

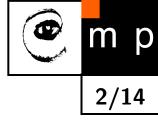
# Support Vector Machine Classification: Application of Quadratic Programming and Lagrange duality

#### Vojtěch Franc

Czech Technical University, Faculty of Electrical Engineering Department of Cybernetics, Center for Machine Perception 121 35 Praha 2, Karlovo nám. 13, Czech Republic

xfrancv@cmp.felk.cvut.cz, http://cmp.felk.cvut.cz

## **Linear classifier**



• Linear classification rule is  $h \colon \mathbb{R}^n \to \{+1, -1\}$  defined by

$$h(\boldsymbol{x}; \boldsymbol{w}, b) = \begin{cases} +1 & \text{if } \boldsymbol{x}^T \boldsymbol{w} + b > 0 \\ -1 & \text{if } \boldsymbol{x}^T \boldsymbol{w} + b < 0 \end{cases}$$

where a vector  $\boldsymbol{w} \in \mathbb{R}^n$  and a scalar  $b \in \mathbb{R}$  are parameters.

• Linear classifier splits the input space  $\mathbb{R}^n$  into three sub-spaces:

$$egin{array}{rcl} H^+(oldsymbol{w},b)&=&\{oldsymbol{x}\in\mathbb{R}^n\midoldsymbol{x}^Toldsymbol{w}+b>0\}\ H^0(oldsymbol{w},b)&=&\{oldsymbol{x}\in\mathbb{R}^n\midoldsymbol{x}^Toldsymbol{w}+b=0\}\ H^-(oldsymbol{w},b)&=&\{oldsymbol{x}\in\mathbb{R}^n\midoldsymbol{x}^Toldsymbol{w}+b<0\}\ \end{array}$$

positive decisions hyperplane of undecided inputs negative decisions

# Linearly separable examples



#### Training examples

$$\mathcal{T} = \{(\boldsymbol{x}_1, y_1), \dots, (\boldsymbol{x}_m, y_m)\} \in (\mathbb{R}^n \times \{+1, -1\})^m$$

• Linearly separable training examples: There exist  $(w, b) \in \mathbb{R}^n \times \mathbb{R}$  such that the linear rule  $h(\cdot; w, b)$  classifies all examples in  $\mathcal{T}$  correctly, i.e., (w, b) is a solution of

$$\begin{array}{ll} \boldsymbol{x}_i^T \boldsymbol{w} + b &> 0 \,, \quad \forall i \in I^+ \\ \boldsymbol{x}_i^T \boldsymbol{w} + b &< 0 \,, \quad \forall i \in I^- \end{array} \right\} \quad \text{which is the same as} \quad y_i \big( \boldsymbol{x}_i^T \boldsymbol{w} + b \big) > 0 \,, \forall i \in I \end{array}$$

where  $I = \{1, \ldots, m\}$ ,  $I^+ = \{i \in I \mid y_i = +1\}$  and  $I^- = \{i \in I \mid y_i = -1\}$ .

- Separting hyperplane is any  $H^0(\boldsymbol{w}, b) = \{\boldsymbol{x} \in \mathbb{R}^n \mid \boldsymbol{x}^T \boldsymbol{w} + b = 0\}$  such that  $(\boldsymbol{w}, b)$  is a solution of  $y_i(\boldsymbol{x}_i^T \boldsymbol{w} + b) > 0, \forall i \in I$ .
- Remark: Note that a given separating hyperplane has infinite number of parametrizations:  $H^0(\boldsymbol{w}, b) = H^0(\lambda \boldsymbol{w}, \lambda b), \forall \lambda > 0.$

# Finding a separating hyperplane

- Task 1: Assume that the training examples  $\mathcal{T}$  are linearly separable. The task is to find any separating hyperplane.
- Task 1 requires to find  $(\boldsymbol{w},b)\in\mathbb{R}^n imes\mathbb{R}$  such that

$$y_i(\boldsymbol{x}_i^T \boldsymbol{w} + b) > 0, \quad \forall i \in I$$
 (1)

• Provided  $(\boldsymbol{w}, b) \in \mathbb{R}^n \times \mathbb{R}$  solves (1) then  $\exists \varepsilon > 0$  such that

$$y_i(\boldsymbol{x}_i^T \boldsymbol{w} + b) \ge \varepsilon, \forall i \in I \qquad \Rightarrow \qquad y_i\left(\boldsymbol{x}_i^T \frac{\boldsymbol{w}}{\varepsilon} + \frac{b}{\varepsilon}\right) \ge 1, \forall i \in I$$

• Any separating hyperplane  $H^0(w',b')$  can be parametrized by (w,b) which satisfies the following set of non-strict linear inequalities

$$y_i(\boldsymbol{x}_i^T \boldsymbol{w} + b) \ge 1, \quad \forall i \in I$$
 (2)

 As a result, a separating hyperplane can be found by solving (2) which is an instance of linear programming (with zero objective).



