
Concurrent approach to a database 
Motivation example: 

Transction Variable A Variable B Account A 
balance 

Account B 
balance 

1000,- 1000,- 

T1: read A T1:  1000 

T1: read B T1:  1000 

T1: subtract 100 from A T1:    900 

T1: add 100 to B   T1:  1100 

T1: write A 900,- 

T2: read B T2:  1000 

T1: write B 1100,- 

T2: subtract 200 from B T2:    800 

T2: Write B 800,- 

Resulting balance 900,- 800,- 

Expected balance 900,- 900,- 

  

Bank transfer 100,- Kč from account "A" to account "B" and concurrent withdrawal 
of 200 Kč from account "B". 

Concurrent transaction may violate DB consistency even if each pf the transaction  
(if executed alone) would not violate DB consistency. 



Concurrent approach to a database 

Transactio: 
 
ACID property: 

Atomicity: atomicity – either complete or nothing 
Consistency transaction must be correct w.r.t. sustaining 

invariants – integrity constrains 
Isolation (isolation = serializability). Even if being executed 

concurrently, the result is the same as if execited 
serially 

Durability Data modification carried out by a successfully 
completed transaction are persistent (durable) 
even in case of an accident (failure/accident 
recovery). 



Concurrent approach to a database 

Serializable execution of transactions: 

•  Multiple transactions running „in parallel“ (higher throughput of the 
system) 

•  Result equivalent to a serial execution. 

Serializability - methods: 
•  locking on various granularity levels: 

•  locking of the complete DB (=> serial execution) 
•  table locking 
•  row locking 

•  time stamps 
•  MVCC (multiversion concurrency control) 
•  predicate locks 



Concurrent approach to a database 
Transaction = sequence of read / write actions on DB objects  

(insert a delete not taken into account, yet). 

time 

BOT A1 A2 A3 . . . An COMMIT 

BOT A1 A2 A3 CHYBA ROLLBACK 

Database is 
consistent 

Database may be 
inconsistent 
temporarily 

Database is 
consistent 

 
 
 



Concurrent approach to a database 

•  Multiple reads of the same object cannot violate the consistency. 
 
 
•  Multiple writes of the same object within one transaction need not be 

taken into account (transakce is correct –  see “C” in ACID). 
 
 
•  Only reads a writes executed within different transactions may violate 

the consistency. 
 



Concurrent approach to a database 

Lost update T1 WRITE  <o,1> Version 1 of object o will 
not sustain. As if T1 never 
run. 

T2 WRITE <o,2> 

T1 READ  <o,2> 

Dirty read T2 WRITE <o,2> 
T1 READ <o,2> T1 read a temporary (not 

committed) value 
T2 ROLLBACK <o,1> 

Unrepeatable read T1 READ <o,1> 
T2 WRITE <o,2> 
T1 READ <o,2> unrepeatable read 

Phantom problem To be explained on one of next slides 



Concurrent approach to a database 

time 

T1: 
 

BOT 
SELECT * 

FROM Table 
WHERE P 

… 

T2: 

SELECT * 
FROM Table 
WHERE P 

 
BOT 

INSERT INTO Table 
VALUES (splňující P) 

UPDATE Table 
 (tak, že vznikne 
věta splňující P) 

 

Phantom problem 



LOST UPDATE -  an example: 
Transaction T1 : withdrawal of the complete balance from account A. 
Transakce T2 : add 3% interests to account  A. 

Step T1 T2 

1. BOT 

2. BOT 

3. a1 := 0 

4. READ(A, a2) 

5. a2 := a2 * 1.03 

6. WRITE(A, a1) 

7. WRITE(A, a2) 

8. COMMIT 

9. COMMIT 

An example of a transactional history (aka schedule): 

Concurrent approach to a database 



DIRTY READ – an example: 

Transaction T1: transfer 300,- Kč from account A to account B. 

Transaction T2: add 3% interests to account A, that is in an inconsistent status 
at the moment. 

Step T1 T2 
1. READ(A, a1) 

2. a1 := a1 - 300 

3. WRITE(A, a1) 

4. READ(A, a2) 

5. a2 := a2 * 1.03 

6. WRITE(A, a2) 

7. READ(B, b1) 

READ selhal, proto: 

8. ROLLBACK 

ROLLBACK returns status to what it was at the 
beginning of transactionT1, This will cause that 
the whole effect of transaction T2 is lost.  
 
T2 is to blame - it read a data object that was not 
confirmed (comitted) yet. 

 
 

An example of a transactional history (aka schedule): 

Concurrent approach to a database 



UNREPEATABLE READ an example: 

Transaction T1 transfers  300,- Kč from account A to account B. 

