
Appendix D

Nonlinear Least Squares
Data Fitting

D.1 Introduction
A nonlinear least squares problem is an unconstrained minimization problem of the
form

minimize
x

f(x) =
m∑

i=1

fi(x)2,

where the objective function is defined in terms of auxiliary functions { fi }. It
is called “least squares” because we are minimizing the sum of squares of these
functions. Looked at in this way, it is just another example of unconstrained min-
imization, leading one to ask why it should be studied as a separate topic. There
are several reasons.

In the context of data fitting, the auxiliary functions { fi } are not arbitrary
nonlinear functions. They correspond to the residuals in a data fitting problem (see
Chapter 1). For example, suppose that we had collected data { (ti, yi) }m

i=1 consist-
ing of the size of a population of antelope at various times. Here ti corresponds to
the time at which the population yi was counted. Suppose we had the data

ti : 1 2 4 5 8
yi : 3 4 6 11 20

where the times are measured in years and the populations are measured in hun-
dreds. It is common to model populations using exponential models, and so we
might hope that

yi ≈ x1e
x2ti

for appropriate choices of the parameters x1 and x2. A model of this type is illus-
trated in Figure D.1.

If least squares were used to select the parameters (see Section 1.5) then we
would solve

minimize
x1,x2

f(x1, x2) =
5∑

i=1

(x1e
x2ti − yi)2
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Figure D.1. Exponential Model of Antelope Population

so that the i-th function would be

fi(x1, x2) = x1e
x2ti − yi,

that is, it would be the residual for the i-th data point. Most least squares problems
are of this form, where the functions fi(x) are residuals and where the index i
indicates the particular data point. This is one way in which least squares problems
are distinctive.

Least-squares problems are also distinctive in the way that the solution is
interpreted. Least squares problems usually incorporate some assumptions about
the errors in the model. For example, we might have

yi = x1e
x2ti + εi,

where the errors { εi } are assumed to arise from a single probability distribution,
often the normal distribution. Associated with our model are the “true” parameters
x1 and x2, but each time we collect data and solve the least-squares problem we
only obtain estimates x̂1 and x̂2 of these true parameters. After computing these
estimates, it is common to ask questions about the model such as: What bounds
can we place on the values of the true parameters? Does the model adequately fit
the data? How sensitive are the parameters to changes in the data? And so on.

Algorithms for least-squares problems are also distinctive. This is a conse-
quence of the special structure of the Hessian matrix for the least-squares objective
function. The Hessian in this case is the sum of two terms. The first only involves
the gradients of the functions { fi } and so is easier to compute. The second in-
volves the second derivatives, but is zero if the errors { εi } are all zero (that is, if
the model fits the data perfectly). It is tempting to approximate the second term in
the Hessian, and many algorithms for least squares do this. Additional techniques
are used to deal with the first term in a computationally sensible manner.

If least-squares problems were uncommon then even these justifications would
not be enough to justify our discussion here. But they are not uncommon. They
are one of the most widely encountered unconstrained optimization problems, and
amply justify the attention given them.
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D.2 Nonlinear Least-Squares Data Fitting
Let us first examine the special form of the derivatives in a least-squares problem.
We will write the problem as

minimize
x

f(x) = 1
2

m∑
i=1

fi(x)2 ≡ 1
2F (x)TF (x)

where F is the vector-valued function

F (x) = ( f1(x) f2(x) · · · fm(x) )T
.

We have scaled the problem by 1
2 to make the derivatives less cluttered. The

components of ∇f(x) can be derived using the chain rule:

∇f(x) = ∇F (x) F (x).

∇2f(x) can be derived by differentiating this formula with respect to xj :

∇2f(x) = ∇F (x)∇F (x)T +
m∑

i=1

fi(x)∇2fi(x).

