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Lecture Outline

1. Limitations of Bayesian Decision Theory

2. Neyman Pearson Task

3. Minimax Task

4. Wald Task

5. Linnik Task
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Bayesian Decision Theory

Recall:

X set of observations

K set of hidden states

D set of decisions

pXK : X ×K → R: joint probability

W : K ×D → R: loss function,

q : X → D strategy

R(q) : risk:
R(q) =

∑
x∈X

∑
k∈K

pXK(x, k) W (k, q(x)) (1)

Bayesian strategy q∗:
q∗ = argmin

q∈X→D
R(q) (2)
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Limitations of the Bayesian Decision Theory

The limitations follow from the very ingredients of the Bayesian Decision Theory — the
necessity to know all the probabilities and the loss function.

� The loss function W must make sense, but in many tasks it wouldn’t
• medical diagnosis task (W : price of medicines, staff labor, etc. but what penalty in

case of patient’s death?) Uncomparable penalties on different axes of X.
• nuclear plant
• judicial error

� The prior probabilities pK(k): must exist and be known. But in some cases it does not
make sense to talk about probabilities because the events are not random.
• K = {1, 2} ≡ {own army plane, enemy plane};
p(x|1), p(x|2) do exist and can be estimated, but p(1) and p(2) don’t.

� The conditionals may be subject to non-random intervention; p(x | k, z) where
z ∈ Z = {1, 2, 3} are different interventions.
• a system for handwriting recognition: The training set has been prepared by 3

different persons. But the test set has been constructed by one of the 3 persons
only. This cannot be done:

(!) p(x | k) =
∑

z

p(z)p(x | k, z) (3)
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Neyman Pearson Task

� K = {D, N} (dangerous state, normal state)
� X set of observations
� Conditionals p(x |D), p(x |N) are given
� The priors p(D) and p(N) are unknown or do not exist
� q : X → K strategy

The Neyman Person Task looks for the optimal strategy q∗ for which
i) the error of classification of the dangerous state is lower than a predefined threshold ε̄D

(0 < ε̄D < 1), while
ii) the classification error for the normal state is as low as possible.

This is formulated as an optimization task with an inequality constraint:

q∗ = argmin
q:X→K

∑
x:q(x) 6=N

p(x |N) (4)

subject to:
∑

x:q(x) 6=D

p(x |D) ≤ ε̄D . (5)
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Neyman Pearson Task

(copied from the previous slide:)

q∗ = argmin
q:X→K

∑
x:q(x) 6=N

p(x |N) (4)

subject to:
∑

x:q(x) 6=D

p(x |D) ≤ ε̄D . (5)

A strategy is characterized by the classification error values εN and εD:

εN =
∑

x:q(x) 6=N

p(x |N) (false alarm) (6)

εD =
∑

x:q(x) 6=D

p(x |D) (overlooked danger) (7)
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Example: Male/Female Recognition (Neyman Pearson) (1)

An aging student at CTU wants to marry. He can’t afford to miss recognizing a girl when he
meets her, therefore he sets the threshold on female classification error to ε̄D = 0.2. At the
same time, he wants to minize mis-classifying boys for girls.

� K = {D,N} ≡ {F,M} (female, male)
� measurements X = {short, normal, tall} × {ultralight, light, avg, heavy}
� Prior probabilities do not exist.
� Conditionals are given as follows:

p(x|F)
short .197 .145 .094 .017

normal .077 .299 .145 .017
tall .001 .008 .000 .000

u-
lig
ht

lig
ht

av
g

he
av
y

p(x|M)
short .011 .005 .011 .011

normal .005 .071 .408 .038
tall .002 .014 .255 .169

u-
lig
ht

lig
ht

av
g

he
av
y

(8)
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Neyman Pearson : Solution

The optimal strategy q∗ for a given x ∈ X depends on the likelihood ratio p(x |N)
p(x |D). Let there

be a constant µ ≥ 0. The optimal strategy q∗ given µ is constructed as follows:

p(x |N)

p(x |D)
> µ ⇒ q(x) = N , (9)

p(x |N)

p(x |D)
< µ ⇒ q(x) = D . (10)

The selection of µ is implied by the optimization task (therefore by ε̄D and the requirement
that classification error for normal state is minimized).

