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Formulation of the LSQ clustering problem

In: T = {x},, the set of observations
Out: ()i, the set of cluster prototypes (etalons)
{T}r the clustering (partitioning) of the data

Formulation of the least squares clustering problem:
L . 2
J(Cl, Ci, ... ,CK) = Zi:l Mming HX| — CkH2

(cy, €y, ...,cx) = argmin J(.)

Alternative formulation: p
where T = {xi € T|Vj||x — k|5 < |Ix — |5}



K-means: Algorithm for the LS Clustering Problem

@ _ BN

the set of observations, x € RP

In: T ={x},,
Out: (ck)&;, the set of cluster prototypes (etalons), ¢ € RP
{T}E, the clustering (partitioning) of the data

Initialize cx (e.g. by assigning random x; to cy)

2. Assignment optimization:
Te ={x €T :Vj,|lx —ell3 < [|x — ¢jl[3}

3. Prototype optimization:
1
Ck = W ZXE’Tk X

Terminate If 7™ = Tf,Vk ; else go to 2




K-means: an example (1/1)

- Number of clusters A=3

Initialization:

. s ¢, = random(x),

without replacement




K-means: an example

(2/4)

...............................................................................................................................................

Optimizing partitions:

Euclidean Distances
A B C D E F

¢ (95 45 0 1 14 4
¢ |57 5 1 0 1 3
¢ \64 58 14 1 0 32
Sum of squares = J(.) = 9.0

Optimizing prototypes:
‘. = 1+2+4,1+§+5j:(2-3,2.3)

3
5+8 5+ 5
CZ:( S j:(6.5,5)
C3:(5’6)



K-means: an example (3/4)

Optimizing partitions:

; : |
%6— . ] .
i @ Euclidean Distances

A B C D E F

é : % (19 14 31 38 45 63)
) @ |68 6 25 15 18 15
| o (64 58 14 1 0 32

...................... L e s i Sum of squares = J2(.) = 1.78

e £ @ Optimizing prototypes:

e | 142 141

i c, = | - (151
1 Ez 2] (L5

c, =(8,5)

?_ % C3:(4+:+5,5+2+6j204153)




K-means: an example

(4/4)

6. (073
5_ @
F
C b
C1
1A B

| | | | | ] ] |

1.2 4.5 8

...........................................................................................................................................

Optimizing partitions:

Euclidean Distances
A B C D E F

05 05 4,7 53 61 7,6
2181 72 4 3 32 0
¢ \57 51 0,7 05 0,7 33

Sum of squares = J3(.) = 0.31

Assignment unchanged =

Terminate



K-means: Termination

if neither Step 3. nor Step 2. changed J(.), the algorithm
terminates, else

Step 3. reduces J(.), because for a fixed assignment, the mean
is the global minimizer of J(.).

Step 2. reduces J(.), because for every x| the contribution to
the cost function either stays the same or gets lower.

The fact that J(.) is reduced implies that no assignment is
repeated during the run of the algorithm.
Since there is a finite number of assignmens (how many?) the

k-means algorithm converges in a finite number of steps, to a
local minimum.



K-means: Notes

Alternatively, ¢k is initialised, and steps 2. and 3. are swapped

For a fixed assignment, the mean is the global minimizer of

lel D xeT. X =€ =argming ) |[x — |
(you should be able to prove this)

2
21

the algorithm also solves the following minimization problem:

T2 Tor o Ti) = Yot S, 1% — Xil

2
21

The k-means algorithm does not reach a global minimum. This
is easily proved by a counter-example.

Efficiency. The complexity of Step 2. (assignment optimiza-
tion) dominates, as for every observation the nearest prototype
is sought. Trvially implemented, this requires L x K operations.
Any idea for a speed-up?



K-means Generalization

T = {x}_,, the set of observations

d(.,.) "distance function” (may not be a metric)
CHpy the set of cluster prototypes (etalons)
{Te} e, the clustering (partitioning) of the data

. Initialize ¢k (e.g. by assigning random x; to cy)

. Assignment optimization:

Te ={x €T :Vj,d(x,c) < d(x,¢)}

Prototype optimization:
Cx = argming ) - d(x,c)

. Terminate If 7,/71 = Tt Vk ; else go to 2
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K-means Generalization: K-medians

In: T ={x}_,, the set of observations
d(.,.) |lc — x||1, ie. d(.,.) is the L1-metric
Out: (cx)i,, the set of cluster prototypes (etalons)
{T e, the clustering (partitioning) of the data

1. Initialize ¢k (e.g. by assigning random x; to cy)

2. Assignment optimization:
77< — {X cT: \V/_/, d(X, Ck) < d(X, Cj)}

_OL‘)

Prototype optimization:
cx = median{ 7}

4. Terminate If 7)™ = Tf,Vk ; else go to 2

Median is the minimizer of the L1-norm in a cluster, ie.
median{7x} = ¢ = arg minc erTk l|[x — ck||1
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K-means Generalization: Clustering Strings

In: T = {x},_,, observations x| are strings
d(s1, s2) is the Levenshtein distance, ie. the number of
edit operations to transform s; into s,
Out:  (ck)p_;, the set of cluster prototypes, ¢ are strings
{T}E, the clustering (partitioning) of the data
1. Initialize ¢,
2. Assignment optimization:
77< = {X cT: \V/j, d(X,Ck) < d(X, Cj)}
3. Prototype optimization:
cx = argming ), - d(x,c)
4. Terminate If T/ = Tt Vk ; else go to 2
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K-means Generalization: Clustering Strings: Notes

e the calculation of d(.,.) might be non-trivial

e It might be very hard to minimize » | - d(x,c). over the space
of all strings.
The minimisation can be restricted to c € 7.

e Is the algorithm guaranteed to terminate, if Step 2. (Step 3.)
is only improving J(.), not findind the minimimum (given fixed
T or ci respectively)?
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Thank you for your attention.
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