Nonparametric Methods for Density Estimation Nearest Neighbour Classification

Lecturer: Jiří Matas

Authors: Ondřej Drbohlav, Jiří Matas

Centre for Machine Perception Czech Technical University, Prague http://cmp.felk.cvut.cz

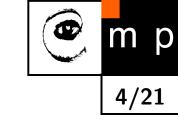
Lecture date: 23.10.2015 & 26.10.2015 Last update: 23.10.2015, 1pm

Probability Estimation

Recall that in the previous lecture, **parametric** methods for density estimation have been dealt with. The advantage of these methods is that thre is a low number of parameters to estimate. The disadvantage is that the resulting estimated density can be arbitrarily wrong if the underlying distribution does not agree with the assumed parametric model.

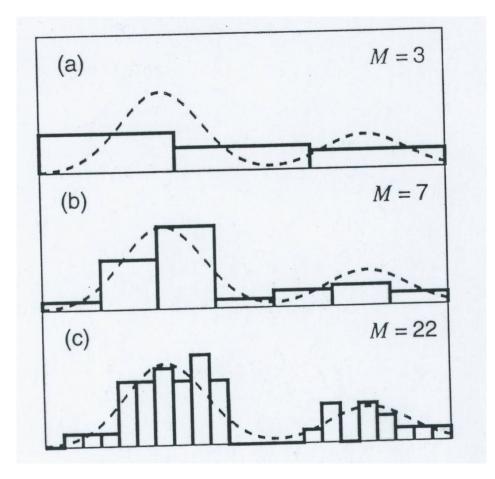
Non-Parametric Density Estimation

- histogram
- Parzen estimation
- Nearest Neighbor approach



Histogram

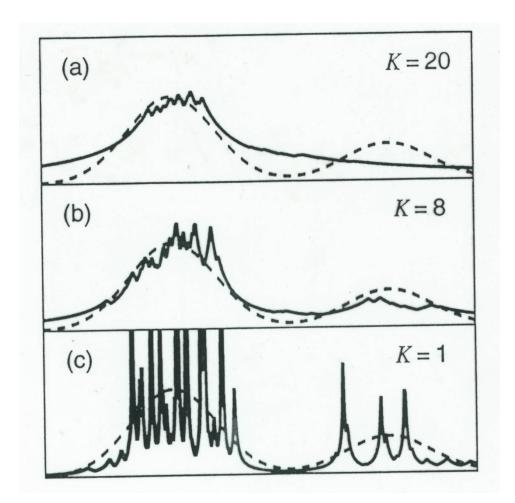
Example, M : number of bins



K-Nearest Neighbor Approach to Density Estimation

Find K neighbors, density estimate is $p \sim 1/V$ where V is the volume of minimum cell in which K neighbors are located.

Example:



K-Nearest Neighbor Approach to Classification

Outline:

- Definition
- Properties
- Asymptotic error of NN classifier
- Error reduction by edit operation on the training class
- Fast NN search

K-NN Definition

Assumption:

- Training set $\mathcal{T} = \{(x_1, k_1), (x_2, k_2), ..., (x_N, k_N)\}$. There are R classes (letter K is reserved for KNN in this lecture)
- A distance function $d: X \times X \mapsto \mathbb{R}_0^+$

Algorithm:

1. Given x, find K points $S = \{(x'_1, k'_1), (x'_2, k'_2), ..., (x'_K, k'_K)\}$ from the training set \mathcal{T} which are closest to x in the metric d:

$$S = \{ (x'_1, k'_1), (x'_2, k'_2), \dots, (x'_K, k'_K) \} \equiv \{ (x_{r_1}, k_{r_1}), (x_{r_2}, k_{r_2}), \dots, (x_{r_K}, k_{r_K}) \}$$
(1)

 r_i : the rank of $(x_i, k_i) \in \mathcal{T}$ as given by the ordering $d(x, x_i)$ (2)