These are the formulas for the gradient and Hessian of f .
Let x∗ be the solution of the least-squares problem, and suppose that at the

solution, f(x∗) = 0. Then fi(x∗) = 0 for all i, indicating that all the residuals are
zero and that the model fits the data with no error. As a result, F (x∗) = 0 and
hence ∇f(x∗) = 0, confirming that the first-order necessary condition is satisfied.
It also follows that

∇2f(x∗) = ∇F (x∗)∇F (x∗)T,

so that the Hessian at the solution is positive semi-definite, as expected. If ∇F (x∗)
is a matrix of full rank then ∇2f(x∗) is positive definite.

Example D.1 Gradient and Hessian. For the antelope data and model in Sec-
tion D.1,

F (x) =

⎛
⎜⎜⎜⎝

x1e
x2t1 − y1

x1e
x2t2 − y2

x1e
x2t3 − y3

x1e
x2t4 − y4

x1e
x2t5 − y5

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

x1e
1x2 − 3

x1e
2x2 − 4

x1e
4x2 − 6

x1e
5x2 − 11

x1e
8x2 − 20

⎞
⎟⎟⎟⎠ .

The formula for the least-squares objective function is

f(x1, x2) = 1
2

5∑
i=1

(x1e
x2ti − yi)2 = 1

2F (x)TF (x).

The gradient of f is

∇f(x1, x2) =

⎛
⎜⎜⎜⎜⎝

5∑
i=1

(x1e
x2ti − yi)ex2ti

5∑
i=1

(x1e
x2ti − yi)x1tie

x2ti

⎞
⎟⎟⎟⎟⎠ .
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This can be rewritten as ∇f(x1, x2) =

(
ex2t1 ex2t2 ex2t3 ex2t4 ex2t5

x1t1e
x2t1 x1t2e

x2t2 x1t3e
x2t3 x1t4e

x2t4 x1t5e
x2t5

)
⎛
⎜⎜⎜⎝

x1e
x2t1 − y1

x1e
x2t2 − y2

x1e
x2t3 − y3

x1e
x2t4 − y4

x1e
x2t5 − y5

⎞
⎟⎟⎟⎠

so that ∇f(x1, x2) = ∇F (x) F (x). The Hessian matrix is ∇2f(x) = ∇F (x)∇F (x)T+∑m
i=1 fi(x)∇2fi(x) =

(
ex2t1 ex2t2 ex2t3 ex2t4 ex2t5

x1t1e
x2t1 x1t2e

x2t2 x1t3e
x2t3 x1t4e

x2t4 x1t5e
x2t5

)
⎛
⎜⎜⎜⎝

ex2t1 x1t1e
x2t1

ex2t2 x1t2e
x2t2

ex2t3 x1t3e
x2t3

ex2t4 x1t4e
x2t4

ex2t5 x1t5e
x2t5

⎞
⎟⎟⎟⎠

+
5∑

i=1

(x1e
x2ti − yi)

(
0 tie

x2ti

tie
x2ti x1t

2
i e

x2ti

)
.

Note that { ti } and { yi } are the data values for the model, while x1 and x2 are
the variables in the model.

If F (x∗) = 0 then it is reasonable to expect that F (x) ≈ 0 for x ≈ x∗, implying
that

∇2f(x) = ∇F (x)∇F (x)T +
m∑

i=1

fi(x)∇2fi(x) ≈ ∇F (x)∇F (x)T.

This final formula only involves the first derivatives of the functions { fi } and
suggests that an approximation to the Hessian matrix can be found using only first
derivatives, at least in cases where the model is a good fit to the data. This idea
is the basis for a number of specialized methods for nonlinear least squares data
fitting.

The simplest of these methods, called the Gauss-Newton method uses this ap-
proximation directly. It computes a search direction using the formula for Newton’s
method

∇2f(x)p = −∇f(x)

but replaces the Hessian with this approximation

∇F (x)∇F (x)Tp = −∇F (x) F (x).

In cases where F (x∗) = 0 and ∇F (x∗) is of full rank, the Gauss-Newton method
behaves like Newton’s method near the solution, but without the costs associated
with computing second derivatives.

