## Solved Problems

(related to Lecture 1)
Author: Ondřej Drbohlav, comments/suggestions to drbohlav@fel.cvut.cz. Version 2/Oct/2017.

Problem 1. Consider the same example as in the lecture slides, with joint probability $p_{X K}$ as follows:

|  | cloudiness |  |  |  |
| :--- | ---: | ---: | ---: | ---: |
|  | 1 | 2 | 3 | 4 |
| rain | 0.02 | 0.12 | 0.09 | 0.04 |
| no rain | 0.38 | 0.28 | 0.06 | 0.01 |

Compute marginal probabilities $p_{K}(k)$ for $k=\{$ rain, no rain $\}$ and $p_{X}(x)$ for $x=\{1,2,3,4\}$.

Solution. $p_{K}($ rain $)=0.27, p_{K}($ no rain $)=0.73 . p_{X}(1)=0.4, p_{X}(2)=0.4$, $p_{X}(3)=0.15, p_{X}(4)=0.05$.

Problem 2. Consider the setup as in the previous problem. You have three possible decisions $D=\{$ umbrella, no umbrella, 100 $\}$ to make on a given day:

- umbrella : you take an umbrella with you,
- no umbrella: you do not take an umbrella with you and if it rains, you will get wet,
- 100: you do not take an umbrella with you but you make a fixed decision that if it rains, you will buy a new umbrella for 100 CZK.

Let the loss matrix $W(k, d)$ be as follows:

|  | umbrella | no umbrella | 100 |
| :--- | :---: | :---: | :---: |
| rain | 0 | 10 | 5 |
| no rain | 5 | -2 | 0 |

Compute the optimal strategy $q^{*}(x)$.
Solution. Evaluate the partial risk

$$
\begin{equation*}
R(x, d)=\sum_{k \in K} p_{K x}(k \mid x) W(k, d) \tag{1}
\end{equation*}
$$

|  | umbrella | no umbrella | 100 |
| :---: | :---: | :---: | :---: |
| 1 | $\frac{0.02}{0.4} \cdot 0+\frac{0.38}{0.4} \cdot 5=4.75$ | $\frac{0.02}{0.4} \cdot 10-\frac{0.38}{0.4} \cdot 2=-\mathbf{1 . 4}$ | $\frac{0.02}{0.4} \cdot 5+\frac{0.38}{0.4} \cdot 0=0.25$ |
| 2 | $\frac{0.12}{0.4} \cdot 0+\frac{0.28}{0.4} \cdot 5=3.5$ | $\frac{0.12}{0.4} \cdot 10-\frac{0.28}{0.4} \cdot 2=1.6$ | $\frac{0.12}{0.4} \cdot 5+\frac{0.28}{0.4} \cdot 0=\mathbf{1 . 5}$ |
| 3 | $\frac{0.09}{0.15} \cdot 0+\frac{0.06}{0.15} \cdot 5=\mathbf{2}$ | $\frac{0.09}{0.15} \cdot 10-\frac{0.06}{0.15} \cdot 2=5.2$ | $\frac{0.09}{0.15} \cdot 5+\frac{0.06}{0.15} \cdot 0=3$ |
| 4 | $\frac{0.04}{0.05} \cdot 0+\frac{0.01}{0.05} \cdot 5=\mathbf{1}$ | $\frac{0.04}{0.05} \cdot 10-\frac{0.01}{0.05} \cdot 2=7.6$ | $\frac{0.04}{0.05} \cdot 5+\frac{0.01}{0.05} \cdot 0=4$ |

and for each observation $x$, select the decision $d$ which produces the lowest partial risk (indicated by bold numbers in each column). Thus,
$q^{*}(1)=$ no umbrella, $q^{*}(2)=100, q^{*}(3)=$ umbrella, $q^{*}(4)=$ umbrella. (2)

