
Database systems

Structured query language SQL - II

SELECT VIII

BUILT-IN aggregation functions

COUNT(column)
COUNT(*)

Number of rows matching WHERE condition.
Independent of the column name, hence * is possible.

COUNT(DISTINCT column) Number of different values of given column that
appear in all rows matching WHERE condition.

SUM(column) Summ of values of the column over all rows matching WHERE
condition.

AVG(column) Average of values of the column over all rows matching
WHERE condition.

MAX(column) Maximal value in the the column over all rows matching
WHERE condition.

MIN(column) Minimal value in the the column over all rows matching WHERE
condition.

SELECT IX
PACKAGE table

PACKID PACKNAME PACKVER PACKTYPE PACKCOST
AC01 Boise Accounting 3.00 Accounting 725.83
DB32 Manta 1.50 Database 380.00
DB33 Manta 2.10 Database 430.18
SS11 Limitless View 5.30 Spreadsheet 217.95
WP08 Words & More 2.00 Word Processing 185.00
WP09 Freeware Processing 4.27 Word Processing 30.00

Count:

SELECT COUNT(*)

FROM PACKAGE
WHERE PACKTYPE = 'Database'

SELECT COUNT(PACKID)
FROM PACKAGE
WHERE PACKTYPE = 'Database'

Result:

COUNT1
2

SELECT X

PACKAGE table:

PACKID PACKNAME PACKVER PACKTYPE PACKCOST
AC01 Boise Accounting 3.00 Accounting 725.83
DB32 Manta 1.50 Database 380.00
DB33 Manta 2.10 Database 430.18
SS11 Limitless View 5.30 Spreadsheet 217.95
WP08 Words & More 2.00 Word Processing 185.00
WP09 Freeware Processing 4.27 Word Processing 30.00

SELECT COUNT(DISTINCT PACKNAME)

FROM PACKAGE
WHERE PACKTYPE = 'Database'

Result:

COUNT1
1

SELECT XI

PACKAGE table:

PACKID PACKNAME PACKVER PACKTYPE PACKCOST
AC01 Boise Accounting 3.00 Accounting 725.83
DB32 Manta 1.50 Database 380.00
DB33 Manta 2.10 Database 430.18
SS11 Limitless View 5.30 Spreadsheet 217.95
WP08 Words & More 2.00 Word Processing 185.00
WP09 Freeware Processing 4.27 Word Processing 30.00

SELECT COUNT(PACKID), SUM(PACKCOST)

FROM PACKAGE

Result:

COUNT1 SUM2
6 1968.96

SELECT XII

PACKAGE table:

PACKID PACKNAME PACKVER PACKTYPE PACKCOST
AC01 Boise Accounting 3.00 Accounting 725.83
DB32 Manta 1.50 Database 380.00
DB33 Manta 2.10 Database 430.18
SS11 Limitless View 5.30 Spreadsheet 217.95
WP08 Words & More 2.00 Word Processing 185.00
WP09 Freeware Processing 4.27 Word Processing 30.00

SELECT COUNT(PACKID), AVG(PACKCOST)
FROM PACKAGE

Result:

COUNT1 AVG2

6 328.16

SELECT XIII

PACKAGE table

PACKID PACKNAME PACKVER PACKTYPE PACKCOST
AC01 Boise Accounting 3.00 Accounting 725.83
DB32 Manta 1.50 Database 380.00
DB33 Manta 2.10 Database 430.18
SS11 Limitless View 5.30 Spreadsheet 217.95
WP08 Words & More 2.00 Word Processing 185.00
WP09 Freeware Processing 4.27 Word Processing 30.00

SELECT COUNT(PACKID), MAX(PACKCOST)

FROM PACKAGE

Result:

COUNT1 MAX2
6 725.83

SELECT XIV

PACKAGE table

PACKID PACKNAME PACKVER PACKTYPE PACKCOST
AC01 Boise Accounting 3.00 Accounting 725.83
DB32 Manta 1.50 Database 380.00
DB33 Manta 2.10 Database 430.18
SS11 Limitless View 5.30 Spreadsheet 217.95
WP08 Words & More 2.00 Word Processing 185.00
WP09 Freeware Processing 4.27 Word Processing 30.00

SELECT COUNT(PACKID), MIN(PACKCOST)
FROM PACKAGE

Result:

COUNT1 MIN2

6 30.00

SELECT XV

PC table

TAGNUM COMPID EMPNUM LOCATION
32808 M759 611 Accounting
37691 B121 124 Sales
57772 C007 567 I Info Systems
59836 B221 124 Home
77740 M759 567 Home

DISTINCT prohibits mulitple apearance of the same row in the result.