The Gauss-Newton method can perform poorly when the residuals at the
solution are not “small” (that is, when the model does not fit the data well), or
if the Jacobian of F is not of full rank at the solution. Loosely speaking, in these
cases the Gauss-Newton method is using a poor approximation to the Hessian of f .
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Example D.2 Gauss-Newton Method. We apply the Gauss-Newton method to an
exponential model of the form

yi ≈ x1e
x2ti

with data

t = ( 1 2 4 5 8 )T

y = ( 3.2939 4.2699 7.1749 9.3008 20.259 )T
.

For this example, the vector y was chosen so that the model would be a good fit to
the data, and hence we would expect the Gauss-Newton method to perform much
like Newton’s method. (In general y will not be chosen, but will be part of the given
data for a problem.) We apply the Gauss-Newton method without a line search,
using an initial guess that is close to the solution:

x =
(

2.50
0.25

)
.

At this point

F (x) =

⎛
⎜⎜⎜⎝

−0.0838
−0.1481
−0.3792
−0.5749
−1.7864

⎞
⎟⎟⎟⎠ and ∇F (x)T =

⎛
⎜⎜⎜⎝

1.2840 3.2101
1.6487 8.2436
2.7183 27.1828
3.4903 43.6293
7.3891 147.7811

⎞
⎟⎟⎟⎠ .

Hence

∇f(x) = ∇F (x)F (x) =
( −16.5888
−300.8722

)

∇F (x)∇F (x)T =
(

78.5367 1335.8479
1335.8479 24559.9419

)
.

The Gauss-Newton search direction is obtained by solving the linear system

∇F (x)∇F (x)T = −∇F (x) F (x)

and so

p =
(

0.0381
0.0102

)

and the new estimate of the solution is

x ← x + p =
(

2.5381
0.2602

)
.

(For simplicity, we do not use a line search here, although a practical method would
require such a globalization strategy.) The complete iteration is given in Table D.1.
At the solution,

x =
(

2.5411
0.2595

)
.
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Table D.1. Gauss-Newton Iteration (Ideal Data)

k f(xk) ‖∇f(xk)‖
0 2 × 100 3 × 102

1 4 × 10−3 2 × 101

2 2 × 10−8 3 × 10−2

3 3 × 10−9 4 × 10−8

4 3 × 10−9 3 × 10−13

Since f(x) ≈ 0, an approximate global solution has been found to the least-squares
problem. (The least-squares objective function cannot be negative.) In general, the
Gauss-Newton method is only guaranteed to find a local solution.

For comparison, we now apply Newton’s method to the same problem using
the same initial guess

x =
(

2.50
0.25

)
.

At this point

∇f(x) =
( −16.5888
−300.8722

)
and ∇2f(x) =

(
78.5367 1215.4991

1215.4991 22278.6570

)
.

(This matrix is similar to the matrix used in the Gauss-Newton method.) The
search direction is the solution of

∇2f(x)p = −∇f(x)

so that

p =
(

0.0142
0.0127

)
and x ← x + p =

(
2.5142
0.2627

)
.

The complete iteration is in Table D.2. The solution obtained is almost identical
to that obtained by the Gauss-Newton method.

We now consider the same model

yi ≈ x1e
x2ti

but with the data

t = ( 1 2 4 5 8 4.1 )T
,

y = ( 3 4 6 11 20 46 )T
.

This corresponds to the antelope data of Section D.1, but with an extraneous data
point added. (This point is called an outlier, since it is inconsistent with the other
data points for this model.) In this case the exponential model will not be a good
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Table D.2. Newton Iteration (Ideal Data)

k f(xk) ‖∇f(xk)‖
0 2 × 100 3 × 102

1 1 × 10−1 5 × 101

2 2 × 10−4 9 × 10−1

3 5 × 10−9 6 × 10−3

4 6 × 10−9 8 × 10−8

5 3 × 10−9 1 × 10−12

fit to the data, so we would expect the performance of the Gauss-Newton method
to deteriorate. The runs corresponding to the initial guess

x =
(

10
0.1

)

are given in Table D.3. As expected, the Gauss-Newton method converges slowly.
Both methods find the solution

x =
(

9.0189
0.1206

)
.

