
Concurrent approach to a database
Motivation example:

Transction Variable A Variable B Account A
balance

Account B
balance

1000,- 1000,-

T1: read A T1: 1000

T1: read B T1: 1000

T1: subtract 100 from A T1: 900

T1: add 100 to B T1: 1100

T1: write A 900,-

T2: read B T2: 1000

T1: write B 1100,-

T2: subtract 200 from B T2: 800

T2: Write B 800,-

Resulting balance 900,- 800,-

Expected balance 900,- 900,-

Bank transfer 100,- Kč from account "A" to account "B" and concurrent withdrawal
of 200 Kč from account "B".

Concurrent transaction may violate DB consistency even if each pf the transaction
(if executed alone) would not violate DB consistency.

Concurrent approach to a database

Transactio:

ACID property:

Atomicity: atomicity – either complete or nothing
Consistency transaction must be correct w.r.t. sustaining

invariants – integrity constrains
Isolation (isolation = serializability). Even if being executed

concurrently, the result is the same as if execited
serially

Durability Data modification carried out by a successfully
completed transaction are persistent (durable)
even in case of an accident (failure/accident
recovery).

Concurrent approach to a database

Serializable execution of transactions:

•  Multiple transactions running „in parallel“ (higher throughput of the
system)

•  Result equivalent to a serial execution.

Serializability - methods:
•  locking on various granularity levels:

•  locking of the complete DB (=> serial execution)
•  table locking
•  row locking

•  time stamps
•  MVCC (multiversion concurrency control)
•  predicate locks

Concurrent approach to a database
Transaction = sequence of read / write actions on DB objects

(insert a delete not taken into account, yet).

time

BOT A1 A2 A3 . . . An COMMIT

BOT A1 A2 A3 CHYBA ROLLBACK

Database is
consistent

Database may be
inconsistent
temporarily

Database is
consistent

Concurrent approach to a database

•  Multiple reads of the same object cannot violate the consistency.

•  Multiple writes of the same object within one transaction need not be

taken into account (transakce is correct – see “C” in ACID).

•  Only reads a writes executed within different transactions may violate

the consistency.

Concurrent approach to a database

Lost update T1 WRITE <o,1> Version 1 of object o will
not sustain. As if T1 never
run.

T2 WRITE <o,2>

T1 READ <o,2>

Dirty read T2 WRITE <o,2>
T1 READ <o,2> T1 read a temporary (not

committed) value
T2 ROLLBACK <o,1>

Unrepeatable read T1 READ <o,1>
T2 WRITE <o,2>
T1 READ <o,2> unrepeatable read

Phantom problem To be explained on one of next slides

Concurrent approach to a database

time

T1:

BOT
SELECT *

FROM Table
WHERE P

…

T2:

SELECT *
FROM Table
WHERE P

BOT

INSERT INTO Table
VALUES (splňující P)

UPDATE Table
 (tak, že vznikne
věta splňující P)

Phantom problem

LOST UPDATE - an example:
Transaction T1 : withdrawal of the complete balance from account A.
Transakce T2 : add 3% interests to account A.

Step T1 T2

1. BOT

2. BOT

3. a1 := 0

4. READ(A, a2)

5. a2 := a2 * 1.03

6. WRITE(A, a1)

7. WRITE(A, a2)

8. COMMIT

9. COMMIT

An example of a transactional history (aka schedule):

Concurrent approach to a database

DIRTY READ – an example:

Transaction T1: transfer 300,- Kč from account A to account B.

Transaction T2: add 3% interests to account A, that is in an inconsistent status
at the moment.

Step T1 T2
1. READ(A, a1)

2. a1 := a1 - 300

3. WRITE(A, a1)

4. READ(A, a2)

5. a2 := a2 * 1.03

6. WRITE(A, a2)

7. READ(B, b1)

READ selhal, proto:

8. ROLLBACK

ROLLBACK returns status to what it was at the
beginning of transactionT1, This will cause that
the whole effect of transaction T2 is lost.

T2 is to blame - it read a data object that was not
confirmed (comitted) yet.

An example of a transactional history (aka schedule):

Concurrent approach to a database

UNREPEATABLE READ an example:

Transaction T1 transfers 300,- Kč from account A to account B.