SELECT EMPNUM

FROM PC
SELECT DISTINCT EMPNUM

FROM PC

Result: Result:

EMPNUM EMPNUM

611 124
124 567
567 611
124
567

GROUP BY I

SOFTWARE table
PACKID TAGNUM INSTDATE SOFTCOST
AC01 32808 09/13/95 754.95
DB32 32808 12/03/95 380.00
DB32 37691 06/15/95 380.00
DB33 57772 05/27/95 412.77
WP08 32808 01/12/96 185.00
WP08 37691 06/15/95 227.50
WP08 57772 05/27/95 170.24
WP09 59836 10/30/95 35.00
WP09 77740 05/27/95 35.00

SELECT TAGNUM, SUM(SOFTCOST)

FROM SOFTWARE
GROUP BY TAGNUM
ORDER BY TAGNUM

SELECT TAGNUM, SUM(SOFTCOST)
FROM SOFTWARE
GROUP BY TAGNUM
 HAVING SUM(SOFTCOST) > 600
ORDER BY TAGNUM

Result: Result:

G_TAGNUM SUM1 G_TAGNUM SUM1
32808 1319.95 32808 1319.95
37691 607.50 37691 607.50
57772 583.01
59836 35.00
77740 35.00

Rows that have gone through WHERE condition, are
grouped. Rows in one group have equal values of all
columns specified in the GROUP BY clause - here
TAGNUM.
The aggregation function is evaluated for each row
separately.
ORDER BY just sorts the goups in the output.
Each goup represented by a single row in the output.
HAVING condition makes possible to filter out some of
the groups

GROUP BY II

SOFTWARE table
PACKID TAGNUM INSTDATE SOFTCOST
AC01 32808 09/13/95 754.95
DB32 32808 12/03/95 380.00
DB32 37691 06/15/95 380.00
DB33 57772 05/27/95 412.77
WP08 32808 01/12/96 185.00
WP08 37691 06/15/95 227.50
WP08 57772 05/27/95 170.24
WP09 59836 10/30/95 35.00
WP09 77740 05/27/95 35.00

SELECT TAGNUM, SUM(SOFTCOST)

FROM SOFTWARE
GROUP BY TAGNUM
ORDER BY TAGNUM

SELECT TAGNUM, SUM(SOFTCOST)
FROM SOFTWARE
GROUP BY TAGNUM
 HAVING SUM(SOFTCOST) > 600
ORDER BY TAGNUM

Result: Result:

G_TAGNUM SUM1 G_TAGNUM SUM1
32808 1319.95 32808 1319.95
37691 607.50 37691 607.50
57772 583.01
59836 35.00
77740 35.00

The other 3 groups not present in the putput
as they did not match the HAVING condition.

HAVING versus WHERE

• WHERE condition evalueated for each single row of the input relation.
• Only rows selected by WHERE condition go on to further processing by the query.
• Aggregation functions must not take part in the WHERE condition as it makes no

sense to apply an aggregation function to a single row.
• HAVING condition is evaluated for for the whole group – one group by the other.

So, it is not applied to a single row, but to a set of rows forming the group.
• Groups matching the HAVING condition are placed to the output of the query.
• As the HAVING condition is evaluated on multiple rows (whole group)

simultaeously, it makes sense that an aggregation function may participate in the
condition.

• Besides aggregation functions, HAVING condition may contain also those column
names that are listed in GROUP BY clause.

• Other columns than those listed in GROUP BY must not participate in HAVING
condition otherwise than arguments of an aggregation function. The reason is that
they may have different values, i.e. their value is not property of the whole group.

• The same holds for attributes listed in SELECT clause.

JOIN I

EMPLOYEE:

EMPNUM EMPNAME EMPPHONE
124 Alvarez 1212
567 Feinstein 8716
611 Dinh 2963

PC:

TAGNUM COMPID EMPNUM LOCATION
32808 M759 611 Accounting
37691 B121 124 Sales
57772 C007 567 I Info Systems
59836 B221 124 Home
77740 M759 567 Home

We would like to query a relation that is defined as a join of these two tables.