The initial guess was close to the solution, so that the slow convergence of the
Gauss-Newton method was not due to a poor initial guess. Also, the final function
value is large, indicating that the model cannot fit the data well in this case. This
is to be expected given that an outlier is present.

Many other methods for nonlinear least-squares can be interpreted as using
some approximation to the second term in the formula for the Hessian matrix

m∑
i=1

fi(x)∇2fi(x).

The oldest and simplest of these approximations is

m∑
i=1

fi(x)∇2fi(x) ≈ λI,

where λ ≥ 0 is some scalar. Then the search direction is obtained by solving the
linear system [

∇F (x)∇F (x)T + λI
]
p = −∇F (x) F (x).

This is referred to as the Levenberg-Marquardt method.
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Table D.3. Gauss-Newton (left) and Newton Iterations (right); Data Set
with Outlier

k f(xk) ‖∇f(xk)‖
0 601.90 2 × 102

1 599.90 8 × 100

2 599.67 3 × 101

3 599.65 6 × 100

4 599.64 2 × 100

5 599.64 6 × 10−1

...
...

...
16 599.64 1 × 10−6

17 599.64 4 × 10−7

18 599.64 1 × 10−7

19 599.64 4 × 10−8

20 599.64 1 × 10−8

21 599.64 3 × 10−9

k f(xk) ‖∇f(xk)‖
0 601.90 2 × 102

1 599.64 1 × 101

2 599.64 2 × 10−2

3 599.64 6 × 10−8

4 599.64 5 × 10−13

The Levenberg-Marquardt method is often implemented in the context of a
trust-region strategy (see Section 11.6). If this is done then the search direction is
obtained by minimizing a quadratic model of the objective function (based on the
Gauss-Newton approximation to the Hessian)

minimize
p

Q(p) = f(x) + pT∇F (x) F (x) + 1
2pT∇F (x)∇F (x)Tp

subject to the constraint
‖p‖ ≤ Δ

for some scalar Δ > 0. This gives a step p that satisfies the Levenberg-Marquardt
formula for an appropriate λ ≥ 0. The scalar λ is determined indirectly by picking
a value of Δ, as is described in Section 11.6. The scalar Δ can be chosen based on
the effectiveness of the Gauss-Newton approximation to the Hessian, and this can
be easier than choosing λ directly. An example illustrating a trust-region approach
can be found in the same Section.

Both the Gauss-Newton and Levenberg-Marquardt methods use an approx-
imation to the Hessian ∇2f(x). If this approximation is not accurate then the
methods will converge more slowly than Newton’s method; in fact, they will con-
verge at a linear rate.

Other approximations to the Hessian of f(x) are also possible. For example,
a quasi-Newton approximation to

m∑
i=1

fi(x)∇2fi(x)
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could be used.
There is one other computational detail associated with the Gauss-Newton

method that should be mentioned. The formula for the search direction in a Gauss-
Newton method

∇F (x)∇F (x)Tp = −∇F (x) F (x)

is equivalent to the solution of a linear least-squares problem19

minimize
p

∥∥∇F (x)Tp + F (x)
∥∥2

2
=

[
∇F (x)Tp + F (x)

]T [
∇F (x)Tp + F (x)

]
.

If we set the gradient of this function with respect to p equal to zero, we obtain
the Gauss-Newton formula. The Gauss-Newton formula corresponds to a system of
linear equations called the normal equations for the linear least-squares problem. If
the normal equations are solved on a computer then the computed search direction
will have an error bound proportional to

cond(∇F (x)∇F (x)T ) = cond(∇F (x))2

if the 2-norm is used to define the condition number (see Section A.8). However if
the search direction is computed directly as the solution to the linear least-squares
problem without explicitly forming the normal equations, then in many cases a
better error bound can be derived.