# Finding maximal margin hyperplane

Task 2: Assume that the training examples  $\mathcal{T}$  are linearly separable. The task is to find the maximal margin separating hyperplane, i.e. a separating hyperplane with the maximal margin

$$m(\boldsymbol{w}, b) = \min_{i \in I} y_i \frac{(\boldsymbol{x}_i^T \boldsymbol{w} + b)}{\|\boldsymbol{w}\|}$$

- Note that the margin m(w, b) is given by a minimal signed distance over the training examples  $\mathcal{T}$ .
- The signed distance is

$$y_i \frac{(\boldsymbol{x}_i^T \boldsymbol{w} + b)}{\|\boldsymbol{w}\|} = \begin{cases} d(\boldsymbol{x}_i, \boldsymbol{w}, b) & \text{if } h(\boldsymbol{x}_i; \boldsymbol{w}, b) = y_i \\ -d(\boldsymbol{x}_i, \boldsymbol{w}, b) & \text{if } h(\boldsymbol{x}_i; \boldsymbol{w}, b) \neq y_i \end{cases}$$

where

$$d({m x},{m w},b) = \min\{\|{m x}-{m x}'\| \mid {m x}' \in H^0({m w},b)\} = rac{|{m x}^T{m w}+b|}{\|{m w}\|}$$

is the Euclidean distance between  $\boldsymbol{x}$  and its closest points on  $H^0(\boldsymbol{w},b)$ .



# Finding maximal margin hyperplane in canonical form

The separating hyperplane  $H^0(oldsymbol{w},b)$  is in a canonical form if

$$\min_{i \in I} y_i(\boldsymbol{x}_i^T \boldsymbol{w} + b) = 1$$

which implies that its margin is

$$m(\boldsymbol{w}, b) = \min_{i \in I} y_i \frac{(\boldsymbol{x}_i^T \boldsymbol{w} + b)}{\|\boldsymbol{w}\|} = \frac{1}{\|\boldsymbol{w}\|}$$

Finding the maximal margin separating hyperplane in a canonical form leads to solving

$$\begin{aligned} (\boldsymbol{w}^*, b^*) &= \underset{\boldsymbol{w} \in \mathbb{R}^n, b \in \mathbb{R}}{\operatorname{argmax}} \frac{1}{\|\boldsymbol{w}\|} \quad \text{s.t.} \quad \underset{i \in I}{\min} y_i(\boldsymbol{x}_i^T \boldsymbol{w} + b) = 1 \\ &= \underset{\boldsymbol{w} \in \mathbb{R}^n, b \in \mathbb{R}}{\operatorname{argmin}} \frac{1}{2} \|\boldsymbol{w}\|^2 \quad \text{s.t.} \quad \underset{i \in I}{\min} y_i(\boldsymbol{x}_i^T \boldsymbol{w} + b) = 1 \\ &= \underset{\boldsymbol{w} \in \mathbb{R}^n, b \in \mathbb{R}}{\operatorname{argmin}} \frac{1}{2} \|\boldsymbol{w}\|^2 \quad \text{s.t.} \quad y_i(\boldsymbol{x}_i^T \boldsymbol{w} + b) \ge 1, \forall i \in I \end{aligned}$$



# Finding maximal margin hyperplane by quadratic programming



 Finding the maximal margin hyperplane leads to solving a convex quadratic programming task (PRIMAL-SVM-QP)

$$(\boldsymbol{w}^*, b^*) = \operatorname*{argmin}_{\boldsymbol{w} \in \mathbb{R}^n, b \in \mathbb{R}} \frac{1}{2} \| \boldsymbol{w} \|^2$$
 s.t.  $y_i(\boldsymbol{x}_i^T \boldsymbol{w} + b) \ge 1, \forall i \in I$ 

- The resulting linear rule  $h(\boldsymbol{x}; \boldsymbol{w}^*, b^*)$  is called the maximal margin classifier.
- The PRIMAL-SVM-QP has n+1 variables and m constraints.
- The SVM classifiers are often used in applications when the dimension n is very large and solving the primal PRIMAL-SVM-QP is not tractable.
- If n >> m, solving the PRIMAL-SVM-QP can be replaced by solving its Lagrange dual problem which has m variables and m + 1 constraints.

