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Talk Outline

Perceptron

Combining neurons to a network

Neural network, processing input to an output
Learning

— Cost function

— Optimization of NN parameters

— Back-propagation (a gradient descent method)
Present and future
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A Formal Neuron / Perceptron (1)

Binary-valued threshold neuron (McCulloch and Pitts '49)
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y € {—1,1} output
Given the weights w and the bias b, the neuron produces an
output y € {—1, 1} for any input x.

Note: This is a linear classifier, can be learned by the Perceptron
Algorithm or SVM methods.



A Formal Neuron / Perceptron (2)

As usual, put the bias term b into the weights w:

y = f(w-x+b) @
= f(w-x+wy-1)

= W -x)
Il'l ((b E
_— ©Y0
wo

Z .. netactivation

y = f(2) ... activation
x'=(1,xq,..,x,) € R*"1 input
w' = (Wy, Wy, ..., w,,) € R*"1  weights
f: R->{-1,1} modified sign function

y € {—1,1} output



Neuron — Why That Name?
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e Asingle neuron combines several inputs to an output

e Neurons are layered (outputs of neurons are used as inputs

of other neurons)
dendrites (receive signals) The neuron

cell nucleus terminal buttons
(=end signals) V¥

cytoplasm

axon hilock

axon
cell body

(soma) myelin sheath nodes of Ranvier

e A simple neuron model: O
<::> <::>nonhnearf <::j:j;"_

inputs output -



Historical perspective

Perceptron (Rosenblatt, 1956) with its simple learning algorithm
generated a lot of excitement

Minsky and Papert (1969) showed that even a simple XOR
cannot be learnt by a perceptron, this lead to skepticism
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The problem was solved by layering the perceptrons to a
network (Multi-Layer Perceptron, MLP)



Graded Activation Function f(:)
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Historically, the commonly used activation function f () is the
sigmoid (cf. logistic regression)

1
1+e72

f(z) =

1/7(1 + Exp(-x))

Its crucial properties are: D

— Itis non-linear : if the activation function were linear, the
multi-layer network could be rewritten (and would work the

same as) a single-layer one
— Differentiable : useful for fitting the coefficients of NN by
gradient optimization



Three-Layer Neural Network (1/2)

Layer 1, input Layer 2, hidden Layer 3, out
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e Each neuronis a lin. combination of its inputs ¢ Weights between
(incl. the bias term), followed by a non-linear ws? < Layer 1and 2

transformation.



Three-Layer Neural Network (2/2)
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® Generalization:

Layer 1, input

multidimensional S
output y 2%
e Notation: =
ad = [1, x] o
a® =y o
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Layer 3, out



Three-Layer Neural Network (2/2)
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Layer 1, input Layer 2, hidden Layer 3, out

___________________

e Generalization: 5 T :5 :i .
multidimensional Ny I }
< <, :' : I IQ) 5 :I
output y T Ty ¥ % !
. l%//j U\ E i " , (2.3 @ /3,':|
e Notation: | q\::. Fl‘z ) % ?:‘E
' &y N % ~.'.n"j
a = [1,x] R TR 2 g

e Alljust works:

Given a™® (input)
72 = w12 gD
a® =1, f(z?)]
2® = Wedg@ |

®) = f(2®)) -
Tl Note f@) 2 (), f(z2), o f 7))

(f is applied element-wise)

a® =y

(= output)
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K-Layer Neural Network
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Function approximation by a MLP
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Consider a simple case of K-layer NN with a single output neuron

Such NN partitions space to two subsets R; and R,
X, £
A i

g -1
2-Layer NN: linear boundary  K-Layer NN: can approximate
between R; and R, increasingly more complex

functions with increasing K
Images taken from Duda, Hart, Stork: Pattern Classification

Note: Remember the Adaboost example with weak linear classifiers? The strong
classifier has been constructed as a linear combination of these. This is similar to
what happens inside a 3-layer NN.



Regression, Classification, Learning (1)

NNs can be employed for function approximation.
Approximation from sample (training) points is the regression
problem. Classification can be approached as a special case of
regression.

So far, the weight matrices W have been assumed to be already
known.

Learning the weight matrices is formulated as an optimization
problem. Given the training set 7 = {(x;,y;),i = 1..N}, we
optimize

Jrotat {W}) = £V=1](Yi»y({w}: Xi)),

where y({W}, x;) is the output of NN for x;, and J(+,-) is the
cost function.