2. Classify x to the class k which has majority in S:

$$k = \underset{l \in R}{\operatorname{argmax}} \sum_{i=1}^{K} [\![k'_i = l]\!] \qquad (x'_i, k'_i) \in S$$
(3)

7/21

K-NN Properties

- Trivial implementation (\rightarrow good baseline method)
- 1-NN: error of classification ϵ_{NN} is usually strictly higher than the Bayesian one ϵ_B even when $N \to \infty$. But, higher bounds exist, e.g. $\epsilon_{NN} \leq 2\epsilon_B$
- Slow when implemented naively, but can be sped up (Voronoi, k-D trees)
- High computer memory requirements (but training set can be edited and its cardinality decreased)
- How to construct the metric d? (problem of scales in different axes)
- No generalization (Vapnik-Chervonenkis dimension $= \infty$, error on trainig set = 0)

K-NN : Speeding Up the Classification

- Sophisticated algorithms for NN search:
 - Classical problem in Comp. Geometry
 - k-D trees
- Removing the samples from the training class \mathcal{T} which do not change the result of classification
 - Exactly: using Voronoi diagram
 - Approximately: E.g. use Gabriel graph instead of Voronoi
 - Condensation algorithm: iterative, also approximate.

Condensation Algorithm

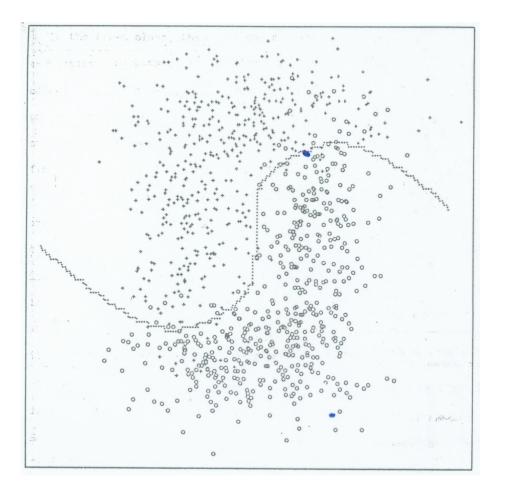
Input: The training set \mathcal{T} .

Algorithm

- 1. Create two lists, A and B. Insert a randomly selected sample from \mathcal{T} to A. Insert the rest of the training samples to B.
- 2. Classify samples from B using 1NN with training set A. If an $x \in B$ is mis-classified, move it from B to A.
- 3. If a move has been triggered in Step 2., goto Step 2.

Output: A (the condensed training set for 1NN classification)

Condensation Algorithm, Example



The training dataset

The dataset after the condensation. Shown with the new decision boundary.

1-NN Classification Error

Recall that a classification error $\bar{\epsilon}$ for strategy $q\colon X\to R$ is computed as

$$\bar{\epsilon} = \int \sum_{k:q(x)\neq k} p(x,k) dx = \int \underbrace{\sum_{k:q(x)\neq k} p(k|x) p(x) dx}_{\epsilon(x)} = \int \epsilon(x) p(x) dx.$$
(4)

We know that the Bayesian strategy q_B decides for the highest posterior probability $q(x) = \operatorname{argmax}_k p(k|x)$, thus the partial error $\epsilon_B(x)$ for a given x is

$$\epsilon_B(x) = 1 - \max_k p(k|x). \tag{5}$$

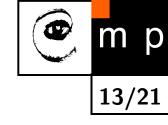
Assume the asymptotic case. We will show that the following bounds hold for the partial error $\epsilon_{NN}(x)$ and classification error $\overline{\epsilon}_{NN}$ in the 1-NN classification,

