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Probability Estimation

Recall that in the previous lecture, parametric methods for density estimation have been
dealt with. The advantage of these methods is that thre is a low number of parameters to
estimate. The disadvantage is that the resulting estimated density can be arbitrarily wrong if
the underlying distribution does not agree with the assumed parametric model.
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Non-Parametric Density Estimation

� histogram

� Parzen estimation

� Nearest Neighbor approach
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Histogram

Example, N : number of bins
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K-Nearest Neighbor Approach to Density Estimation

Find K neighbors, density estimate is p ∼ 1/V where V is the volume of minimum cell in
which K neighbors are located.

Example:
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K-Nearest Neighbor Approach to Classification

Outline:

� Definition

� Properties

� Asymptotic error of NN classifier

� Error reduction by edit operation on the training class

� Fast NN search
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K-NN Definition

Assumption:

� Training set T = {(x1, k1), (x2, k2), ..., (xN , kN)}. There are R classes (letter K is
reserved for KNN in this lecture)

� A distance function d : X ×X 7→ R+
0

Algorithm:

1. Given x, find K points S = {(x′1, k′1), (x′2, k′2), ..., (x′K, k′K)} from the training set T
which are closest to x in the metric d:

S ={(x′1, k′1), (x′2, k′2), ..., (x′K, k′K)} ≡ {(xr1, kr1), (xr2, kr2), ..., (xrK
, krK

)} (1)
ri : the rank of (xi, ki) ∈ T as given by the ordering d(x, xi) (2)

2. Classify x to the class k which has majority in S:

k = argmax
l∈R

K∑
i=1

Jk′i = lK (x′i, k
′
i) ∈ S (3)

http://cmp.felk.cvut.cz
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K-NN Properties

� Trivial implementation (→ good baseline method)

� 1-NN: error of classification εNN is usually strictly higher than the Bayesian one εB
even when N →∞. But, higher bounds exist, e.g. εNN ≤ 2εB

� Slow when implemented naively, but can be sped up (Voronoi, k-D trees)

� High computer memory requirements (but training set can be edited and its cardinality
decreased)

� How to construct the metric d? (problem of scales in different axes)

� No generalization (Vapnik-Chervonenkis dimension = ∞, error on trainig set = 0)

http://cmp.felk.cvut.cz


9/21
K-NN : Speeding Up the Classification

� Sophisticated algorithms for NN search:

• Classical problem in Comp. Geometry

• k-D trees

� Removing the samples from the training class T which do not change the result of
classification

• Exactly: using Voronoi diagram

• Approximately: E.g. use Gabriel graph instead of Voronoi

• Condensation algorithm: iterative, also approximate.
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Condensation Algorithm

Input: The training set T .

Algorithm

1. Create two lists, A and B. Insert a randomly selected sample from T to A. Insert the
rest of the training samples to B.

2. Classify samples from B using 1NN with training set A. If an x ∈ B is mis-classified,
move it from B to A.

3. If a move has been triggered in Step 2., goto Step 2.

Output: A (the condensed training set for 1NN classification)

http://cmp.felk.cvut.cz
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Condensation Algorithm, Example

The training dataset The dataset after the condensation.
Shown with the new decision boundary.

http://cmp.felk.cvut.cz


12/21
1-NN Classification Error

Recall that a classification error ε̄ for strategy q : X → R is computed as

ε̂ =

∫ ∑
k:q(x) 6=k

p(x, k)dx =

∫ ∑
k:q(x) 6=k

p(k|x)︸ ︷︷ ︸
ε(x)

p(x)dx =

∫
ε(x)p(x)dx . (4)

We know that the Bayesian strategy qB decides for the highest posterior probability
q(x) = argmaxk p(k|x), thus the partial error εB(x) for a given x is

εB(x) = 1−max
k

p(k|x) . (5)

Assume the asymptotic case. We will show that the following bounds hold for the partial
error εNN(x) and classification error ε̄NN in the 1-NN classification,

εB(x) ≤ εNN(x) ≤ 2εB(x)− R
R−1ε

2
B(x) , (6)

ε̄B ≤ ε̄NN ≤ 2ε̄B − R
R−1ε̄

2
B , (7)

where ε̂B is the Bayes classification error and R is the number of classes.
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1-NN Classification Error, Example (1)

s
             x

δp(1|s) =0.80
p(2|s) =0.20

p(x|1)

p(x|2)

Consider two distributions as shown, a small interval δ on an x-axis, and a point s ∈ δ.
Assume that δ → 0 and number of samples N →∞.