Transaction T2 adds 3% interests to account A, that is in an inconsistent status 
at the moment. 

Step T1 T2 
1. READ(A, a1) 

2. READ(A, a2) 

3. a2 := a2 * 1.03 

4. WRITE(A, a2) 

5. a1 := a1 – 300 

6. WRITE(A, a1) 

7. READ(B, b1) 

8 b1 := b1 + 300 

8. WRITE(B, b1) 

T2 overwrote a data object, that transaction T1 rad in and is 
going to work with it in  the future -> T1 will work with 
inconsistent data. 
 
Variable a1 does not reflect the status of the database. If we 
carried our READ(A,a1) again, the contents of the variable a1 
would be different! 

 
 

An example of a transactional history (aka schedule): 

Concurrent approach to a database 



 
 

PHANTOM PROBLEM – an example: 

In the course of processing T2, transaction T1 introduces a new record to the 
database. Hence, the second SELECT will return different result. 

Step T1 T2 
1. SELECT sum(StavUctu) 

FROM Ucty 
2. INSERT INTO Ucty 

VALUES (StavUctu, 1000) 

3. SELECT sum(StavUctu) 
FROM Ucty 

 
 

Concurrent approach to a database 

An example of a transactional history (aka schedule): 



Lost update T1 WRITE  <o,1> Version 1 of object o will not 
sustain. As if T1 never run. 

T2 WRITE <o,2> 

T1 READ  <o,2> 

Dirty read T2 WRITE <o,2> 

T1 READ <o,2> T1 read a temporary (not 
committed) value 

T2 ROLLBACK <o,1> 

Unrepeatable  
read 

T1 READ <o,1> 

T2 WRITE <o,2> 

T1 READ <o,2> unrepeatable read 

Phantom  
problem 

T1 SELECT predicate 
T2 INSERT o3 
T1 SELECT predicate 

{ o1, o2} 
 
{ o1, o2} 

Concurrent approach to a database 



Transactional history (transaction schedule) – a sequence of actions belonging  
to several transactions that sustains the order in which the actions were executed. 
 
History (schedule) is called serial, if all steps of one transaction were executed  
before all steps of the other transaction. 

Serialized hisotry Serial historie 

Step T1 T2 T1 T2 

1 BOT BOT 

2 READ(A) READ(A) 

3 BOT WRITE(A) 

4 READ(C) READ(B) 

5 WRITE(A) WRITE(B) 

6 WRITE(C) COMMIT 

7 READ(B) BOT 

8 WRITE(B) READ(C) 

9 COMMIT WRITE(C) 

10 READ(A) READ(A) 

11 WRITE(A) WRITE(A) 

12 COMMIT COMMIT 



SERIALIZABILITY theory: 
 

Let a transakce Ti consists of the following elementary operations: 
 

•  READi(A) – read object A in context of transaction Ti 

•  WRITEi(A) - write (modify) object A in context of transaction Ti 

•  ROLLBACKi – revert all objects modified by Ti  to the status as it was at the beginning of Ti  

•  COMMITi – confirmation of the successful end of Ti 

READI(A) - READJ(A) No conflict Order not significant 
READI(A) - WRITEJ(A) Conflict Order significant 
WRITEI(A) - READJ(A) Conflict Order significant 
WRITEI(A) - WRITEJ(A) Conflict Order significant 

Only (mutually) conflicting operations are interesting. 
 
Two histories H1 a H2 (on the same set of transactions) are equivalent, iff all  
conflicting operations of (non-interrupted transactions are carried out in the same  
order. 
 
For any two equivalent histories and an ordering <H1 induced by history H1 and <H2  
induced by history H2 the following holds: if pi and qj are conflicting operations such  
that pi <H1 qj , the following has to hold pi <H2 qj , too. The order of non-conflicting  
operations is not interesting. 

4 cases possible: 



Not every history is serializable: 

Non-serializable history 

Step T1 T2 

1 BOT 

2 READ(A) 

3 WRITE(A) 

4 BOT 

5 READ(A) 

6 WRITE(A) 

7 READ(B) 

8 WRITE(B) 

9 COMMIT 

10 READ(B) 

11 WRITE(B) 

12 COMMIT 

Reason: 
Transakce T1 is before T2  when processing  
object A, but T2 is before T1 when processing  
objectu B. 
 
This is why this history is not equivalent neither  
to serial execution T1T2 or to serial execution 
T2T1. 
 
Hence, this history is not serializable. 
 