Working directly with the linear least-squares problem is especially important
in cases where ∇F (x) is not of full rank, or is close (in the sense of rounding error)
to a matrix that is not of full rank. In this case the matrix

∇F (x)∇F (x)T

will be singular or nearly singular, causing difficulties in solving

∇F (x)∇F (x)Tp = −∇F (x)F (x).

The corresponding linear least-squares problem is well defined, however, even when
∇F (x) is not of full rank (although the solution may not be unique). A similar
approach can be used in the computation of the search direction in the Levenberg-
Marquardt method (see the Exercises).

Exercises
2.1. Let x = (2, 1)T. Calculate

F (x), f(x), ∇F (x),
∇f(x), ∇F (x)∇F (x)T, ∇2f(x)

for the antelope model.
19A least-squares model is “linear” if the variables x appear linearly. Thus the model y ≈

x1 + x2t2 is linear even though it includes a nonlinear function of the independent variable t.
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2.2. Consider the least-squares model

y ≈ x1e
x2t + x3 + x4t.

Determine the formulas for F (x), f(x), ∇F (x), ∇f(x), ∇F (x)∇F (x)T, and
∇2f(x) for a general data set { ti, yi) }m

i=1.
2.3. Verify the results in Example D.2 for the ideal data set.
2.4. Verify the results in Example D.2 for the data set containing the outlier.
2.5. Modify the least-squares model used in Example D.2 for the data set con-

taining the outlier. Use the model

y ≈ x1e
x2t + x3(t − 4.1)10.

Apply the Gauss-Newton method with no line search to this problem. Use
the initial guess (2.5, .25, .1)T. Does the method converge rapidly? Does this
model fit the data well?

2.6. Apply Newton’s method and the Gauss-Newton method to the antelope
model, using the initial guess x = (2.5, .25)T. Do not use a line search. Termi-
nate the algorithm when the norm of the gradient is less than 10−6. Compute
the difference between the Hessian and the Gauss-Newton approximation at
the initial and final points.

2.7. Repeat the previous exercise, but use the back-tracking line search described
in Section 11.5 with μ = 0.1.

2.8. Prove that the Gauss-Newton method is the same as Newton’s method for a
linear least-squares problem.

2.9. Consider the formula for the Levenberg-Marquardt direction:[
∇F (x)∇F (x)T + λI

]
p = −∇F (x) F (x).

Show that p can be computed as the solution to a linear least-squares problem
with coefficient matrix (∇F (x)T

√
λI

)
.

Why might it be preferable to compute p this way?
2.10. Consider a nonlinear least-squares problem

min f(x) = F (x)TF (x)

with n variables and m > n nonlinear functions fi(x), and assume that
∇F (x) is a full-rank matrix for all values of x. Let pGN be the Gauss-Newton
search direction, let pLM (λ) be the Levenberg-Marquardt search direction for
a particular value of λ, and let pSD be the steepest-descent direction. Prove
that

lim
λ→0

pLM (λ) = pGN

and

lim
λ→∞

pLM (λ)
‖pLM (λ)‖ =

pSD

‖pSD ‖ .
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D.3 Statistical Tests
20Let us return to the exponential model discussed in Section D.1, and assume that
the functions { fi } are residuals of the form

fi(x1, x2) = x1e
x2ti − yi.

We are assuming that
yi = x1e

x2ti + εi,

or in more general terms that

[Observation] = [Model] + [Error].

If assumptions are made about the behavior of the errors, then it is possible to draw
conclusions about the fit. If the model is linear, that is, if the variables x appear lin-
early in the functions fi(x), then the statistical conclusions are precise. If the model
is nonlinear, however, standard techniques only produce linear approximations to
exact results.

The assumptions about the errors are not based on the particular set of errors
that correspond to the given data set, but rather on the errors that would be
obtained if a very large, or even infinite, data set had been collected. For example,
it is common to assume that the expected value of the errors is zero, that is, that the
data are unbiased. Also, it is common to assume that the errors all have the same
variance (perhaps unknown), and that the errors are independent of one another.
These assumptions can sometimes be guaranteed by careful data collection, or by
transforming the data set in a straightforward manner (see the Exercises).

