
K-means Clustering and its K means Clustering and its 
Generalization

authors: J  Matas  T  Wernerauthors: J. Matas, T. Werner

lecturer: V. Franc



Formulation of the LSQ clustering problem

I T { }L h f b iIn: T = {xl}Ll=1, the set of observations
Out: (ck)Kk=1, the set of cluster prototypes (etalons)

{Tk}K the clustering (partitioning) of the data{Tk}k=1 the clustering (partitioning) of the data

Formulation of the least squares clustering problem:q g p
J(c1, c1, ... , cK) =

PL
i=1mink ||xl − ck||22

(c?1, c
?
1, ... , c

?
K) = arg min J(.)1 1 K

Alternative formulation:
J 0(c c c ; T T T )

PK P ||x c ||2J (c1, c1, ... , cK; T1,T2, ... , TK ) =
P

k=1

P
x∈Tk ||x− ck||22,

where Tk = {xl ∈ T |∀j ||x− ck||22 ≤ ||x− cj||22}
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K-means:  Algorithm for the LS Clustering Problem

In: T = {xl}Ll=1, the set of observations, x ∈ RD
Out: (ck)Kk=1, the set of cluster prototypes (etalons), c ∈ RD

{T }K h l ( ) f h d{Tk}Kk=1 the clustering (partitioning) of the data

1 Initialize ck (e g by assigning random xl to ck)1. Initialize ck (e.g. by assigning random xl to ck)

2. Assignment optimization:
T { T ∀j || ||2 || ||2}Tk = {x ∈ T : ∀j , ||x− ck||22 ≤ ||x− cj||22}

3. Prototype optimization:
ck = 1

|Tk |
P

x∈Tk x

4 Terminate If T t+1 T t ∀k ; else go to 24. Terminate If T +
k = T tk ,∀k ; else go to 2
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K-means: an example                                   (1/1)

Number of clusters K=3
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K-means: an example                                   (2/4)

Optimizing partitions:

Euclidean Distances
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Optimizing prototypes:
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K-means: an example                                   (3/4)

Optimizing partitions:

Euclidean Distances
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K-means: an example                                   (4/4)

O i i i  i i
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Optimizing partitions:

Euclidean Distances
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Sum of squares = J3(.) = 0.31Sum of squares  J (.)  0.31

Assignment unchanged ⇒Assignment unchanged ⇒

Terminate



K-means:  Termination

• if neither Step 3. nor Step 2. changed J(.), the algorithm
terminates, else

• Step 3. reduces J(.), because for a fixed assignment, the meanp ( ), g ,
is the global minimizer of J(.).

• Step 2 reduces J( ) because for every xl the contribution to• Step 2. reduces J(.), because for every xl the contribution to
the cost function either stays the same or gets lower.

Th f t th t J( ) i d d i li th t i t i• The fact that J(.) is reduced implies that no assignment is
repeated during the run of the algorithm.

• Since there is a finite number of assignmens (how many?) the
k-means algorithm converges in a finite number of steps, to a
local minimum
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local minimum.



K-means:  Notes

• Alternatively, ck is initialised, and steps 2. and 3. are swapped

• For a fixed assignment the mean is the global minimizer of• For a fixed assignment, the mean is the global minimizer of
1
|Tk |

P
x∈Tk x = c?k = arg minc

P
x∈Tk ||x− ck||22,

(you should be able to prove this)( )

• the algorithm also solves the following minimization problem:
J(T1 T2 TK ) =

PK
k 1

P
T ||xi − xj||22J(T1,T2, ... ,TK )

P
k=1

P
xi,xj∈Tk ||xi xj||2,

• The k means algorithm does not reach a global minimum This• The k-means algorithm does not reach a global minimum. This
is easily proved by a counter-example.

S (• Efficiency. The complexity of Step 2. (assignment optimiza-
tion) dominates, as for every observation the nearest prototype
is sought Trvially implemented this requires L×K operations
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is sought. Trvially implemented, this requires L×K operations.
Any idea for a speed-up?



K-means Generalization

In: T = {xl}Ll=1, the set of observations
d(., .) ”distance function” (may not be a metric)

O ( )K h f l ( l )Out: (ck)Kk=1, the set of cluster prototypes (etalons)
{Tk}Kk=1 the clustering (partitioning) of the data

1. Initialize ck (e.g. by assigning random xl to ck)

2 A i i i i2. Assignment optimization:
Tk = {x ∈ T : ∀j , d(x, ck) ≤ d(x, cj)}

3. Prototype optimization:
ck = arg minc

P
x∈Tk d(x, c)

4. Terminate If T t+1k = T tk ,∀k ; else go to 2
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K-means Generalization: K-medians

LIn: T = {xl}Ll=1, the set of observations
d(., .) ||c − x||1, ie. d(., .) is the L1-metric

Out: (ck)K the set of cluster prototypes (etalons)Out: (ck)k=1, the set of cluster prototypes (etalons)
{Tk}Kk=1 the clustering (partitioning) of the data

1. Initialize ck (e.g. by assigning random xl to ck)

2 Assignment optimization:2. Assignment optimization:
Tk = {x ∈ T : ∀j , d(x, ck) ≤ d(x, cj)}

3 P t t ti i ti3. Prototype optimization:
ck = median{Tk}

14. Terminate If T t+1k = T tk ,∀k ; else go to 2
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Median is the minimizer of the L1-norm in a cluster, ie.
median{Tk} = c?k = arg minc

P
x∈Tk ||x− ck||1



K-means Generalization: Clustering Strings

LIn: T = {xl}Ll=1, observations xl are strings
d(s1, s2) is the Levenshtein distance, ie. the number of

edit operations to transform s1 into s2edit operations to transform s1 into s2
Out: (ck)

K
k=1, the set of cluster prototypes, ck are strings

{Tk}Kk=1 the clustering (partitioning) of the data{ }k=1 g (p g)

1. Initialize ck

2. Assignment optimization:
Tk = {x ∈ T : ∀j , d(x, ck) ≤ d(x, cj)}j

3. Prototype optimization:
ck = arg minc

P
∈T d(x, c)ck arg minc

P
x∈Tk d(x, c)

4. Terminate If T t+1k = T tk ,∀k ; else go to 2
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K-means Generalization: Clustering Strings: Notes

( )• the calculation of d(., .) might be non-trivial

• It might be very hard to minimize
P

x∈Tk d(x, c). over the spaceg y
P

x∈Tk ( ) p
of all strings.
The minimisation can be restricted to c ∈ T .

• Is the algorithm guaranteed to terminate, if Step 2. (Step 3.)
is only improving J(.), not findind the minimimum (given fixed
T or ck respectively)?
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