Let us show this on an example.
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Example: Male/Female Recognition (Neyman Pearson) (2)

p(x|F)
short .197 .145 .094 .017

normal .077 .299 .145 .017
tall .001 .008 .000 .000

u-
lig
ht

lig
ht

av
g

he
av
y

p(x|M)
short .011 .005 .011 .011

normal .005 .071 .408 .038
tall .002 .014 .255 .169

u-
lig
ht

lig
ht

av
g

he
av
y

r(x) = p(x|M)/p(x|F)
short 0.056 0.034 0.117 0.647

normal 0.065 0.237 2.814 2.235
tall 2.000 1.750 ∞ ∞

u-
lig
ht

lig
ht

av
g

he
av
y

rank order of p(x|M)/p(x|F)
short 2 1 4 6

normal 3 5 10 9
tall 8 7 11 12

u-
lig
ht

lig
ht

av
g

he
av
y

Note that the likelihood ratio implies 10 different possible settings for threshold µ (not
counting µ = 0 and µ =∞.) Let us have a look at these and compute the corresponding
errors of classification.

First, let us take 2.814 < µ <∞, e.g. µ = 3. This produces a strategy q∗(x) = F
everywhere except where p(x|F) = 0. Obviously, classification error εF for F is εF = 0, and
εM = 1− .255− .169 = .576.
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Example: Male/Female Recognition (Neyman Pearson) (3)

p(x|F)
short .197 .145 .094 .017

normal .077 .299 .145 .017
tall .001 .008 .000 .000

u-
lig
ht

lig
ht

av
g

he
av
y

p(x|M)
short .011 .005 .011 .011

normal .005 .071 .408 .038
tall .002 .014 .255 .169

u-
lig
ht

lig
ht

av
g

he
av
y

r(x) = p(x|M)/p(x|F)
short 0.056 0.034 0.117 0.647

normal 0.065 0.237 2.814 2.235
tall 2.000 1.750 ∞ ∞

u-
lig
ht

lig
ht

av
g

he
av
y

rank, and q∗(x) = {F,M} for µ = 2.5
short 2 1 4 6

normal 3 5 10 9
tall 8 7 11 12

u-
lig
ht

lig
ht

av
g

he
av
y

Denote the likelihood ratios by their rank, and take µ which satisfies

r9 < µ < r10 (11)

Here, εF = .145, and εM = 1− .255− .169− .408 = .168.
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Example: Male/Female Recognition (Neyman Pearson) (4)

p(x|F)
short .197 .145 .094 .017

normal .077 .299 .145 .017
tall .001 .008 .000 .000

u-
lig
ht

lig
ht

av
g

he
av
y

p(x|M)
short .011 .005 .011 .011

normal .005 .071 .408 .038
tall .002 .014 .255 .169

u-
lig
ht

lig
ht

av
g

he
av
y

r(x) = p(x|M)/p(x|F)
short 0.056 0.034 0.117 0.647

normal 0.065 0.237 2.814 2.235
tall 2.000 1.750 ∞ ∞

u-
lig
ht

lig
ht

av
g

he
av
y

rank, and q∗(x) = {F,M} for µ = 2.1
short 2 1 4 6

normal 3 5 10 9
tall 8 7 11 12

u-
lig
ht

lig
ht

av
g

he
av
y

Do the same for µ satisfying

r8 < µ < r9 . (12)

⇒ εF = .162, and εM = 0.13.
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Example: Male/Female Recognition (Neyman Pearson) (5)

Classification errors for F and M, for µi =
ri+ri+1

2 and µ0 = 0.