JOIN II

SELECT *
FROM PC, EMPLOYEE

Result:

TAGNUM COMPID EMPNUM LOCATION EMPNUM EMPNAME EMPPHONE
32808 M759 611 Accounting 124 Alvarez 1212
32808 M759 611 Accounting 567 Feinstein 8716
32808 M759 611 Accounting 611 Dinh 2963
37691 B121 124 Sales 124 Alvarez 1212
37691 B121 124 Sales 567 Feinstein 8716
37691 B121 124 Sales 611 Dinh 2963
57772 C007 567 Info Systems 124 Alvarez 1212
57772 C007 567 Info Systems 567 Feinstein 8716
57772 C007 567 Info Systems 611 Dinh 2963
59836 B221 124 Home 124 Alvarez 1212
59836 B221 124 Home 567 Feinstein 8716
59836 B221 124 Home 611 Dinh 2963
77740 M759 567 Home 124 Alvarez 1212
77740 M759 567 Home 567 Feinstein 8716

77740 M759 567 Home 611 Dinh 2963

Each row from PC joimned with each row from EMPLOYEE.
PC 5 rows, EMPLOYEE 3 rows => JOIN has 15 rows.

JOIN III (equijoin)

More frequently used (and more useful) is so called equijoin.
Only those rows tha „belong together“ are combined.

Typically, we would wish to combine rows that matches the value of a primary key of one
table and a foreign key of the other one.

SELECT TAGNUM, COMPID, EMPLOYEE.EMPNUM, EMPNAME
FROM PC, EMPLOYEE
WHERE PC.EMPNUM = EMPLOYEE.EMPNUM

Result:

TAGNUM COMPID EMPLOYEE.EMPNUM EMPNAME
32808 M759 611 Dinh
37691 B121 124 Alvarez
57772 C007 567 Feinstein
59836 B221 124 Alvarez
77740 M759 567 Feinstein

JOIN IV (equijoin)

Another example:

SELECT TAGNUM, COMPID, EMPLOYEE.EMPNUM, EMPNAME
FROM PC, EMPLOYEE
WHERE PC.EMPNUM = EMPLOYEE.EMPNUM AND LOCATION = 'Home'

Result:

TAGNUM COMPID EMPLOYEE.EMPNUM EMPNAME
59836 B221 124 Alvarez
77740 M759 567 Feinstein

The equijoin condition may be followed by selection
conditions in the WHERE clause.

JOIN V (equijoin)

USING clause contains a single list of columns (these have to have equal names in both
tables), that define the equi-join.

SELECT TAGNUM, COMPID, EMPNUM, EMPNAME

FROM PC INNER JOIN EMPLOYEES USING (EMPNUM)

INNER JOIN (inner is by default – may be omitted) – if the value of the
matching columns is null in a row of one of those two tables, this row
will not take part in the equi-join.

OUTER JOIN is the opposite – see later.

JOIN VI (equijoin)

SELECT TAGNUM, COMPID, EMPNUM, EMPNAME
FROM PC NATURAL JOIN EMPLOYEES

NATURAL means that the equi-join is carried out over all
columts that have equal names in both tables. Then USING
is omitted.

JOIN VII (equijoin)

SELECT TAGNUM, COMPID, EMPNUM, EMPNAME
FROM PC JOIN EMPLOYEES ON PC.EMPNUM =
EMPLOYEES.EMPNUM

Most common form of equi-JOIN

JOIN VIII (OUTER JOIN)

As contrary to INNER JOIN, in case of LEFT (RIGHT/FULL) OUTER JOIN a
row from the LEFT (RIGHT/BOTH) that have a NULL in the column that shall
match with a column in the other table will be put to the result. Those columns
that came from the other table (this row has no partner there) will get NULL (if no
integrity constrain violation).