## Primal and dual form of the SVM learning problem

Lagrange function of the PRIMAL-SVM-QP reads

$$L(\boldsymbol{w}, b, \boldsymbol{\alpha}) = \frac{1}{2} \|\boldsymbol{w}\|^2 - \sum_{i=1}^m \alpha_i \bigg[ y_i \big( \boldsymbol{x}_i^T \boldsymbol{w} + b) - 1 \big) \bigg]$$

where  $\boldsymbol{lpha} = (lpha_1, \dots, lpha_m)^T \in \mathbb{R}^m$  are the Lagrange multipliers.

• **Primal problem**, which is equivalent to PRIMAL-SVM-QP, is defined as

$$(\boldsymbol{w}^*, b^*) = \operatorname*{argmin}_{\boldsymbol{w} \in \mathbb{R}^n, b \in \mathbb{R}} P(\boldsymbol{w}, b)$$

where

$$P(\boldsymbol{w}, b) = \max \left\{ L(\boldsymbol{w}, b, \boldsymbol{\alpha}) \mid \boldsymbol{\alpha} \succeq \boldsymbol{0} \right\} = \left\{ \begin{array}{ll} \infty & \text{if} \quad \exists i \in I, \ y_i(\boldsymbol{x}_i^T \boldsymbol{w} + b) < 1\\ \frac{1}{2} \|\boldsymbol{w}\|^2 & \text{if} \quad y_i(\boldsymbol{x}_i^T \boldsymbol{w} + b) \ge 1, \forall i \in I \end{array} \right.$$

**Dual problem** is defined as

$$\alpha^* = \operatorname*{argmax}_{\boldsymbol{\alpha} \succeq \boldsymbol{0}} D(\boldsymbol{\alpha}) \quad \text{where} \quad D(\boldsymbol{\alpha}) = \min \left\{ L(\boldsymbol{w}, b, \boldsymbol{\alpha}) \mid \boldsymbol{w} \in \mathbb{R}^n, b \in \mathbb{R} \right\}$$



# **Useful results of the Lagrange duality**



• Weak duality holds in general

$$P(\boldsymbol{w}, b) \ge P(\boldsymbol{w}^*, b^*) \ge D(\boldsymbol{\alpha}^*) \ge D(\boldsymbol{\alpha})$$

holds for all feasible (w, b) and  $\alpha \succeq 0$ .

Strong duality applies for some problems including the PRIMAL-SVM-QP

$$P(\boldsymbol{w}^*, b^*) = D(\boldsymbol{\alpha}^*)$$

• If the strong duality holds and  $\alpha^*$  is an optimal solution of the dual, then the primal solution  $(w^*, b^*)$  is a minimizer of the unconstrained problem

$$(\boldsymbol{w}^*, b^*) \in \operatorname*{argmin}_{\boldsymbol{w} \in \mathbb{R}^n, b \in \mathbb{R}} L(\boldsymbol{w}, b, \boldsymbol{\alpha}^*)$$

• Assume that the strong duality holds and  $(w^*, b^*)$  is a primal and  $\alpha^*$  dual optimal solution, then the complementary slackness holds

$$\alpha_i^* \left[ y_i \left( \boldsymbol{x}_i^T \boldsymbol{w}^* + b^* \right) - 1 \right) \right] = 0, \qquad \forall i \in I$$

# **(m p** 10/14

# Derivation of the SVM dual problem

• By definition the dual objective is

$$D(\boldsymbol{\alpha}) = \min \left\{ L(\boldsymbol{w}, b, \boldsymbol{\alpha}) \mid \boldsymbol{w} \in \mathbb{R}^n, b \in \mathbb{R} \right\}$$

where

$$L(\boldsymbol{w}, b, \boldsymbol{\alpha}) = \frac{1}{2} \|\boldsymbol{w}\|^2 - \sum_{i=1}^m \alpha_i \left[ y_i (\boldsymbol{x}_i^T \boldsymbol{w} + b) - 1 \right) \right]$$

For a fixed  $oldsymbol{lpha}$ , the  $oldsymbol{w}(oldsymbol{lpha})$  minimizing L is obtained by

$$\frac{\partial L(\boldsymbol{w}, b, \boldsymbol{\alpha})}{\partial \boldsymbol{w}} = \boldsymbol{w} - \sum_{i=1} \alpha_i y_i \boldsymbol{x}_i = \boldsymbol{0} \qquad \Rightarrow \qquad \boldsymbol{w}(\boldsymbol{\alpha}) = \sum_{i=1} \alpha_i y_i \boldsymbol{x}_i$$

thus

$$L(\boldsymbol{w}(\boldsymbol{\alpha}), b, \boldsymbol{\alpha}) = \sum_{i \in I} \alpha_i - \frac{1}{2} \sum_{i \in I} \sum_{j \in I} y_i y_j \alpha_i \alpha_j \boldsymbol{x}_i^T \boldsymbol{x}_j - b \sum_{i \in I} \alpha_i y_i$$