0 1 2 3 4 5 6 7 8 9 10
i

0.0

0.2

0.4

0.6

0.8

1.0

cl
as

si
fic

at
io

n 
er

ro
r

εD =0.2

εF
εM

The optimum is reached for r5 < µ < r6; εF = .188, εM = .103
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Neyman Pearson Solution : Illustration of Principle

Lagrangian of the Neyman Pearson Task is

L(q) =
∑

x: q(x)=D

p(x |N)︸ ︷︷ ︸+µ

 ∑
x: q(x)=N

p(x |D)− ε̄D

 (13)

=

=︷ ︸︸ ︷
1−

∑
x:q(x)=N

p(x |N) +µ

 ∑
x: q(x)=N

p(x |D)

− µε̄D (14)

=1− µε̄D +
∑

x: q(x)=N

{µ p(x |D)− p(x |N)}︸ ︷︷ ︸
T (x)

(15)

If T (x) is negative for an x then it will decrease the objective function and the optimal
strategy q∗ will decide q∗(x) = N. This illustrates why the solution to the Neyman Pearson
Task has the form

p(x |N)

p(x |D)
> µ ⇒ q(x) = N , (9)

p(x |N)

p(x |D)
< µ ⇒ q(x) = D . (10)
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Neyman Pearson : Derivation (1)

q∗ = min
q:X→K

∑
x:q(x) 6=N

p(x |N) subject to:
∑

x:q(x) 6=D

p(x |D) ≤ ε̄D . (16)

Let us rewrite this as

q∗ = min
q:X→K

∑
x∈X

α(x)p(x |N) subject to:
∑
x∈X

[1− α(x)]p(x |D) ≤ ε̄D . (17)

and: α(x) ∈ {0, 1} ∀x ∈ X (18)

This is a combinatorial optimization problem. If the relaxation is done from α(x) ∈ {0, 1} to
0 ≤ α(x) ≤ 1, this can be solved by linear programming (LP). The Lagrangian of this
problem with inequality constraints is:

L(α(x1), α(x2), ..., α(xN)) =
∑
x∈X

α(x)p(x |N) + µ

(∑
x∈X

[1− α(x)]p(x |D)− ε̄D

)
(19)

−
∑
x∈X

µ0(x)α(x) +
∑
x∈X

µ1(x)(α(x)− 1) (20)
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Neyman Pearson : Derivation (2)

L(α(x1), α(x2), ..., α(xN)) =
∑
x∈X

α(x)p(x |N) + µ

(∑
x∈X

[1− α(x)]p(x |D)− ε̄D

)
(19)

−
∑
x∈X

µ0(x)α(x) +
∑
x∈X

µ1(x)(α(x)− 1) (20)

The conditions for optimality are (∀x ∈ X):

∂L

∂α(x)
= p(x |N)− µp(x |D)− µ0(x) + µ1(x) = 0, (21)

µ ≥ 0, µ0(x) ≥ 0, µ1(x) ≥ 0, 0 ≤ α(x) ≤ 1, (22)

µ0(x)α(x) = 0, µ1(x)(α(x)− 1) = 0, µ

(∑
x∈X

[1− α(x)]p(x |D)− ε̄D

)
= 0. (23)

Case-by-case analysis:
case implications
µ = 0 L minimized by α(x) = 0 ∀x
µ 6= 0, α(x) = 0 µ1(x) = 0⇒ µ0(x) = p(x |N)− µp(x |D)⇒ p(x |N)/p(x |D) ≤ µ
µ 6= 0, α(x) = 1 µ0(x) = 0⇒ µ1(x) = −[p(x |N)− µp(x |D)]⇒ p(x |N)/p(x |D) ≥ µ
µ 6= 0,
0 < α(x) < 1

µ0(x) = µ1(x) = 0⇒ p(x |N)/p(x |D) = µ
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Neyman Pearson : Derivation (3)

Case-by-case analysis:
case implications
µ = 0 L minimized by α(x) = 0 ∀x
µ 6= 0, α(x) = 0 µ1(x) = 0⇒ µ0(x) = p(x |N)− µp(x |D)⇒ p(x |N)/p(x |D) ≤ µ
µ 6= 0, α(x) = 1 µ0(x) = 0⇒ µ1(x) = −[p(x |N)− µp(x |D)]⇒ p(x |N)/p(x |D) ≥ µ
µ 6= 0,
0 < α(x) < 1

µ0(x) = µ1(x) = 0⇒ p(x |N)/p(x |D) = µ

Optimal Strategy for a given µ ≥ 0 and particular x ∈ X:

p(x |N)

p(x |D)