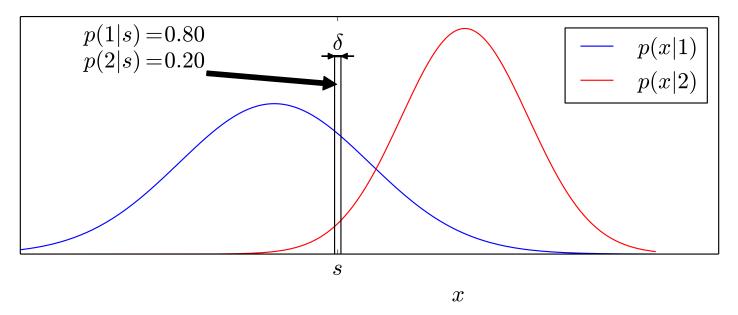
$$\epsilon_B(x) \le \epsilon_{NN}(x) \le 2\epsilon_B(x) - \frac{R}{R-1}\epsilon_B^2(x),$$

$$\bar{\epsilon}_B \le \bar{\epsilon}_{NN} \le 2\bar{\epsilon}_B - \frac{R}{R-1}\bar{\epsilon}_B^2,$$
(6)

where $\bar{\epsilon}_B$ is the Bayes classification error and R is the number of classes.

1-NN Classification Error, Example (1)





Consider two distributions as shown, a small interval δ on an x-axis, and a point $s \in \delta$. Let the class priors be p(1) = p(2) = 0.5. Assume $\delta \to 0$ and number of samples $N \to \infty$.

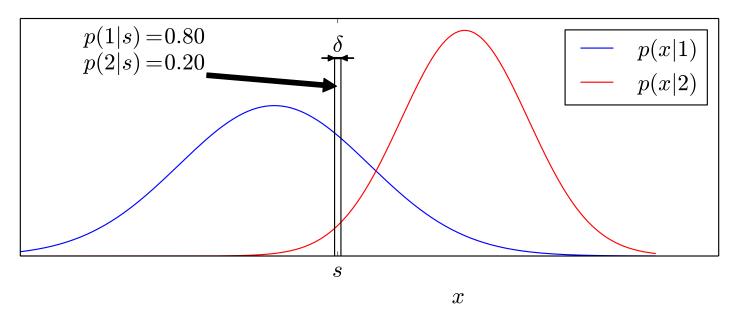
Observe the following:

$$p(1|s) = 0.8, \quad p(2|s) = 0.2,$$
(8)

$$p(NN = 1|s) = p(1|s) = 0.8, \quad p(NN = 2|s) = p(2|s) = 0.2,$$
 (9)

where p(NN = k|s) is the probability that the 1-NN of s is from class k (k = 1, 2) and thus s is classified as k.

1-NN Classification Error, Example (2)



The error $\epsilon_{NN}(s)$ at s is

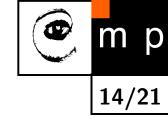
$$\epsilon_{NN}(s) = p(1|s)p(NN = 2|s) + p(2|s)p(NN = 1|s)$$

$$= 1 - p(1|s)p(NN = 1|s) - p(2|s)p(NN = 2|s)$$

$$= 1 - p^{2}(1|s) - p^{2}(2|s).$$
(10)
(11)
(12)

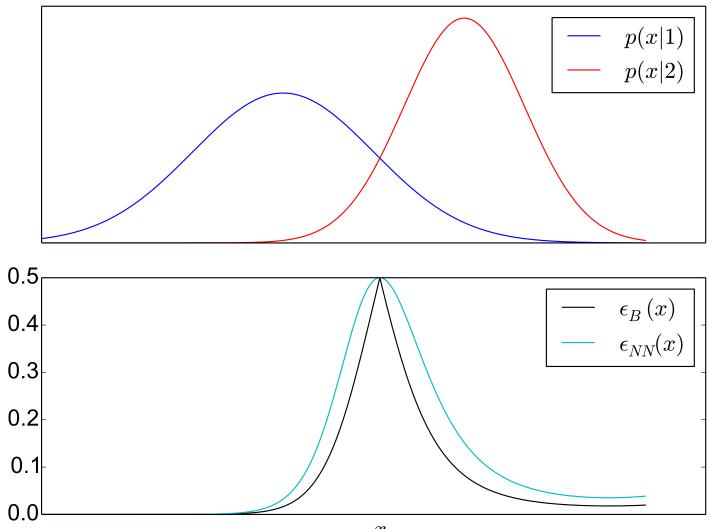
Generally, for R classes, the error will be

$$\epsilon_{NN}(s) = 1 - \sum_{k \in R} p^2(k|s).$$
 (13)