Transaction T2 adds 3% interests to account A, that is in an inconsistent status
at the moment.

Step T1 T2
1. READ(A, a1)

2. READ(A, a2)

3. a2 := a2 * 1.03

4. WRITE(A, a2)

5. a1 := a1 – 300

6. WRITE(A, a1)

7. READ(B, b1)

8 b1 := b1 + 300

8. WRITE(B, b1)

T2 overwrote a data object, that transaction T1 rad in and is
going to work with it in the future -> T1 will work with
inconsistent data.

Variable a1 does not reflect the status of the database. If we
carried our READ(A,a1) again, the contents of the variable a1
would be different!

An example of a transactional history (aka schedule):

Concurrent approach to a database

PHANTOM PROBLEM – an example:

In the course of processing T2, transaction T1 introduces a new record to the
database. Hence, the second SELECT will return different result.

Step T1 T2
1. SELECT sum(StavUctu)

FROM Ucty
2. INSERT INTO Ucty

VALUES (StavUctu, 1000)

3. SELECT sum(StavUctu)
FROM Ucty

Concurrent approach to a database

An example of a transactional history (aka schedule):

Lost update T1 WRITE <o,1> Version 1 of object o will not
sustain. As if T1 never run.

T2 WRITE <o,2>

T1 READ <o,2>

Dirty read T2 WRITE <o,2>

T1 READ <o,2> T1 read a temporary (not
committed) value

T2 ROLLBACK <o,1>

Unrepeatable
read

T1 READ <o,1>

T2 WRITE <o,2>

T1 READ <o,2> unrepeatable read

Phantom
problem

T1 SELECT predicate
T2 INSERT o3
T1 SELECT predicate

{ o1, o2}

{ o1, o2}

Concurrent approach to a database

Transactional history (transaction schedule) – a sequence of actions belonging
to several transactions that sustains the order in which the actions were executed.

History (schedule) is called serial, if all steps of one transaction were executed
before all steps of the other transaction.

Serialized hisotry Serial historie

Step T1 T2 T1 T2

1 BOT BOT

2 READ(A) READ(A)

3 BOT WRITE(A)

4 READ(C) READ(B)

5 WRITE(A) WRITE(B)

6 WRITE(C) COMMIT

7 READ(B) BOT

8 WRITE(B) READ(C)

9 COMMIT WRITE(C)

10 READ(A) READ(A)

11 WRITE(A) WRITE(A)

12 COMMIT COMMIT

SERIALIZABILITY theory:

Let a transakce Ti consists of the following elementary operations:

•  READi(A) – read object A in context of transaction Ti

•  WRITEi(A) - write (modify) object A in context of transaction Ti

•  ROLLBACKi – revert all objects modified by Ti to the status as it was at the beginning of Ti

•  COMMITi – confirmation of the successful end of Ti

READI(A) - READJ(A) No conflict Order not significant
READI(A) - WRITEJ(A) Conflict Order significant
WRITEI(A) - READJ(A) Conflict Order significant
WRITEI(A) - WRITEJ(A) Conflict Order significant

Only (mutually) conflicting operations are interesting.

Two histories H1 a H2 (on the same set of transactions) are equivalent, iff all
conflicting operations of (non-interrupted transactions are carried out in the same
order.

For any two equivalent histories and an ordering <H1 induced by history H1 and <H2
induced by history H2 the following holds: if pi and qj are conflicting operations such
that pi <H1 qj , the following has to hold pi <H2 qj , too. The order of non-conflicting
operations is not interesting.

4 cases possible:

Not every history is serializable:

Non-serializable history

Step T1 T2

1 BOT

2 READ(A)

3 WRITE(A)

4 BOT

5 READ(A)

6 WRITE(A)

7 READ(B)

8 WRITE(B)

9 COMMIT

10 READ(B)

11 WRITE(B)

12 COMMIT

Reason:
Transakce T1 is before T2 when processing
object A, but T2 is before T1 when processing
objectu B.

This is why this history is not equivalent neither
to serial execution T1T2 or to serial execution
T2T1.

Hence, this history is not serializable.