Serializability theory (II) 
 

Example: Let H be a history of three transactions T1, T2, T3: 

w2(B) < r1(B);    w1(A) < r2(A);    w2(C) < r3(C);    w2(A) < r3(A) 
 

Graph of dependency:           T2 → T1      T1 → T2   T2 → T3   T2 → T3 
 

T1 T2 

T3 

History H is serializable iff its graph of dependency is acyclic. 



Locking: 
 

2 types of locks: 
 

•  SLOCK:  Shared lock. 
•  XLOCK: eXclusive lock. 

Well formed transaction: 
 

•  Before any READ of a DB object, this DB objects has to be locked by SLOCK,  
•  Before any WRITE to a DB object, this DB object has to be locked by XLOCK  
•  UNLOCK of a DB object can be done only if the object is locked with SLOCK/XLOCK 
•  any SLOCK/XLOCK is followed by corresponding UNLOCK in the course of  
   the transaction. 



Locks compatibility 

Existing lock 
not 

locked 
SLOCK XLOCK 

 Requested SLOCK OK OK Conflict 
lock XLOCK OK Conflict Conflict 

Legal history: 
 
Any history following the lock compatibility rules is called legal 
history. 



Actions and transactions 
Actions on objects:  READ, WRITE, XLOCK, SLOCK, UNLOCK 
Global actions:   BEGIN, COMMIT, ROLLBACK 

T' BEGIN T'' BEGIN 

SLOCK A SLOCK A 
XLOCK B READ A 
READ A XLOCK B 
WRITE B WRITE B 
COMMIT ROLLBACK 

Let us rid off the COMMIT and ROLLBACK operations by a conversion to a  
(from consistence perspective) equivalent transaction model – see next page 



Simple transaction: 
1)  Consists of READ, WRITE, XLOCK, SLOCK a UNLOCK. 
2)  COMMIT replaced with a sequence commands UNLOCK A, for each DB object A,  

that was locked by SLOCK A or XLOCK A in the course of T 
3)  ROLLBACK replaced with a sequence of actions: 

•  WRITE A for each DB object A, tha was subject of WRITE A in the course of T 
•  UNLOCK A for each DB object A that was locked by SLOCK A or XLOCK A 

in the course of T. 

T' SLOCK A T'' SLOCK A 
XLOCK B READ A 
READ A XLOCK B 
WRITE B WRITE B 
UNLOCK A WRITE (undo) B 
UNLOCK   B UNLOCK A 

UNLOCK B 

 

 



Two-phase transaction 
All LOCK actions carried out before all UNLOCK actions.  
Growing phase - all LOCK actions carried out in the course of the growing phase. 
Shrinking phase – all UNLOCK actions carried out in the course of the schrinking  
phase 
 
Two-phase transaction: growning and shrinking phases do not overlap. 

time 

The number of applied locks: 

Growing phase Shrinking phase 



A transaction is serializable (with exception of the phantom problem), 
iff: 
 
•  it is well formed 
•  it is legal 
•  it is two-phase 
•  and holds all XLOCKS until COMMIT/ROLLBACK 
 



Isolation degrees 

Transaction Name Locking protocol 

 0° 0° T does not overwrite dirty 
data of another transaction, if 
this (the other) transaction is at 
least 1° 

anarchie well formed for WRITE 

1° 1° T does not have lost 
updates 

browse Two-phase for XLOCK 
and well formed for 
WRITE 

2° 2° T does not have lost 
updates and/or dirty reads 

Two-phase for XLOCK 
a well formed for 
WRITE and READ  

3° 3° T does not have lost 
updates, dirty reads and/or 
unrepeatable reads 

isolated transaction 
serializable 
repeatable read 

Two-phase for XLOCK i 
SLOCK and well 
formed for WRITE and 
READ 

(our simplified model – we still do not consider phantoms) 



 EXEC SQL DECLARE CURSOR movie_cursor FOR 
 SELECT title, CAST (year_released AS CHARACTER(10)) 
 FROM movie_titles; 

char title[51], year[11], result[102, star_name[51]; 

while (/* cyklus pres jednotlive filemy */ ) 
{ 

 EXEC SQL FETCH NEXT FROM movie_cursor INTO :title, :year ; 
 ... 
 
} 

Cursor 



Cursor stability 
 
SQL DBMSs usually implement an enriched  protocol 2° called  
cursor stability.  
 
Shared lock applied to records addressed by a (some) cursor  
⇒  cursor stability.  

One of particular implementations described in  
http://jazz.external.hp.com/training/sqltables/c5s38.html 
 
 
 



Cursor stability 
 
FETCH operation: 
 
1.  Pointers in source tables will move so that they point to the next candidate 

cursor record. 
2.  Records of source tables referenced by pointers will be locked by SLOCK. 
3.  Check whether this candidate reallly belongs to the cursor. 
4.  If not, release (unlocke) SLOCKS andgo to point 1. 
5.  If yes, the records remain locked by SLOCK until the cursor is closed. If a 

record will be modified, the corresponding source tables records locks will 
be changed from SLOCK to XLOCK. 

