Functional and
Logic programming

Tutorial 2: Unification, Lists,
Proof trees for recursive
predicates.

Unification algorithm

Where do we meet the algorithm?

1) When matching a query against a rule:
connected(picadilly circus, bank street).
?—- connected(X,Y).

2) Using the equals predicate.
picadilly circus = X.

Input: Two terms A and B.

Output: A minimal set of substitution to make the terms A
and B equal.

Unification algorithm: Examples 1/2

Input: X = picadilly. Output: {X = picadilly}.

Input: plus(X,Y) = plus(Z,4)
Output: {X\ 3, Y\ Z}.

Input: cons(first,cons(second,nil)) = cons(A,cons(B,nil))
Output: {A \ first, B \ second}

Unification algorithm: Examples 2/2

Input: cons(first,cons(second,nil)) = cons(A,B)
Output: {A \ first, B \ cons(second,nil)}

Input: cons(first,nil) = cons(A,cons(B,nil))
Output: false.

Input: cons(X,cons(Y,nil)) = cons(Y,cons(element,nil)
Output: {X \ element, Y \ element}

Unification algorithm

1) A variable and a constant do unify.
?- X = piccadily circus.
true.

2) A variable and a variable do unify.
- X =Y.
true.

3) Two functions unify if
a) predicate symbols and arities (=*signature”) are equal
b) their arguments unify

Unification for lists

e Prolog vs. LISP:
o ' ' instead of cons ()
o [1 instead of nil.
e Syntactic sugar:
o Unification [X|Y] = [a,b,c] makes
X correspond to car and Y correspond to cdr.
o Without shorening, we can write
(X,Y) = o (a, ' (b, (e, [1)))
o When hesitating, just recall: [X]Y] == '.'(X,Y)
and the unification algorithm.

Underground journey 1/2

e Let's use the code from the last tutorial to declare
predicate journey/2 which finds a route between two
stations and, if successful, writes them down.

 Example:

* ?- journey (bond street, leicester square).
leicester square tottenham court road
oxford circus

Underground journey 2/2

 Now define predicate journey/3 which returns a list of
visited stations on a journey

* ?- journey(bond street, leicester square, LS).
LS = [oxford circus, tottenham court road,
lelcester square]

Is ‘2’ member of a list?

e Define your own implementation of the member/2
predicate.

Example:

?- my member(a, [b, a, c]). yes.

?- my member(a, []). no.

?- my member([l,a], [b, a, ¢, [1l,a]]). yes.

Homework #1

Implement select predicate. Its functionality overlaps with
member, but additionally, it returns the “rest of the list”.

?- my select(Element, [a,b,c], Remaining).
Element = a,

Remaining = [b, c] ;

Element = b,

Remaining = [a, c] ;

Element = c,

Remaining = [a, b] ;

false.

Reverse a list

e Define predicate addtoend/2 which adds element to the
end of given list.

 Example:
?- addtoend (0, [1,2,3], L). L = [1,2,3,0].
» Define predicate my reverse/2 that reverse elements of

given list (you can use the addtoend/2 predicate)

 Example:
?- my reverse([l,2,3], L). L = [3,2,1].

Append two lists

e Define your own implementation of the append/3
predicate

 Example:
g mY_aPPend([a,b,c], [d,e], L).
L = [a,b,c,d,e].

 What would my append (L1, L2, [a, b, c]) do?

Solution of append/3

append (A, [] ,A) .

append (A, [H|T], [H|L]) : -
append (A, T, L) .

Homework #2

1.Study the =. . metapredicate:
?- connected(bond street,
oxford circus, central) =.. X
[connected, bond street,
oxford circus, central].
2.What does var (-) do: ?-var(a). ?-var (X).
3.Easy: extract variables from a flat term:
?- varsflat(term(a,b,X,c,Y,z) , V). ... V=[X,Y].
4. Hard: extract variables from a structured term:
?- allvars(f(a,X,g(c,h(Y)),z), V). ..V=[X, Y].

X

Food for thought

e Study the astonishing beauty of sublist/3 predicate:
http://www.cs.bris.ac.uk/~flach/SL/labs/labs3.pl
e Convince yourself about the syntactic sugar
[X|¥] = '.'(X,Y) using the =.. metapredicate.
 What are the differences between
a list [a,b,c] and
a tuple (a,b,c) ?
Again, using =. . is highly recommended!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