Minimizing  $L(\boldsymbol{w}(\boldsymbol{lpha}), b, \boldsymbol{lpha})$  w.r.t. b yields

$$D(\boldsymbol{\alpha}) = \begin{cases} \boldsymbol{\alpha}^T \boldsymbol{e} - \frac{1}{2} \boldsymbol{\alpha}^T \mathbf{H} \boldsymbol{\alpha} & \text{if } \boldsymbol{\alpha}^T \boldsymbol{y} = 0 \\ -\infty & \text{otherwise} \end{cases}$$

where e is vector of all ones,  $y = (y_1, \ldots, y_m)^T$  is a vector containing labels and **H** is a symmetric positive semi-definite matrix with  $H_{ij} = y_i y_j x_i^T x$ .

# The dual SVM problem

 The dual of the primal SVM problem is a convex Quadratic Program (DUAL-SVM-QP)

$$\boldsymbol{lpha}^* = \operatorname*{argmax}_{\boldsymbol{lpha} \in \mathbb{R}^m} \left[ \boldsymbol{lpha}^T \boldsymbol{e} - \frac{1}{2} \boldsymbol{lpha}^T \mathbf{H} \boldsymbol{lpha} 
ight] \qquad ext{s.t.} \qquad \boldsymbol{y}^T \boldsymbol{lpha} = 0 \,, \quad \boldsymbol{lpha} \succeq \mathbf{0}$$

• The DUAL-SVM-QP has m variables and m+1 constraints of a simple form.

ullet Given solution the dual solution  $lpha^*$ , the primal solution vector  $w^*$  can be obtained by

$$oldsymbol{w}^* = \operatorname*{argmin}_{oldsymbol{w} \in \mathbb{R}^n} L(oldsymbol{w}, b, oldsymbol{lpha}^*) = \sum_{i \in I} lpha_i^* y_i oldsymbol{x}_i$$

The optimal b<sup>\*</sup> can be determined from the complementary slackness (shown on the next slide) or by selecting b<sup>\*</sup> to satisfy the constraints

$$oldsymbol{x}_i^Toldsymbol{w}^*+b^*\geq 1\,, orall i\in I^+$$
 and  $oldsymbol{x}_i^Toldsymbol{w}^*+b^*\leq -1\,, orall i\in I^-$ 

so that

$$b^* = -rac{1}{2} igg( \min_{i \in I^+} oldsymbol{x}_i^T oldsymbol{w}^* + \max_{i \in I^-} oldsymbol{x}_i^T oldsymbol{w}^* igg)$$



# **Complementary slackness**



The complementary slackness guarantee that

$$\alpha_i^* \left[ y_i \left( \boldsymbol{x}_i^T \boldsymbol{w}^* + b^* \right) - 1 \right] = 0, \qquad \forall i \in I$$

which implies

$$y_i (\boldsymbol{x}_i^T \boldsymbol{w}^* + b^*) = 1, \quad \text{for} \quad i \in I^{SV} = \{i \in I \mid \alpha_i^* > 0\}$$
$$y_i (\boldsymbol{x}_i^T \boldsymbol{w}^* + b^*) \geq 1, \quad \text{for} \quad i \in I \setminus I^{SV}$$

- The training examples  $\{x_i \mid i \in I^{SV}\}$ , called support vectors, have the shortest distance (equal to  $\frac{1}{\|w^*\|}$ ) to the hyperplane  $H^0(w^*, b^*)$ .
- Removing the support vectors from the training set does not change the solution of the PRIMAL-SVM-QP.
- The optimal  $b^*$  can be computed by

$$b^* = y_i - \boldsymbol{x}_i^T \boldsymbol{w}^*, \qquad \forall i \in I^{SV}$$

or, for better numerical stability, using the average  $b^* = \frac{1}{I^{SV}} \sum_{i \in I^{SV}} (y_i - x_i^T w^*)$ .