More is required, however. If we interpret the errors to be random, then
we would like to know their underlying probability distribution. We will assume
that the errors follow a normal distribution with mean 0 and known variance σ2.
The normal distribution is appropriate in many cases where the data come from
measurements (such as measurements made with a ruler or some sort of gauge).
In addition, the central limit theorem indicates that, at least as the sample size
increases, many other probability distributions can be approximated by a normal
distribution.

If the errors are assumed to be normally distributed, then least squares min-
imization is an appropriate technique for choosing the parameters x. Use of least
squares corresponds to maximizing the “likelihood” or probability that the param-
eters have been chosen correctly, based on the given data. If a different probability
distribution were given, then maximizing the likelihood would give rise to a different
optimization problem, one involving some other function of the residuals.

If least squares is applied to a linear model, then many properties of the pa-
rameters and the resulting fit can be analyzed. For example, one could ask for a
“confidence interval” that contained the true value of the parameter x1, with prob-
ability 95%. (Since the errors are random and they are only known in a statistical
sense, all of the conclusions that can be drawn will be probabilistic.) Or one could

20This Section assumes knowledge of statistics.
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ask if the true value of the parameter x2 were nonzero, with 99% probability. This
is referred to as a “hypothesis test.” (If the true value of this parameter were zero,
then the parameter could be removed from the model.) Or, for some given value of
the independent variable t, one could ask for a confidence interval that contained
the true value of the model y, again with some probability.

The answers to all of these questions depend on the “variance-covariance ma-
trix.” In the case of a linear model it is equal to

σ2[∇2f(x)]−1 = σ2[∇F (x)∇F (x)T ]−1,

where σ2 is the variance of the errors { εi }. In this case, it is a constant matrix. For
a nonlinear model, ∇2f(x) is not constant, and as a result the calculations required
to determine confidence intervals or to do hypothesis testing are more difficult and
more computationally expensive. It is possible to apply the same formulas that are
used for linear models, using either

[∇2f(x∗)]−1 or [∇F (x∗)∇F (x∗)T ]−1

in place of [∇2f(x)]−1, but the resulting intervals and tests are then only approx-
imations, and in some cases the approximations can be poor. Using additional
computations, it is possible to analyze a model to determine how nonlinear it is,
and hence detect if these linear approximations are effective. If they are not, then
alternative techniques can be applied, but again at a cost of additional computa-
tions.

Exercises
3.1. Determine the matrices

[∇2f(x∗)]−1 and [∇F (x∗)∇F (x∗)T ]−1

for the two data sets in Example D.2. Are the two matrices “close” to each
other?

3.2. Prove that the matrices

[∇2f(x∗)]−1 and [∇F (x∗)∇F (x∗)T ]−1

are the same for a linear least-squares problem.
3.3. Consider the nonlinear least-squares problem

minimize
m∑

i=1

fi(x)2

where each fi represents a residual with error εi. Assume that all of the
errors are independent, with mean zero. Also assume that the i-th error is
normally distributed with known variance σ2

i , but do not assume that all of
these variances are equal. Show how to transform this least-squares problem
to one where all the errors have the same variance.
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D.4 Orthogonal Distance Regression
So far, we have assumed that the data-fitting errors were of the form

y = x1e
x2t + ε.

That is, either the model is incomplete (there are additional terms or parameters
that are being ignored) or the observations contain errors, perhaps due to inaccurate
measurements. But it is also possible that there are errors in the independent vari-
able t. For example, the measurements might be recorded as having been taken once
an hour at exactly thirty minutes past the hour, but in fact were taken sometime
between twenty-five and thirty-five minutes past the hour.

If this is true—if we believe that the independent variable is subject to error—
we should use a model of the form

y = x1e
x2(t+δ) + ε.