Serializability theory (II)

Example: Let H be a history of three transactions T1, T2, T3:

w2(B) < r1(B); w1(A) < r2(A); w2(C) < r3(C); w2(A) < r3(A)

Graph of dependency: T2 → T1 T1 → T2 T2 → T3 T2 → T3

T1 T2

T3

History H is serializable iff its graph of dependency is acyclic.

Locking:

2 types of locks:

•  SLOCK: Shared lock.
•  XLOCK: eXclusive lock.

Well formed transaction:

•  Before any READ of a DB object, this DB objects has to be locked by SLOCK,
•  Before any WRITE to a DB object, this DB object has to be locked by XLOCK
•  UNLOCK of a DB object can be done only if the object is locked with SLOCK/XLOCK
•  any SLOCK/XLOCK is followed by corresponding UNLOCK in the course of
 the transaction.

Locks compatibility

Existing lock
not

locked
SLOCK XLOCK

 Requested SLOCK OK OK Conflict
lock XLOCK OK Conflict Conflict

Legal history:

Any history following the lock compatibility rules is called legal
history.

Actions and transactions
Actions on objects: READ, WRITE, XLOCK, SLOCK, UNLOCK
Global actions: BEGIN, COMMIT, ROLLBACK

T' BEGIN T'' BEGIN

SLOCK A SLOCK A
XLOCK B READ A
READ A XLOCK B
WRITE B WRITE B
COMMIT ROLLBACK

Let us rid off the COMMIT and ROLLBACK operations by a conversion to a
(from consistence perspective) equivalent transaction model – see next page

Simple transaction:
1)  Consists of READ, WRITE, XLOCK, SLOCK a UNLOCK.
2)  COMMIT replaced with a sequence commands UNLOCK A, for each DB object A,

that was locked by SLOCK A or XLOCK A in the course of T
3)  ROLLBACK replaced with a sequence of actions:

•  WRITE A for each DB object A, tha was subject of WRITE A in the course of T
•  UNLOCK A for each DB object A that was locked by SLOCK A or XLOCK A

in the course of T.

T' SLOCK A T'' SLOCK A
XLOCK B READ A
READ A XLOCK B
WRITE B WRITE B
UNLOCK A WRITE (undo) B
UNLOCK B UNLOCK A

UNLOCK B

Two-phase transaction
All LOCK actions carried out before all UNLOCK actions.
Growing phase - all LOCK actions carried out in the course of the growing phase.
Shrinking phase – all UNLOCK actions carried out in the course of the schrinking
phase

Two-phase transaction: growning and shrinking phases do not overlap.

time

The number of applied locks:

Growing phase Shrinking phase

A transaction is serializable (with exception of the phantom problem),
iff:

•  it is well formed
•  it is legal
•  it is two-phase
•  and holds all XLOCKS until COMMIT/ROLLBACK

Isolation degrees

Transaction Name Locking protocol

 0° 0° T does not overwrite dirty
data of another transaction, if
this (the other) transaction is at
least 1°

anarchie well formed for WRITE

1° 1° T does not have lost
updates

browse Two-phase for XLOCK
and well formed for
WRITE

2° 2° T does not have lost
updates and/or dirty reads

Two-phase for XLOCK
a well formed for
WRITE and READ

3° 3° T does not have lost
updates, dirty reads and/or
unrepeatable reads

isolated transaction
serializable
repeatable read

Two-phase for XLOCK i
SLOCK and well
formed for WRITE and
READ

(our simplified model – we still do not consider phantoms)

 EXEC SQL DECLARE CURSOR movie_cursor FOR
 SELECT title, CAST (year_released AS CHARACTER(10))
 FROM movie_titles;

char title[51], year[11], result[102, star_name[51];

while (/* cyklus pres jednotlive filemy */)
{

 EXEC SQL FETCH NEXT FROM movie_cursor INTO :title, :year ;
 ...

}

Cursor

Cursor stability

SQL DBMSs usually implement an enriched protocol 2° called
cursor stability.

Shared lock applied to records addressed by a (some) cursor
⇒  cursor stability.

One of particular implementations described in
http://jazz.external.hp.com/training/sqltables/c5s38.html

Cursor stability

FETCH operation:

1.  Pointers in source tables will move so that they point to the next candidate

cursor record.
2.  Records of source tables referenced by pointers will be locked by SLOCK.
3.  Check whether this candidate reallly belongs to the cursor.
4.  If not, release (unlocke) SLOCKS andgo to point 1.
5.  If yes, the records remain locked by SLOCK until the cursor is closed. If a

record will be modified, the corresponding source tables records locks will
be changed from SLOCK to XLOCK.