< µ ⇒ q(x) = D (as α(x) = 0)
> µ ⇒ q(x) = N (as α(x) = 1)
= µ ⇒ LP relaxation does not give the desired solution, as α /∈ {0, 1}

(24)

http://cmp.felk.cvut.cz
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Neyman Pearson : Note on Randomized Strategies (1)

Consider:

p(x|D)
x1 x2 x3
0.9 0.09 0.01

p(x|N)
x1 x2 x3
0.09 0.9 0.01

r(x) = p(x|N)/p(x|D)
x1 x2 x3
0.1 10 1

and ε̄D =0.03.
� q1 : (x1, x2, x3)→ (D,D,D) ⇒ εD = 0.00, εN = 1.00

� q2 : (x1, x2, x3)→ (D,D,N) ⇒ εD = 0.01, εN = 0.99

� no other deterministic strategy q is feasible, that is all other ones have εD > ε̄D

� q2 is the best deterministic strategy but it does not comply with the previous basic
result of constructing the optimal strategy because it decides for N for likelihood ratio 1
but decides for D for likelihood ratios 0.01 and 10.

� but we can constract a randomized strategy which attains ε̄D and reaches lower εN:

q(x1) = q(x3) = D, q(x2) =

{
N 1/3 of the time
D 2/3 of the time

(25)

For such strategy, εD = 0.03 , εN = 0.7.
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Neyman Pearson : Note on Randomized Strategies (2)

� This is not a problem but a feature which is caused by discrete nature of X (does not
happen when X is continuous).

� This is exactly what the case of µ = p(x |N)/p(x |D) is on slide 15.
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Neyman-Pearson : Notes

� The task can be generalized to 3 hidden states, of which 2 are dangerous,
K = {N,D1,D2}. It is formulated as an analogous problem with two inequality
constraints and minimization of classification error for N.

� Neyman’s and Pearson’s work dates to 1928 and 1933.
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Minimax Task

� K = {1, 2, .., N}
� X set of observations
� Conditionals p(x | k) are known ∀k ∈ K
� The priors p(k) are unknown or do not exist
� q : X → K strategy

The Minimax Task looks for the optimum strategy q∗ which minimizes the classification
error of the worst classified class:

q∗ = argmin
q:X→K

max
k∈K

ε(k), where (26)

ε(k) =
∑

x: q(x) 6=k

p(x | k) (27)

� Example: A recognition algorithm qualifies for a competition using preliminary tests.
During the final competition, only objects from the hardest-to-classify class are used.

� For a 2-class problem, the strategy is again constructed using the likelihood ratio.
� In the case of continuous observations space X, equality of classification errors is
attained: ε1 = ε2

� The derivation can again be done using Linear Programming.
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21/28
Example: Male/Female Recognition (Minimax)

Classification errors for F and M, for µi =
ri+ri+1

2 and µ0 = 0.

0 1 2 3 4 5 6 7 8 9 10
i

0.0

0.2

0.4

0.6

0.8

1.0

cl
as

si
fic

at
io

n 
er

ro
r

max(εF ,εM )
εF

εM

The optimum is attained for i = 8, εF = .162, εM = .13. The corresponding strategy is as
shown on slide 11.
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Minimax: Comparison with Bayesian Decision with
Unknown Priors

� Consider the same setting as in the Minimax task, but let the priors p(k) exist but be
unknown.

� The Bayesian error ε for strategy q is

ε =
∑

k

∑
x: q(x) 6=k

p(x, k) =
∑

k

p(k)
∑

x: q(x) 6=k

p(x | k)︸ ︷︷ ︸
ε(k)

(28)

� We want to minimize ε but we do not know p(k)’s. What is the maximum it can
attain? Obviously, the p(k)’s do the convex combination of the class errors ε(k); the
maximum Bayesian error will be attained when p(k) = 1 for the class k with the highest
class error ε(k).

� Thus, to minimize the Bayesian error ε under this setting, the solution is to minimize
the error of the hardest-to-classify class.

� Therefore, Minimax formulation and the Bayesian formulation with Unknown Priors
lead to the same solution.
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Wald Task (1)

� Let us consider classification with two states, K = {1, 2}.

� We want to set a threshold ε on the classification error of both of the classes: ε1 ≤ ε,
ε2 ≤ ε.