#### Learning SVM classifier from non-separable examples

◆ Task 3: Given examples T = {(x<sub>1</sub>, y<sub>1</sub>), ..., (x<sub>m</sub>, y<sub>m</sub>)} ∈ (ℝ<sup>n</sup> × {+1, -1})<sup>m</sup>, the goal is to find parameters (w<sup>\*</sup>, b<sup>\*</sup>) of the linear SVM classifier by solving a convex QP task (PRIMAL-C-SVM-QP)

$$(\boldsymbol{w}^*, b^*, \boldsymbol{\xi}^*) = \operatorname*{argmin}_{\boldsymbol{w} \in \mathbb{R}^n, b \in \mathbb{R}, \boldsymbol{\xi} \in \mathbb{R}^m} \left[ \frac{1}{2} \| \boldsymbol{w} \|^2 + C \sum_{i \in I} \xi_i \right]$$

subject to

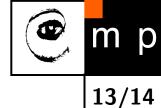
$$y_i(\boldsymbol{x}_i^T \boldsymbol{w} + b) \geq 1 - \xi_i, \qquad \forall i \in I \\ \xi_i \geq 0, \qquad \forall i \in I$$

•  $\boldsymbol{\xi} = (\xi_1, \dots, \xi_m)^T \in \mathbb{R}^m$  are the slack variables relaxing the linear inequalities and C > 0 is a prescribed constant.

The sum of the slack variables upper bounds the number of training errors, i.e.

$$\sum_{i \in I} \xi_i \ge \sum_{i \in I} \llbracket h(\boldsymbol{x}_i; \boldsymbol{w}, b) \neq y_i \rrbracket$$

The PRIMAL-C-SVM-QP has m + n + 1 variables and 2m constraints. The corresponding dual problem has m variables and 2m + 1 constraints.



#### **Dual SVM problem for non-separable case**

Lagrange function of the PRIMAL-C-SVM-QP reads

$$L(\boldsymbol{w}, b, \boldsymbol{\xi}, \boldsymbol{\alpha}, \boldsymbol{\mu}) = \frac{1}{2} \|\boldsymbol{w}\|^2 + C \sum_{i=1}^m \xi_i - \sum_{i=1}^m \alpha_i \left[ y_i (\boldsymbol{x}_i^T \boldsymbol{w} + b) - 1 + \xi_i \right] - \sum_{i=1}^m \mu_i \xi_i$$

14/14

where  $\boldsymbol{\alpha} \in \mathbb{R}^m$  and  $\boldsymbol{\mu} \in \mathbb{R}^m$  are the Lagrange multipliers.

•  $\frac{\partial L}{\partial \boldsymbol{w}} = \boldsymbol{w} - \sum_{i=1}^{m} y_i \alpha_i \boldsymbol{x}_i = \boldsymbol{0} \quad \Rightarrow \quad \boldsymbol{w} = \sum_{i=1}^{m} y_i \alpha_i \boldsymbol{x}_i$ •  $\mu_i \ge 0 \text{ and } \mu_i = C - \alpha_i \quad \Rightarrow \quad \sum_{i=1}^{m} \xi_i (C - \mu_i - \alpha_i) = 0$ •  $\sum_{i=1}^{m} \alpha_i y_i = 0$ 

• The dual objective  $D(\boldsymbol{\alpha}) = \min_{\boldsymbol{w} \in \mathbb{R}^n, b \in \mathbb{R}, \boldsymbol{\xi} \in \mathbb{R}^m} L(\boldsymbol{w}, b, \boldsymbol{\xi}, \boldsymbol{\alpha}, \boldsymbol{\mu})$  simplifies to

$$D(\boldsymbol{\alpha}) = \begin{cases} \boldsymbol{\alpha}^T \boldsymbol{e} - \frac{1}{2} \boldsymbol{\alpha}^T \mathbf{H} \boldsymbol{\alpha} & \text{if } \boldsymbol{\alpha}^T \boldsymbol{y} = 0 \text{ and } C \boldsymbol{e} \succeq \boldsymbol{\alpha} \succeq \mathbf{0} \\ \infty & \text{otherwise} \end{cases}$$

The dual problem of the PRIMAL-C-SVM-QP is a convex QP

$$\alpha^* = \operatorname*{argmax}_{\boldsymbol{\alpha} \in \mathbb{R}^m} \left[ \boldsymbol{\alpha}^T \boldsymbol{e} - \frac{1}{2} \boldsymbol{\alpha}^T \mathbf{H} \boldsymbol{\alpha} \right] \quad \text{s.t.} \quad \boldsymbol{\alpha}^T \boldsymbol{y} = 0 \,, \quad \boldsymbol{C} \boldsymbol{e} \succeq \boldsymbol{\alpha} \succeq \boldsymbol{0}$$