SELECT TAGNUM, COMPID, EMPNUM, EMPNAME
FROM PC LEFT OUTER JOIN EMPLOYEES

LEFT, RIGHT or FULL

UNION

SELECT COMPID, MFGNAME
FROM COMPUTER
WHERE PROCTYPE = '486DX'

UNION
SELECT COMPUTER.COMPID, MFGNAME

FROM COMPUTER, PC
 WHERE COMPUTER.COMPID = PC.COMPID

 AND LOCATION = 'Home'

INTERSECTION

SELECT COMPID, MFGNAME
FROM COMPUTER
WHERE PROCTYPE = '486DX'

INTERSECT
SELECT COMPUTER.COMPID, MFGNAME

FROM COMPUTER, PC
WHERE COMPUTER.COMPID = PC.COMPID

AND LOCATION = 'Home'

DIFFERENCE

SELECT COMPID, MFGNAME
FROM COMPUTER
WHERE PROCTYPE = '486DX'

EXCEPT
SELECT COMPUTER.COMPID, MFGNAME

FROM COMPUTER, PC
WHERE COMPUTER.COMPID = PC.COMPID

AND LOCATION = 'Home'

Integrity contstraints I

Required value NOT NULL
Unique value UNIQUE
Acceptable values: CHECK (PC.LOCATION IN ('Accounting', 'Sales', 'Info Systems', 'Home'))

Is eqivalent to

CHECK (PC.LOCATION = 'Accounting' OR
PC.LOCATION = 'Sales' OR
PC.LOCATION = 'Info Systems' OR
PC.LOCATIONS = 'Home')

Primary key: PRIMARY KEY (TAGNUM)

PRIMARY KEY (PACKID, TAGNUM)
Foreign key: FOREIGN KEY (COMPID) REFERENCES COMPUTER

Integrity constraints II

Example:

CREATE TABLE PC

(TAGNUM CHAR(5),
COMPID CHAR(4),
EMPNUM DECIMAL(3),
LOCATION CHAR(12) CHECK (PC.LOCATION IN ('Accounting', 'Sales','Info Systems', 'Home'))
PRIMARY KEY (TAGNUM)
FOREIGN KEY (COMPID) REFERENCES COMPUTER
FOREIGN KEY (EMPNUM) REFERENCES EMPLOYEE)

Integrity constraints III

CREATE ASSERTION A1 CHECK
(NOT EXISTS

(SELECT *
FROM PACKAGE
WHERE PACKCOST <

(SELECT MAX (SOFTCOST)
FROM SOFTWARE
WHERE PACKAGE.PACKID = SOFTWARE.PACKID

)))

 ztratilo-li toto integritní omezení smysl, lze je odstranit:

 DROP ASSERTION A1

Domains – user defined data types

CREATE DOMAIN LOCATIONS CHAR(12)
CHECK (VALUE = 'Accounting' OR

 VALUE = 'Sales' OR
 VALUE = 'Info Systems' OR
 VALUE = 'Home')

... will be used as follows:

CREATE TABLE PC
(...

...
LOCATION LOCATIONS

 ...
...)

Declaration of the LOCATION column
by means of the LOCATIONS domain.

Nested queries, subquery I

SELECT PACKID, PACKNAME
FROM PACKAGE
WHERE PACKCOST >

(SELECT AVG(PACKCOST)
 FROM PACKAGE
 WHERE PACKTYPE = 'Database')

Comment: First, the subquery (aka inner query) will be evaluated. Its result will be used in the outer

query.

The result of the inner query is:

AVG1
405.09

The result of the whole query is:

PACKID PACKNAME
AC01 Boise Accounting
DB33 Manta

Nested queries, subquery II

SELECT PACKNAME
FROM PACKAGE
WHERE PACKID IN

(SELECT PACKID
FROM SOFTWARE
WHERE TAGNUM = '32808')

SELECT PACKNAME
FROM SOFTWARE JOIN PACKAGE

 WHERE TAGNUM = '32808'

Result: Result:

PACKNAME PACKNAME
Boise Accounting Boise Accounting
Manta Manta

The same result can be achieved by using an equijoin. Equijoint should be prefered
before using nested queries

Nested queries, subquery III

IN versus EXISTS

SELECT TAGNUM, COMPID
FROM PC
WHERE EXISTS
(SELECT *
FROM SOFTWARE
WHERE PC.TAGNUM = SOFTWARE.TAGNUM

AND PACKID = 'WP08')

SELECT TAGNUM, COMPID
FROM PC
WHERE TAGNUM IN

(SELECT TAGNUM
FROM SOFTWARE
WHERE PACKID = 'WP08')

Result: Result:

TAGNUM COMPID TAGNUM COMPID
32808 M759 32808 M759
37691 B121 37691 B121
57772 C007 57772 C007

Correlated subquery:

The inner query is executed for each row
evaluated by the outer query again. The
reason is that the value of PC.TAGNUM
column is a parameter of the nested query.

