′(z(3))

�
a(2)T

∂J(x)

∂w
(k,k+1)
pq

=

D�

j=1

Dj
∂a

(3)
j (x)

∂w
(k,k+1)
pq
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Gradient of  L (3/4)

So, we have that:

In vector notation:

Cf. 

∂J(x)

∂w
(k,k+1)
pq

=

D�

j=1

Dj
∂a

(3)
j (x)

∂w
(k,k+1)
pq

∂a
(3)
j

∂w
(1,2)
30

=
∂a

(3)
j

∂z
(3)
j

∂z
(3)
j

∂a
(2)
3

∂a
(2)
3

∂z
(2)
3

∂z
(2)
3

∂w
(1,2)
30

= f ′(z
(3)
j )w

(2,3)
j3 f ′(z

(2)
3 )a

(1)
0

∂J(x)

∂w
(1,2)
pq

=
D�

j=1

Djf
′(z

(3)
j )w

(2,3)
jp f ′(z(2)p )a(1)q

∂J(x)

∂W (1,2)
=
�
W (2,3)T

�
D ∗ f ′(z(3))

��

∅

∗ f ′(z(2))a(1)T

∂J(x)

∂W (2,3)
=
�
D ∗ f ′(z(3))

�
a(2)T
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Gradient of  L (4/4)

/ � 	3 - / - 	3 8 / 84 �,-

Define:

Y ?,?%� =	 Z[
Z4(\,\]^)

Compute:

_ ` = ( / ` � ∅�.) ∗ �M 3 `

_ a =	 4 a,` J_	 ` ∅ ∗ �M 3 a

_ b =	 4 b,a J_ a
∅ ∗ �M 3 b

⋅⋅⋅
_ - � 	 4 -,2 J_ 2

∅ ∗ �M 3 -

Compute gradient of C:
Y a,` = _ ` / a J
Y b,a = _ a / b J

⋅⋅⋅
Y �,- � _ - / � J

Notes:

9 = 9 used as an example

d = transposition

∗ = elementwise multiplication

⋅ ∅: remove the first vector component

output from 

feed-forward

desired

output
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Back-propagation algorithm (1/2)

Given �, . ∈ A
Do forward propagation.

compute predicted output for �
Compute the gradient.

Update the weights:

4 ?,?%� ← 4 ?,?%� + fY ?,?%�

f… learning rate

Repeat until convergence.

Notes:

9 = 9 used as an example

d = transposition

∗ = elementwise multiplication

/ � 	3 - / - 	3 8 / 84 �,-
22



Back-propagation algorithm (2/2)

● Update computation was shown for 1 training sample only for the 

sake of clarity

● This variant of weight updates can be used (loop over the training 

set like in the Perceptron algorithm)

● Back-propagation is a gradient-based minimization method. 

● Variants: construct the weight update using the entire batch of 

training data , or use mini-batches as a compromise between exact 

gradient computation and computational expense 

● The step size (learning rate) could be found by line search algorithm 

as in standard gradient-based optimization

● Many variants for the cost function – logistic regression-type, 

regularization term, etc. This will lead to different update rules. 

23



NN by back-propagation - properties

Advantages:

● Handles well the problem with multiple classes

● Can do both classification and regression

● After normalization, output can be treated as aposteriori

probability

Disadvantages:

● No guarantee to reach the global minimum

Notes:

● Ways to choose network structure?

● Note that we assumed the activation functions to be identical 

throughout the NN. This is not a requirement though.
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Deep NNs

● Deep learning – “hot” topic, unsupervised discovery of features

● Renaissance of NNs

● What is different from the past? Massive amounts of data, 

regularization, sparsity enforcement, drop-out

● Used in computer vision, speech recognition, general 

classification problems
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Deep NNs

● A common alternative to the sigmoid: RELU (rectified linear 

unit)

26