Regression, Classification, Learning (2)

For a 2-class classification, the last layer has one neuron, and
the output y({W}, x;) is thus 1-dimensional.

For K-class classification, a common choice is to encode the
class by an M-dimensional vector:

y — (O; O; ) 1' e O)T ,

e

1 at k-th coordinate if x belongs to k-th class.

Each class k € {1,2,.., K'} has an associated weight vector wy.
The conditional probability for the k-th function is computed using the softmax function:
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p(klz) = (40)



Regression, Classification, Learning (3)

A frequent choice for J(+,-) is the quadratic loss:

1
] y({W}x)) = 5 [ly({W3, x) — yl?

Other possibility: cross entropy, etc.



Graded Activation Function f(:)
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N
Jrowal (WD) = ) J i, YW}, %))
=1

Ready to optimize Jigtar ?
— J(+,-) is a quadratic loss (no problem)

— y(K) is @ composition of two types of functions:
Linear combination (no problem)

Activation function f(-) — must be differentiable
(modified signum function is not)



Learning: Minimize J

N
(W'} = argmin Jiora ({W}) = argrp“i,gl;] i, y(AW}, x;))

Apply gradient descent.

Compute gradient / partial derivatives w.r.t. all weights:
N
0Jtotal B Z 8J(33z')

(k,k+1) (k,k+1)
8wpq i=0 C%Jpq




Gradient of ] (1/4)

Example for NN with number of layers K = 3, output
dimensionality D, and quadratic loss function:

8. (x) D a0 [y(W, z)].
= [y(W,z) — 1y, T =
a2 " Qg™
S (W) 0, " (0
— Yy y L) — Y| L.k
j=1> ~ 2 8w1(9q’ =
D]\ \
Output Dep. of j-th
discrepancy output neuron on

Note: [-]; is j-th component. that weight



Gradient of | (2/4)
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So, we have that:
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71=1

()()

(k k+1)

Let us have a look at the gradlent patterns, based on some examples

(note: f' is the derivative of f, *
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Gradient of ] (3/4)
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So, we have that: Z D (k —
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Gradient of | (4/4)
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Define: Notes:

AKk+1) 0] K = 9 used as an example
k.k+1 .
WAy _ T = transposition
output from - desired + = elementwise multiplication

feed-forward output ]
Compute: V4 / P |-]: remove the first vector component

6 = (|[aP )], —y) = f' (")
5® = [WEITE O]« f/(2®)
57 = [WISTE®] s (27

______________________________________________

5D = [WEATE®)]  f/(2)

Compute gradient of /:
AB9 — 59 q(BT

ACS) = 5@ T : OO L
A(12) = g2 g(DT alt) W12 1i7(2) g2} 1z8)g )

| = | e el T I 71—



Back-propagation algorithm (1/2)
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Given (x,y) €T Notes:
Do forward propagation. K = 9 used as an example

compute predicted output for x T = transposition

Compute the gradient. * = elementwise multiplication

Update the weights:
W(k,k+1) — W(k,k+1) n IBA(k,k+1)

______________________________________________

f... learning rate O O
Repeat until convergence. N
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Back-propagation algorithm (2/2)
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Update computation was shown for 1 training sample only for the
sake of clarity

This variant of weight updates can be used (loop over the training
set like in the Perceptron algorithm)

Back-propagation is a gradient-based minimization method.

Variants: construct the weight update using the entire batch of
training data , or use mini-batches as a compromise between exact
gradient computation and computational expense

The step size (learning rate) could be found by line search algorithm
as in standard gradient-based optimization

Many variants for the cost function — logistic regression-type,
regularization term, etc. This will lead to different update rules.



NN by back-propagation - properties ~
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Advantages:
Handles well the problem with multiple classes
Can do both classification and regression
After normalization, output can be treated as aposteriori
probability

Disadvantages:
No guarantee to reach the global minimum

Notes:
Ways to choose network structure?
Note that we assumed the activation functions to be identical
throughout the NN. This is not a requirement though.



Deep NNs
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Deep learning — “hot” topic, unsupervised discovery of features

Renaissance of NNs

What is different from the past? Massive amounts of data,
regularization, sparsity enforcement, drop-out

Used in computer vision, speech recognition, general
classification problems



Deep NNs
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e A common alternative to the sigmoid: RELU (rectified linear
unit)
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