1-NN Classification Error, Example (3)

The two distributions and the partial errors (the Bayesian error $\epsilon_B(x)$ and the 1-NN error $\epsilon_{NN}(x)$)



1-NN Classification Error Bounds (1)

Let us now return to the inequalities and prove them:

$$\epsilon_B(x) \le \epsilon_{NN}(x) \le 2\epsilon_B(x) - \frac{R}{R-1}\epsilon_B^2(x), \qquad (14)$$

The **first** inequality follows from the fact that Bayes strategies are optimal.

To prove the **second** inequality, let P(x) denote the maximum posterior for x:

$$P(x) = \max_{k} p(k|x) \tag{15}$$

16/21

$$\Rightarrow \quad \epsilon_B(x) = 1 - P(x) \,. \tag{16}$$

Let us rewrite the partial error $\epsilon_{NN}(x)$ using the Bayesian entities P(x) and q(x):

$$\epsilon_{NN}(x) = 1 - \sum_{k \in R} p^2(k|x) = 1 - P^2(x) - \sum_{k \neq q(x)} p^2(k|x).$$
(17)

We know that p(q(x)|x) = P(x), but the remaining posteriors can be arbitrary. Let us consider the worst case. i.e. set p(k|x) for $k \neq q(x)$ such that Eq. (17) is maximized. This will provide the higher bound.

1-NN Classification Error Bounds (2)

There are the following constraints on p(k|x) $(k \neq q(x))$:

$$\sum_{k \neq q(x)} p(k|x) + P(x) = 1 \quad \text{(posteriors sum to 1)} \tag{18}$$

$$\sum_{k \neq q(x)} p^2(k|x) \rightarrow \min \tag{19}$$

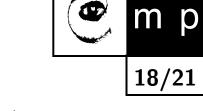
It is easy to show that this opimization problem is solved by setting all the posteriors to the same number. Thus,

$$p(k|x) = \frac{1 - P(x)}{R - 1} = \frac{\epsilon_B(x)}{R - 1} \qquad (k \neq q(x))$$
(20)

The higher bound can then be rewritten in terms of the Bayes partial error $\epsilon_B(x) = 1 - P(x)$:

$$\epsilon_{NN}(x) \le 1 - P^2(x) - \sum_{k \ne q(x)} p^2(k|x) = 1 - (1 - \epsilon_B(x))^2 - (R - 1) \frac{\epsilon_B^2(x)}{(R - 1)^2}.$$
 (21)

1-NN Classification Error Bounds (3)



$$\epsilon_{NN}(x) \le 1 - P^2(x) - \sum_{k \ne q(x)} p^2(k|x) = 1 - (1 - \epsilon_B(x))^2 - \frac{\epsilon_B^2(x)}{R - 1}.$$
 (22)

After expanding this, we get

$$\epsilon_{NN}(x) \le 1 - (1 - \epsilon_B(x))^2 - \frac{\epsilon_B^2(x)}{(R-1)}$$

$$= 1 - 1 + 2\epsilon_B(x) - \epsilon_B^2(x) - \epsilon_B^2(x) \frac{R}{R-1}$$

$$= 2\epsilon_B(x) - \epsilon_B^2(x) \frac{R}{R-1}$$
(23)
(24)
(25)

Note that for R = 2, the bound is tight because using $\epsilon_B(x) = 1 - P(x)$ in Eq. (22) gives

$$\epsilon_{NN}(x) \le 1 - P^2(x) - \frac{(1 - P(x))^2}{1} = \epsilon_{NN}(x).$$
 (26)

1-NN Classification Error Bounds (4)

The inequality for the local errors has been proven:

$$\epsilon_{NN}(x) \le 2\epsilon_B(x) - \epsilon_B^2(x) \frac{R}{R-1}$$
(27)

19/21

Is there a similar higher bound for the classification error $\bar{\epsilon}_{NN} = \int \epsilon_{NN}(x)p(x)dx$, based on the Bayes error $\bar{\epsilon}_B = \int \epsilon_B(x)p(x)dx$?