Observe the following:

p(1|s) = 0.8 , p(2|s) = 0.2 , (8)
p(NN = 1|s) = p(1|s) = 0.8 , p(NN = 2|s) = p(2|s) = 0.2 , (9)

where p(NN = k|s) is the probability that the 1-NN of s is from class k (k = 1, 2) and thus
s is classified as k.
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1-NN Classification Error, Example (2)

s
             x

δp(1|s) =0.80
p(2|s) =0.20

p(x|1)

p(x|2)

The error εNN(s) at s is

εNN(s) = p(1|s)p(NN = 2|s) + p(2|s)p(NN = 1|s) (10)
= 1− p(1|s)p(NN = 1|s)− p(2|s)p(NN = 2|s) (11)

= 1− p2(1|s)− p2(2|s) . (12)

Generally, for R classes, the error will be

εNN(s) = 1−
∑
k∈R

p2(k|s) . (13)
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1-NN Classification Error, Example (3)

The two distributions and the partial errors
(the Bayesian error εB(x) and the 1-NN error εNN(x))

p(x|1)

p(x|2)

x
0.0

0.1

0.2

0.3

0.4

0.5
εB (x)

εNN(x)
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1-NN Classification Error Bounds (1)

Let us now return to the inequalities and prove them:

εB(x) ≤ εNN(x) ≤ 2εB(x)− K
K−1ε

2
B(x) , (14)

The first inequality follows from the fact that Bayes strategies are optimal.

To prove the second inequality, let P (x) denote the maximum posterior for x:

P (x) = max
k

p(k|x) (15)

⇒ εB(x) = 1− P (x) . (16)

Let us rewrite the partial error εNN(x) using the Bayesian entities P (x) and q(x):

εNN(x) = 1−
∑
k∈R

p2(k|x) = 1− P 2(x)−
∑

k 6=q(x)

p2(k|x) . (17)

We know that p(q(x)|x) = P (x), but the remaining posteriors can be arbitrary. Let us
consider the worst case. i.e. set p(k|x) for k 6= q(x) such that Eq. (17) is maximized. This
will provide the higher bound.

http://cmp.felk.cvut.cz
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1-NN Classification Error Bounds (2)

There are the following constraints on p(k|x) (k 6= q(x)):∑
k 6=q(x)

p(k|x) + P (x) = 1 (posteriors sum to 1) (18)

∑
k 6=q(x)

p2(k|x)→ min (19)

It is easy to show that this opimization problem is solved by setting all the posteriors to the
same number. Thus,

p(k|x) =
1− P (x)

R− 1
=
εB(x)

R− 1
(k 6= q(x)) (20)

The higher bound can then be rewritten in terms of the Bayes partial error
εB(x) = 1− P (x):

εNN(x) ≤ 1− P 2(x)−
∑

k 6=q(x)

p2(k|x) = 1− (1− εB(x))2 − (R− 1)
ε2B(x)

(R− 1)2
. (21)
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1-NN Classification Error Bounds (3)

εNN(x) ≤ 1− P 2(x)−
∑

k 6=q(x)

p2(k|x) = 1− (1− εB(x))2 − ε2B(x)

R− 1
. (22)

After expanding this, we get

εNN(x) ≤ 1− (1− εB(x))2 − ε2B(x)

(R− 1)
(23)

= 1− 1 + 2εB(x)− ε2B(x)− ε2B(x)
R

R− 1
(24)

= 2εB(x)− ε2B(x) K
K−1 (25)

Note that for R = 2, the bound is tight because using εB(x) = 1− P (x) in Eq. (22) gives

εNN(x) ≤ 1− P 2(x)− (1− P (x))2

1
= εNN(x) . (26)

http://cmp.felk.cvut.cz
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1-NN Classification Error Bounds (4)

The inequality for the local errors has been proven:

εNN(x) ≤ 2εB(x)− ε2B(x) K
K−1 (27)

Is there a similar higher bound for the classification error ε̄NN =
∫
εNN(x)p(x)dx, based on

the Bayes error ε̄B =
∫
εB(x)p(x)dx?

Multiplying Eq. (28) by p(x), and integrating, gives

ε̄NN ≤ 2ε̄B(x)− K

K − 1

∫
ε2B(x)p(x)dx (28)

Let us use the known identity (where E (·) is the expectation operator)

var(x) = E
(
x2
)
− E2 (x) (≥ 0) (29)

Thus,
∫
ε2B(x)p(x)dx ≥

(∫
εB(x)p(x)dx

)2, and
ε̄NN ≤ 2ε̄B(x)− K

K − 1

∫
ε2B(x)p(x)dx ≤ 2ε̄B(x)− K

K − 1
ε̄2B . (30)
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K-NN Classification Error Bound

It can be shown that for K-NN, the following inequality holds:

ε̄KNN ≤ ε̄B + ε̄1NN/
√
K const (31)

http://cmp.felk.cvut.cz
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Edit algorithm

The primary goal of this method is to reduce the classification error (not the speed-up of
classification.)

Input: The training set T .

Algorithm

1. Partition T to two sets, A and B (T = A ∪B, A ∩B = ∅.)

2. Classify samples in B using KNN with training set A. Remove all samples from B
which have been mis-classified.

Output: B the training set for 1NN classification.

Asymptotic property:
ε̄edit = ε̄B

1− ε̄B
1− ε̄KNN

(32)

If ε̄KNN is small (e.g. 0.05) then the edited 1NN is quasi-Bayes (almost the same
performance as Bayesian Classification.)

http://cmp.felk.cvut.cz
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