The imoortant aspect is that the FETCH operation does not unlock the previous 
record. 



SET TRANSACTION ISOLATION LEVEL  [ READ UNCOMMITTED] 
     [ READ COMMITTED ] 
     [ REPEATABLE READ ] 
     [ SERIALIZABLE ] 

 
 
 
READ UNCOMMITTED  -  1° browse - for read-only transactions 
READ COMMITTED  -  cursor stability (improved 2°) 
REPEATABLE READ  -  3° without phantom protection 
SERIALIZABLE   -  3° with phantom protection 
 



Method of timestamps: 
•  On start of any transaction, the transaction receives a timestamp (at the rate of  

1 tick/ms – 32 bit timestamp is enough for 49 days) 
•  If a transaction accesses an DB object for READ, the object‘s tr timestamp  

will be assigned the highest timestamp of all transactions that reading the object 
•  If a transaction accesses an DB object for WRITE, the object‘s tw timestamp  

will be assigned the timestamp of the particular transaction. 

 
Constraints: 
•  Transaction with a timestamp t is not allowed to read objects with tw > t.  

ROLLBACK follows. 
•  Transaction with a timestamp t is not allowed to overwrite objects with tr > t.  

ROLLBACK follows. 
•  2 transactions may read the same DB object at any moment. 
•  If a transaction with timestamp t is going to overwrite an object with tw > t,  

the transaction has to wait until tw is removed from the object. 
 



Deadlock 

 

Step T1 T2 
1 BOT 
2 LockX(A) 
3 BOT 
4 LockS(B) 
5 Read(B) 
6 Read(A) 
7 Write(A) 
8 LockX(B) T1 has to wait for T2 
9 LockS(A) T2 has to wait for T1 

10 … … 



Removal of cycles – strategy: 

•  Rollback as young transaction as possible (to influence as few transactions  
as possible) 

•  Rollback a transaction with highest number of locks applied. 

•  Do not rollback a transaction tha was already rollbacked. 
•  Rollback a transaction, that participates in multiple cycles. 

T1 T2 

T5 

T4 T3 

Mutual waiting graph: 

Deadlock 

 



Phantom protection: 

The only reliable protection – predicate locks. 

SELECT * FROM T Where P1() 

Predicate P1() is put to the list of active predicate locks. 

If I wish to execute INSERT INTO T .... in parallel, I have to: 

1.  Check whether the record to be inserted does not meet any of the active 
predicate locks. 

2.  If yes, conflict, the INSERT can not be executed, its transaction needs to be  
rolled back. 

Predicate locks computationally expensive => DB vendors usually do not  
implement them. 



What else if not predicate locks? 

•  Timestamps 
•  MVCC – Multiversion Concurrency Control 

MVCC – multiversion Concurrency Control 
 
•  The method is using timestamps 
•  Snapshot isolation 

•  A „snapshot“ of (the relevant part of the) database is created. 
 

•  Modifications done by this transaction are visible in this transactions‘s  
snapshot but not in the snapshots of the parallel transactions. 
 

•  At the end of the transaction, a trial to execute a commit is done.  
 

•  If the comitted data is in conflict (detected by means of timestamps)  
with updates of transactions that did the commit after our transaction  
created the snapshot, our transaction has to ROLLBACK. 



ISO: 
 
READ UNCOMMITTED 
READ COMMITTED 
REPEATABLE READ 
SERIALIZABLE 

Postgre SQL 
 
READ COMMITTED  
READ COMMITTED 
SERIALIZABLE 
SERIALIZABLE 

READ COMMITED in PostreSQL: 
 
Snapshot created at the beginning of SELECT 
 
Notice that two successive SELECTs can see different data, even though they are within a single  
transaction, when other transactions commit changes during execution of the first SELECT.  

SERIALIZABLE  in PostreSQL: 
 
Snapshot created at the beginning of the transaction. 
 
This is different from Read Committed in that the SELECT sees a snapshot as of the start of the  
transaction, not as of the start of the current query within the transaction.  



PostgreSQL – programmer‘s manual section 12.2.2.1: 

Class Value 
1 10 
1 20 
2 100 
2 200 

Let us execute in parallel: 
 
1.  Insert result of SELECT 2, SUM(value) FROM mytab WHERE class = 1;  

into mytab 
2.  Insert result of SELECT 1, SUM(value) FROM mytab WHERE class = 2;  

into mytab 

What will be the result? 