Multiplying Eq. (28) by p(x), and integrating, gives

$$\overline{\epsilon}_{NN} \le 2\overline{\epsilon}_B(x) - \frac{R}{R-1} \int \epsilon_B^2(x) p(x) \mathrm{d}x$$
(28)

Let us use the known identity (where $E(\cdot)$ is the expectation operator)

$$var(x) = E(x^2) - E^2(x)$$
 (29) (29)

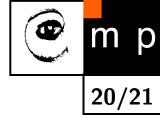
Thus, $\int \epsilon_B^2(x) p(x) dx \ge \left(\int \epsilon_B(x) p(x) dx\right)^2$, and

$$\bar{\epsilon}_{NN} \le 2\bar{\epsilon}_B(x) - \frac{R}{R-1} \int \epsilon_B^2(x) p(x) \mathrm{d}x \le \frac{2\bar{\epsilon}_B(x) - \frac{R}{R-1}\bar{\epsilon}_B^2}{R-1} \,. \tag{30}$$

K-NN Classification Error Bound

It can be shown that for K-NN, the following inequality holds:

 $\bar{\epsilon}_{KNN} \leq \bar{\epsilon}_B + \bar{\epsilon}_{1NN} / \sqrt{K \operatorname{const}}$



(31)

Edit algorithm

The primary goal of this method is to reduce the classification error (not the speed-up of classification.)

Input: The training set \mathcal{T} .

Algorithm

- 1. Partition \mathcal{T} to two sets, A and B ($\mathcal{T} = A \cup B, A \cap B = \emptyset$.)
- 2. Classify samples in B using KNN with training set A. Remove all samples from B which have been mis-classified.

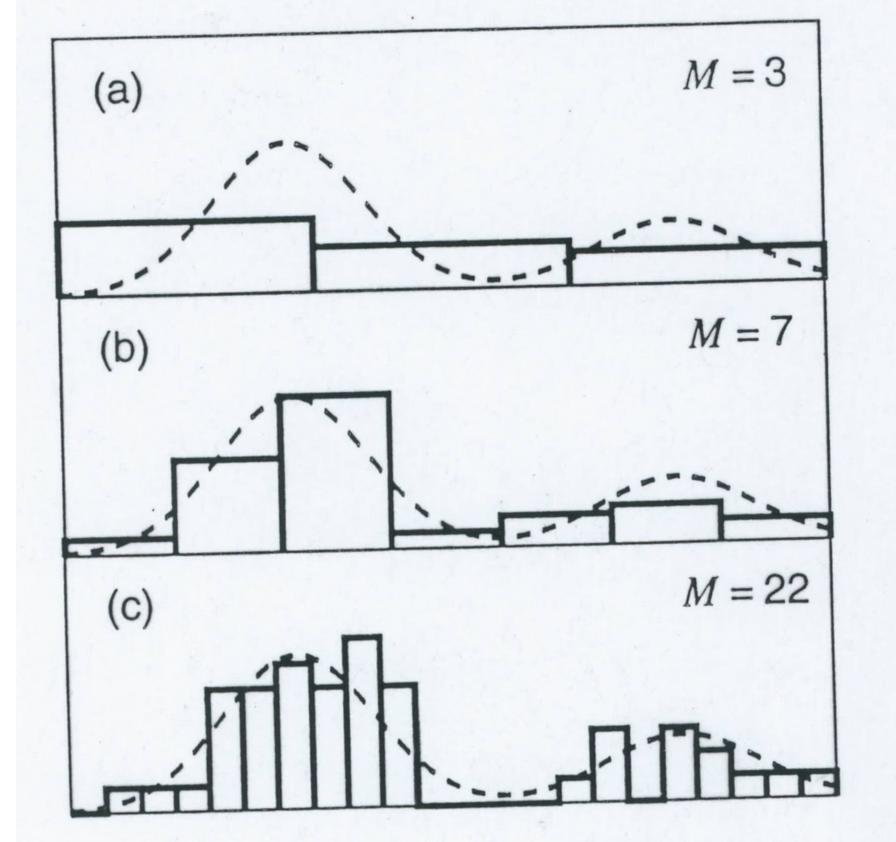
Output: B the training set for **1**NN classification.