� As the previous analysis shows (Neyman Pearson, Minimax), there may be no feasible
solution if ε is set too low.

� That is why the possibility of decision “do not know” is introduced. Thus D = K ∪ {?}

� A strategy q : X → D is characterized by:

ε1 =
∑

x: q(x)=2

p(x | 1) (classification error for 1) (29)

ε2 =
∑

x: q(x)=1

p(x | 2) (classification error for 2) (30)

κ1 =
∑

x: q(x)=?

p(x | 1) (undecided rate for 1) (31)

κ2 =
∑

x: q(x)=?

p(x | 2) (undecided rate for 2) (32)
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Wald Task (2)

� The optimal strategy q∗:

q∗ = argmin
q:X→D

max
i={1,2}

κi (33)

subject to: ε1 ≤ ε, ε2 ≤ ε (34)

� The task is again solvable using LP (even for more than 2 classes)

� The optimal solution is again based on the likelihood ratio

r(x) =
p(x | 1)

p(x | 2)
(35)

� The optimal strategy is constructed using suitably chosen thresholds µl and µh such
that:

q(x) =


2 for r(x) < µl

1 for r(x) > µh

? for µl ≤ r(x) ≤ µh

(36)
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Example: Male/Female Recognition (Wald)

Solve the Wald task for ε = 0.05.

p(x|F)
short .197 .145 .094 .017

normal .077 .299 .145 .017
tall .001 .008 .000 .000

u-
lig
ht

lig
ht

av
g

he
av
y

p(x|M)
short .011 .005 .011 .011

normal .005 .071 .408 .038
tall .002 .014 .255 .169

u-
lig
ht

lig
ht

av
g

he
av
y

r(x) = p(x|M)/p(x|F)
short 0.056 0.034 0.117 0.647

normal 0.065 0.237 2.814 2.235
tall 2.000 1.750 ∞ ∞

u-
lig
ht

lig
ht

av
g

he
av
y

rank, and q∗(x) = {F,M, ?}
short 2 1 4 6

normal 3 5 10 9
tall 8 7 11 12

u-
lig
ht

lig
ht

av
g

he
av
y

Result: εM = 0.032, εF = 0, κM = 0.544, κF = 0.487

(r4 < µl < r5, r10 < µh <∞)
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Linnik Tasks

� Due to Russian mathematician J.V. Linnik (1966).

� Random observation x depends on the object state and on an additional unobservable
parameter z. The user is not interested in z and thus it need not be estimated.
However, the parameter z must be taken into account because conditional probabilities
pX|K(x | k) are not defined.

� Conditional probabilities pX|K,Z(x | k, z) do exist.

� X, K, Z are finite sets of possible observations x, states k and interventions z.
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Linnik Task with Random K and Non-Random Z

� pK(k) are the prior probabilities of states. pX|K,Z(x | k, z) are the conditional
probability of the observation x under the condition of the state k and intervention z.

� for a strategy q : X → K, the classification error depends on z

εq(z) =
∑
k∈K

pK(k)
∑

x: q(x) 6=k

pX|K,Z(x | k, z). (37)

The classification error ε̂q for the strategy q is defined as the probability of the incorrect
decision obtained in the case of the worst intervention z for this strategy, that is,

ε̂q = max
z∈Z

εq(z) (38)

We are seeking the strategy q∗ which minimizes ε̂q,

q∗ = argmin
q:X→K

max
z∈Z

∑
k∈K

pK(k)
∑

x: q(x) 6=k

pX|K,Z(x | k, z) (39)
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Linnik Task with Non-Random K and Non-Random Z

� Neither the state k nor intervention z can be considered as a random variable and
consequently a priori probabilities pK(k) are not defined.

� for a strategy q : X → K, the error depends not only on z but also on k

εq(z, k) =
∑

x: q(x) 6=k

pX|K,Z(x | k, z). (40)

� the error ε̂q of strategy q:
ε̂q = max

k∈K
max
z∈Z

εq(k, z) (41)

� the optimal strategy is

q∗ = argmin
q:X→K

max
k∈K

max
z∈Z

∑
x: q(x) 6=k

pX|K,Z(x | k, z) (42)
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