Computationally extremely
expensive. Should be avoided if
possible.

This is not a correlated query. The
inner query will be executed once
only.

It gives the same result as the
(correlated) query on the left.

Better than the correlated query, but
replacing with an equijoin would be
even better.

Nested select: where it can be nested

SELECT (SELECT ...)
FROM (SELECT ...) tname
WHERE abc > (SELECT ...)

or abc IN (SELECT ...)
 GROUP BY ...
 HAVING ... (SELECT ...)

ALL quantifier

SOFTWARE
PACKID TAGNUM INSTDATE SOFTCOST
AC01 32808 09/13/95 754.95
DB32 32808 12/03/95 380.00
DB32 37691 06/15/95 380.00
DB33 57772 05/27/95 412.77
WP08 32808 01/12/96 185.00
WP08 37691 06/15/95 227.50
WP08 57772 05/27/95 170.24
WP09 59836 10/30/95 35.00
WP09 77740 05/27/95 35.00

SELECT PACKID, TAGNUM, INSTDATE, SOFTCOST

FROM SOFTWARE
WHERE SOFTCOST > ALL

(SELECT PACKCOST
FROM PACKAGE)

Result:

PACKID TAGNUM INSTDATE SOFTCOST

AC01 32808 09/13/95 754.95

Textual formulation of the query:
Find an instalation of a software product that was bought for a price that is higher than current
catalogue price of any software product.

ANY quantifier

SOFTWARE
PACKID TAGNUM INST

DATE
SOFT
COST

AC01 32808 09/13/95 754.95
DB32 32808 12/03/95 380.00
DB32 37691 06/15/95 380.00
DB33 57772 05/27/95 412.77
WP08 32808 01/12/96 185.00
WP08 37691 06/15/95 227.50
WP08 57772 05/27/95 170.24
WP09 59836 10/30/95 35.00
WP09 77740 05/27/95 35.00

Result:

PACKID TAGNUM INSTDATE SOFTCOST
AC01 32808 09/13/95 754.95
DB32 32808 12/03/95 380.00
DB32 37691 06/15/95 380.00

DB33 57772 05/27/95 412.77
WP08 32808 01/12/96 185.00
WP08 37691 06/15/95 227.50
WP08 57772 05/27/95 170.24
WP09 59836 10/30/95 35.00
WP09 77740 05/27/95 35.00

Textual formulation of the query:
Find an instalation of a software product that was bought for a price that is higher than current
catalogue price of some software product.

SELECT PACKID, TAGNUM, INSTDATE, SOFTCOST
FROM SOFTWARE
WHERE SOFTCOST > ANY
 (SELECT PACKCOST
 FROM PACKAGE)

Usage of ALIAS

SELECT M.NAME, M.SURNAME

FROM PERSON M JOIN PERSON CH ON (M.SSN = CH.SSN_MOTHER)
WHERE CH.NAME = “John“ AND CH.SURNAME = “Smith“

Person

PERSON table needs to be opened twice. Once for the child (John Smith) and once for his potential
mothers.

Find the name and surname of John Smith’s mother:

SSN <pk>
Name
Surname
SSN_Mother <fk>

Creating a copy of an existing table I

CREATE TABLE DBPACK
(PACKID CHAR(4),

PACKNAME CHAR(20),
PACKVER NUMERIC(4,2),
PACKCOST NUMERIC(5,2))

INSERT INTO DBPACK

SELECT *
 FROM PACKAGE
 WHERE PACKTYPE = 'Database'

The target table DBPACK has to have cloumns of the same names as the
source table. The corersponding columns of the source and target tables have
to be compatible.

Creating a copy of an existing table II

CREATE TABLE WPPACK
 (PACKID CHAR(4),
 PACKNAME CHAR(20),
 PACKTYPE CHAR(15))

INSERT INTO DBPACK

SELECT PACKID, PACKNAME, PACKTYPE
 FROM PACKAGE
 WHERE PACKTYPE = 'Word Processing'

 ORDER BY PACKNAME

The columns of the target tabel have to be compatible with the respective
columns of the source table.