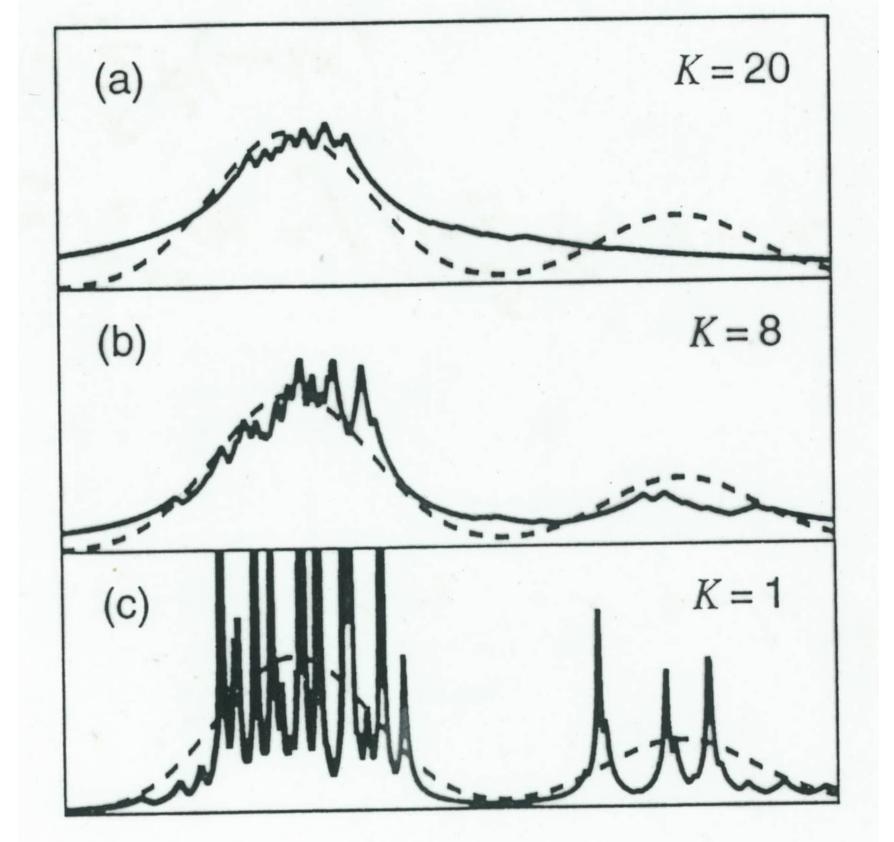
Asymptotic property:

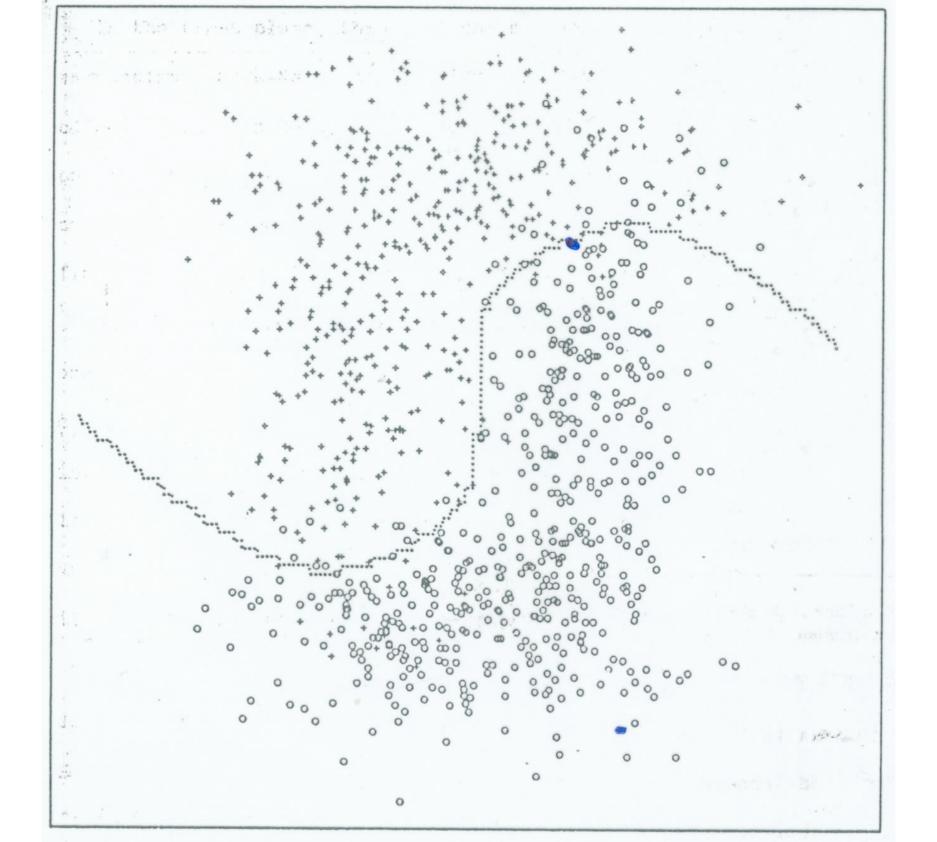
$$\bar{\epsilon}_{edit} = \bar{\epsilon}_B \frac{1 - \bar{\epsilon}_B}{1 - \bar{\epsilon}_{KNN}} \tag{32}$$