If we assume that the errors δ are normally distributed with mean 0 and constant
variance, then it is appropriate to use a least-squares technique to estimate the
parameters x and δ:

minimize
x,δ

f(x1, x2) =
5∑

i=1

[(x1e
x2(ti+δi) − yi)2 + δ2

i ] =
5∑

i=1

[ε2i + δ2
i ].

More generally, if our original least-squares problem were of the form

minimize
x

f(x) =
m∑

i=1

fi(x; ti)2,

where ti is a vector of independent variables that is subject to error, then the revised
least-squares problem could be written as

minimize
x,δ

f(x) =
m∑

i=1

fi(x; ti + δi)2 + ‖δ‖2
2 .

One might also consider scaling ‖δ‖ by some constant to reflect any difference in
the variances of the two types of errors.

Problems of this type are sometimes called errors in variables models, for
obvious reasons, but we will use the term orthogonal distance regression. To explain
this, consider again the graph of our antelope data (see Figure D.2). If we assume
that all the error is in the model or the observation, then the residual measures
the vertical distance between the data point and the curve. However if there is
also error in the independent variable then geometrically we are minimizing the
orthogonal distance between the data point and the curve.

If the model is changing rapidly—as in an exponential model when the expo-
nent is large, or near a singularity in a model—the vertical distance can be large
even though the orthogonal distance is small. A data point in such a region can
easily have a large vertical residual and thus can exert extraordinary influence in the
ordinary least-squares model, perhaps to the extent that the parameter estimate is
strongly influenced by that single data point. Using orthogonal distance regression
can alleviate this form of difficulty.
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orthogonal vertical

Figure D.2. Orthogonal and Vertical Distances

Exercises
4.1. Consider the function f(x) = 1/x. Let ε = 10−2 and x = 3

2ε. Determine the
vertical and orthogonal distance from the point (x− ε, 1/x)T to the graph of
f .

4.2. Consider the ideal data set in Example D.2. Apply Newton’s method (or any
other minimization method) to solve

minimize
x,δ

f(x) =
m∑

i=1

fi(x; ti + δi)2 + ‖δ‖2
2 .

Compare your solution to that obtained in Example D.2.
4.3. Repeat the previous exercise for the data set in Example D.2 containing an

outlier.

D.5 Notes
Gauss-Newton Method—We believe that the Gauss-Newton method was invented
by Gauss; it is described in his 1809 book on planetary motion. A more mod-
ern discussion can be found, for example, in the paper by Dennis (1977). The
Levenberg-Marquardt method was first described in the papers of Levenberg (1944)
and Marquardt (1963). Its implementation in terms of a trust-region method is de-
scribed in the paper of Moré (1977). Other approximations to the Hessian of the
least-squares problem are described in the papers by Ruhe (1979), Gill and Murray
(1978), and Dennis, Gay, and Welsch (1981), and in the book by Bates and Watts
(1988). The computational difficulties associated with the normal equations are
described in the book by Golub and Van Loan (1996).

In many applications, only a subset of the parameters will occur nonlinearly.
In such cases, efficient algorithms are available that treat the linear parameters in
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a special way. For further information, see the papers by Golub and Pereyra (1973)
and Kaufman (1975). Software implementing these techniques is available from
Netlib.

Statistical Tests—A brief introduction to statistical techniques in nonlinear
least-squares data fitting can be found in the article by Watts and Bates (1985).
For a more extensive discussion see the book by Bard (1974). A comparison of
various techniques for computing confidence intervals can be found in the paper by
Donaldson and Schnabel (1987).

Orthogonal Distance Regression—An extensive discussion of orthogonal dis-
tance regression can be found in the book by Fuller (1987). Algorithms and software
for orthogonal distance regression are closely related to those used for ordinary least-
squares regression. For a discussion of these techniques, see the paper by Boggs and
Rogers (1990). In the linear case, orthogonal distance regression is often referred
to as “total least squares.” For information about this case, see the book by Van
Huffel and Vandewalle (1991).
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