VIEW I

CREATE VIEW DATABASE AS

SELECT PACKID, PACKNAME, PACKCOST
FROM PACKAGE
WHERE PACKTYPE = 'Database'

View can be understood as a table that does not contain explicite data. This “table” is a view
on another table or a relation defined as a join of multiple tables.
View is aimed at (i) reading and/or (ii) modifying data from the coresponding table(s).

VIEW can be
• materialized – exists independently on existence of a database connection,
• non-materialized – its existence ends on closing the database connection.

Materializované VIEW existuje nezávisle na databázovém spojení (session).

VIEW II

PACKAGE

PACKID PACKNAME PACKVER PACKTYPE PACKCOST
AC01 Boise Accounting 3.00 Accounting 725.83
DB32 Manta 1.50 Database 380.00
DB33 Manta 2.10 Database 430.18
SS11 Limitless View 5.30 Spreadsheet 217.95
WP08 Words & More 2.00 Word Processing 185.00
WP09 Freeware Processing 4.27 Word Processing 30.00

CREATE VIEW DATABASE (PACKID, PACKNAME, PACKCOST) AS

SELECT PACKID, PACKNAME, PACKCOST
FROM PACKAGE
WHERE PACKTYPE = 'Database'

 We can use a view similarly as a table.
In this case, the result will be the only one row:

PACKID PACKNAME PACKCOST

DB33 Manta 430.18

The cells with yellow background
will form the contents of the view
named DATABASE.

VIEW III

CREATE VIEW DATABASE (PKID, NAME, COST) AS

SELECT PACKID, PACKNAME, PACKCOST
FROM PACKAGE
WHERE PACKTYPE = 'Database'

Meaning of a view:
1. Data independence.

Modification of the source table structure that does not affect the columns participating in the view
does not affect the work with the view.

2. Different views on the same data. We can hide what the user does not need to see.

Updating a view:
• When inserting to a view, modifying a view or deleting records from the view, integrity constrains of

the source tables are checked.
• A trial to add the row ('AC01','DATAQUICK',250.00) to the DATABASE view has to fail, as the

PACKAGE table already contains a row with primary key 'AC01'. It may be a surprise for the user, as
he sees only rows of the view and it does not contain a row witjh primary key 'AC01'.

Columns of a view can have names that are different from the
column names of the source tables.

VIEW IV – Updatable view in PosgreSQL

View definition:

CREATE OR REPLACE VIEW nominace AS
SELECT osoba.rodne_cislo, osoba.jmeno, osoba.prijmeni, osoba.email, prirazeni.language, prirazeni.zadost_id
FROM osoba JOIN prirazeni ON osoba.unique_id = prirazeni.osoba_unique_id;

1. rule:

CREATE OR REPLACE RULE "_INSERT_A_FIRST" AS
ON INSERT TO nominace
WHERE
NOT (EXISTS (SELECT 1 FROM osoba WHERE osoba.rodne_cislo = new.rodne_cislo))
DO INSTEAD
INSERT INTO osoba (rodne_cislo, jmeno, prijmeni, email)
 VALUES (new.rodne_cislo, new.jmeno, new.prijmeni, new.email);

2. rule:

CREATE OR REPLACE RULE "_INSERT_Z_LAST" AS
ON INSERT TO nominace
DO INSTEAD
INSERT INTO prirazeni (zadost_is, language, opponent_unique_id)
 VALUES (new.zadost_is, new.language, (SELECT osoba.unique_id
 FROM osoba
 WHERE osoba.rodne_cislo = new.rodne_cislo)));

Rules are applied in the ALPHABETIC order of tehir names !

view nominace

r1 r2

OSOBA

rodne_cislo
unique_id
jmeno
prijmeni
email

<pi>
A10
I
A20
A25
A50

<M>
<M>

PRIRAZENI

language A2

ZADOST

zadost_id <UNDEF>

Modification of table’s data

UPDATE PACKAGE
SET PACKNAME = 'Manta II'
WHERE PACKID = 'DB33'

UPDATE PACKAGE

SET PACKCOST = PACKCOST * 1.02
WHERE PACKTYPE = 'Database'

AND PACKCOST > 400

UPDATE EMPLOYEE

SET EMPPHONE = NULL
WHERE EMPNUM = 124

Increase the value of the PACKCOST column
of the PACKAGE table by 2 percent in all
records meeting the WHERE condition.