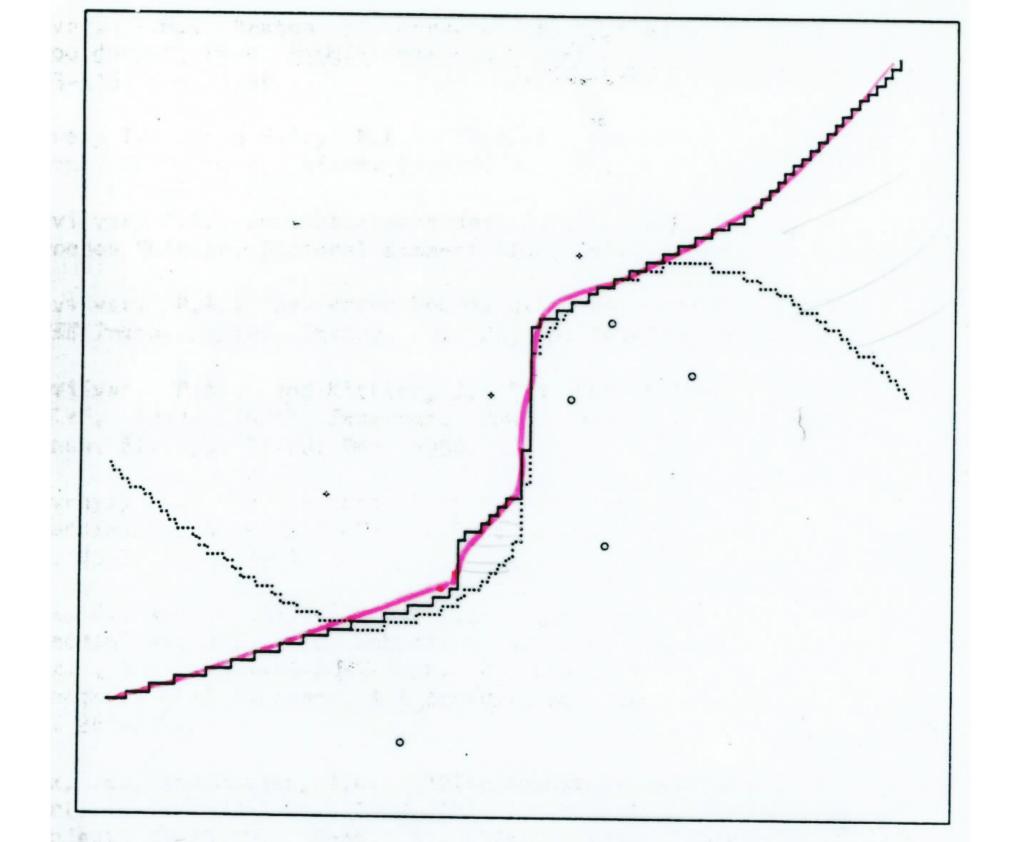
21/21

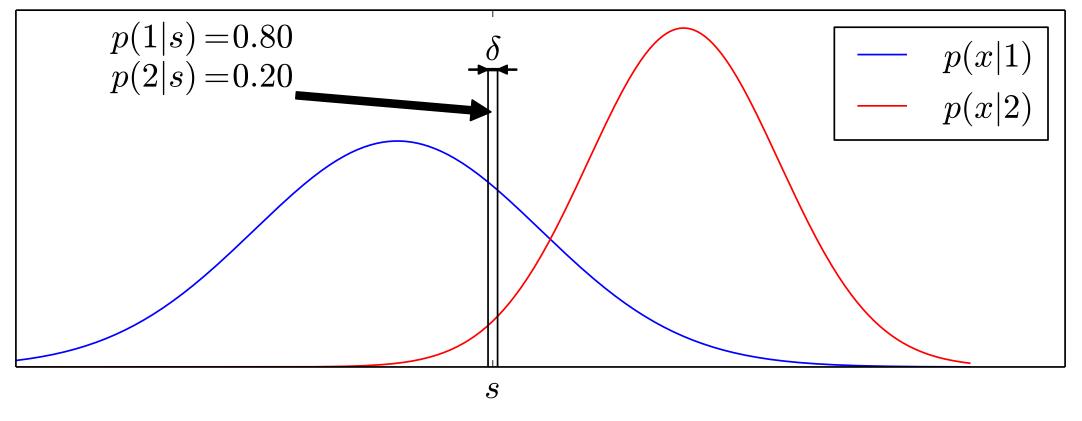
If $\bar{\epsilon}_{KNN}$ is small (e.g. 0.05) then the edited 1NN is quasi-Bayes (almost the same performance as Bayesian Classification.)



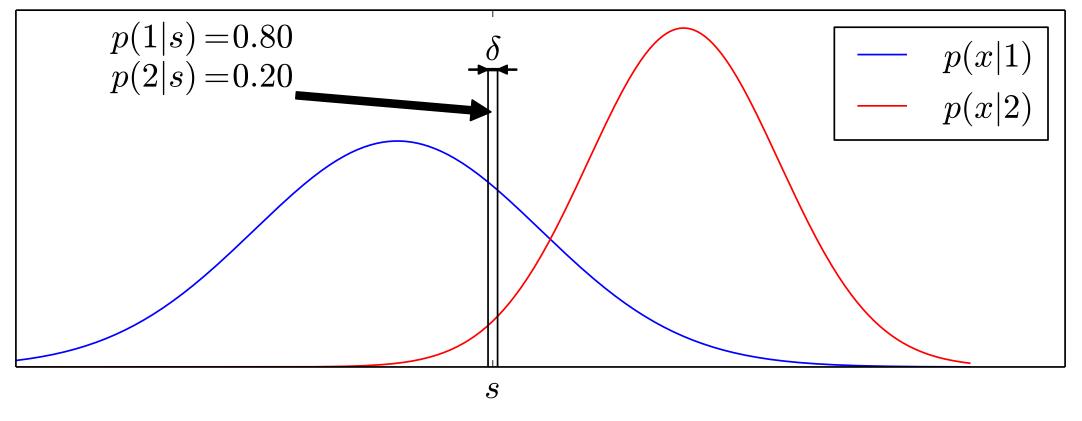








x



x