The imoortant aspect is that the FETCH operation does not unlock the previous
record.

SET TRANSACTION ISOLATION LEVEL [READ UNCOMMITTED]
 [READ COMMITTED]
 [REPEATABLE READ]
 [SERIALIZABLE]

READ UNCOMMITTED - 1° browse - for read-only transactions
READ COMMITTED - cursor stability (improved 2°)
REPEATABLE READ - 3° without phantom protection
SERIALIZABLE - 3° with phantom protection

Method of timestamps:
•  On start of any transaction, the transaction receives a timestamp (at the rate of

1 tick/ms – 32 bit timestamp is enough for 49 days)
•  If a transaction accesses an DB object for READ, the object‘s tr timestamp

will be assigned the highest timestamp of all transactions that reading the object
•  If a transaction accesses an DB object for WRITE, the object‘s tw timestamp

will be assigned the timestamp of the particular transaction.

Constraints:
•  Transaction with a timestamp t is not allowed to read objects with tw > t.

ROLLBACK follows.
•  Transaction with a timestamp t is not allowed to overwrite objects with tr > t.

ROLLBACK follows.
•  2 transactions may read the same DB object at any moment.
•  If a transaction with timestamp t is going to overwrite an object with tw > t,

the transaction has to wait until tw is removed from the object.

Deadlock

Step T1 T2
1 BOT
2 LockX(A)
3 BOT
4 LockS(B)
5 Read(B)
6 Read(A)
7 Write(A)
8 LockX(B) T1 has to wait for T2
9 LockS(A) T2 has to wait for T1

10 … …

Removal of cycles – strategy:

•  Rollback as young transaction as possible (to influence as few transactions
as possible)

•  Rollback a transaction with highest number of locks applied.

•  Do not rollback a transaction tha was already rollbacked.
•  Rollback a transaction, that participates in multiple cycles.

T1 T2

T5

T4 T3

Mutual waiting graph:

Deadlock

Phantom protection:

The only reliable protection – predicate locks.

SELECT * FROM T Where P1()

Predicate P1() is put to the list of active predicate locks.

If I wish to execute INSERT INTO T in parallel, I have to:

1.  Check whether the record to be inserted does not meet any of the active
predicate locks.

2.  If yes, conflict, the INSERT can not be executed, its transaction needs to be
rolled back.

Predicate locks computationally expensive => DB vendors usually do not
implement them.

What else if not predicate locks?

•  Timestamps
•  MVCC – Multiversion Concurrency Control

MVCC – multiversion Concurrency Control

•  The method is using timestamps
•  Snapshot isolation

•  A „snapshot“ of (the relevant part of the) database is created.

•  Modifications done by this transaction are visible in this transactions‘s
snapshot but not in the snapshots of the parallel transactions.

•  At the end of the transaction, a trial to execute a commit is done.

•  If the comitted data is in conflict (detected by means of timestamps)
with updates of transactions that did the commit after our transaction
created the snapshot, our transaction has to ROLLBACK.

ISO:

READ UNCOMMITTED
READ COMMITTED
REPEATABLE READ
SERIALIZABLE

Postgre SQL

READ COMMITTED
READ COMMITTED
SERIALIZABLE
SERIALIZABLE

READ COMMITED in PostreSQL:

Snapshot created at the beginning of SELECT

Notice that two successive SELECTs can see different data, even though they are within a single
transaction, when other transactions commit changes during execution of the first SELECT.

SERIALIZABLE in PostreSQL:

Snapshot created at the beginning of the transaction.

This is different from Read Committed in that the SELECT sees a snapshot as of the start of the
transaction, not as of the start of the current query within the transaction.

PostgreSQL – programmer‘s manual section 12.2.2.1:

Class Value
1 10
1 20
2 100
2 200

Let us execute in parallel:

1.  Insert result of SELECT 2, SUM(value) FROM mytab WHERE class = 1;

into mytab
2.  Insert result of SELECT 1, SUM(value) FROM mytab WHERE class = 2;

into mytab

What will be the result?