Remove the value in the EMPPHONE column
of the EMPLOYEE table in all recordsmeeting
the WHERE condition.

Modification of the database structure

ALTER TABLE EMPLOYEE

ADD EMPTYPE CHAR(1)

ALTER TABLE EMPLOYEE

ADD EMPTYPE CHAR(1) INIT = 'H'

ALTER TABLE PACKAGE
DELETE PACKVER

ALTER TABLE EMPLOYEE
CHANGE COLUMN EMPNAME TO CHAR(30)

DROP TABLE COMPUTER

Adding a column to an existing table.
If there is at least one reord in the table already, the new
attribute has to accept NULL, as its value in the already
existing rows will be NULL.

Adding a column to an existing table.
The new attribute will get the value ‘H‘ in all rows existing so
far.

Removal of a column.

Change of column’s data type.

Pay attantion! Data may be lost if the „new length“ is less
than the „old one“.

Removal of the whole table named COMPUTER.

Granting rights

GRANT SELECT ON EMPLOYEE TO JONES

GRANT SELECT ON PACKAGE (PACKID, PACKNAME, PACKTYPE) TO PUBLIC

GRANT INSERT ON PACKAGE TO SMITH, BROWN

GRANT UPDATE ON EMPLOYEE (EMPNAME, EMPPHONE) TO ANDERSON

GRANT DELETE ON SOFTWARE TO MARTIN

GRANT INDEX ON COMPUTER TO ROBERTS

GRANT ALTER ON EMPLOYEE TO THOMAS

GRANT ALL ON COMPUTER, EMPLOYEE, PC TO WILSON

User JONES will be allowed to read data from EMPLOYEE table.

Any user will be allowed to read columns PACKID, PACKNAME a PACKTYPE
of PACKAGE table.

Users SMITH and BROWN will be allowed to insert rows to PACKAGE table.

User ANDERSON will be allowed to modify values of EMPNAME and
EMPHONE of the EMPLOYEE table.

User MARTIN will be allowed to delete rows of SOFTWARE table.

User ROBERTS will be allowed to create indices for the COMPUTER table.

User THOMAS will be allowed to change structure of the EMPLOYEE table.

User WILSON will be allowed to do anything (see above) with tables
COMPUTER and EMPLOYEE.

Revolking the access right

REVOKE SELECT ON EMPLOYEE FROM JONES

Příkazy GRANT a REVOKE jsou aplikovatelné jak na tabulky tak i na view.

Indices I

advantage: • shortening the response time
(depends on the quality of the query optimizer)

• sorting
disadvantage: • incerases requirements on the media capacity

• each update of a table -> update of the index (slowiing down insert and
update)

Index expression = set of columns

CREATE INDEX CUSTIND2 ON EMPLOYEE (COMPID)

Creates an index named CUSTIND2 for the table EMPLOYEE. The index
expression will be the singleton { COMPID }.

Indexy II

CREATE INDEX SOFTIND ON SOFTWARE (PACKID, TAGNUM)

The index expression may be a set of multiple columns.

Indexy II

CREATE INDEX SOFTIND ON SOFTWARE (PACKID, TAGNUM)

The index expression may be a set of multiple columns.

CREATE INDEX PACKIND3 ON PACKAGE (PACKNAME, PACKVER DESC)

Index may have assigned an ascending or descenting order.

Indexy III

Removal of a (not needed) index:

 DROP INDEX PACKIND

Indexy IV

CREATE UNIQUE INDEX PACKIND ON PACKAGE (PACKID)

The index management will not allow for adding a row to the respective table if
there already is a row with the respective value of the index expression in the table.

You should not rely on the uniqueness of indexes. The index shall influence just
the performance not the functionality of the database application.

CORRECT: If a (set of) column(s) shall be unique, the respective integrity
constraint shall be added to the definition of the respective table.

The reason is that the index can be created/removed by the database
administrator, who does not know, whether its uniqueness is important for
the correct functionality of respective databases aplication(s).

