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Task: Solve a system of n linear equations with n unknowns x1, x2, . . . , xn

a1,1 x1 + a1,2 x2 + · · ·+ a1,n xn = b1

a2,1 x1 + a2,2 x2 + · · ·+ a2,n xn = b2
...

an,1 x1 + an,2 x2 + · · ·+ an,n xn = bn

Matrix form:
A x = b ,

where A = (ai,j)i,j=1,...,n is a (regular) matrix of the system,
b = (b1, b2, . . . , bn)> vector of right-hand sides,
x = (x1, x2, . . . , xn)> vector of unknowns.

Cramer’s rule has a high computational complexity and numerical errors.
Matrix of the system:

• full, not very large,
• sparse, often very large (e.g., for a cubic spline).

x = A−1 b

A small change of coefficients of the system or of the right-hand side can cause a large change of the solution.
Back substitution of the (imprecise) solution xc gives the residuum of the solution:

r = b−A xc ,

If matrix A−1 has large entries, the residuum r can be small, even if the vector xc is much different from the
exact solution x.

r = A x−A xc = A (x− xc) ,
x− xc = A−1 r .

If the entries of matrix A−1 are large, even a small change of an entry of vector r may cause a large
difference x− xc.

A small residuum does not guarantee a small error of the solution!
Such a system is called ill-conditioned.

Example: System

2x+ 6 y = 8
2x+ 6.00001 y = 8.00001

has the solution x = 1, y = 1.
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A minimal change of coefficients to the system

2x+ 6 y = 8
2x+ 5.99999 y = 8.00002

changes the solution to x = 10, y = −2.
The inverse matrices of both systems have entries of order 105, which shows that they are ill-conditioned.

The equations in the systems are “almost linearly dependent”.

• imprecision of the coefficients of the system and of the right-hand sides,
• round-off errors,
• errors of the method—an infinite process is replaced by a finite number of iterative steps.

Give a (theoretically) precise solution in finitely many steps.
Using equivalent transformations (which do not change the solution), we transform the system to one with

an upper triangular matrix, from which the solution can be computed easily by a backward substitution.
Extended matrix of the system has entries

a
(0)
i,j = ai,j , pro i = 1, 2, . . . , n, j = 1, 2, . . . , n;

a
(0)
i,n+1 = bi , pro i = 1, 2, . . . , n.

System

a
(0)
1,1 x1 + a

(0)
1,2 x2 + · · ·+ a

(0)
1,n xn = a

(0)
1,n+1

a
(0)
2,1 x1 + a

(0)
2,2 x2 + · · ·+ a

(0)
2,n xn = a

(0)
2,n+1

...
a

(0)
n,1 x1 + a

(0)
n,2 x2 + · · ·+ a(0)

n,n xn = a
(0)
n,n+1

can be transformed to

a
(0)
1,1 x1 + a

(0)
1,2 x2 + · · ·+ a

(0)
1,n xn = a

(0)
1,n+1

a
(1)
2,2 x2 + · · ·+ a

(1)
2,n xn = a

(1)
2,n+1

...
a(n−1)

n,n xn = a
(n−1)
n,n+1 ,

a backward substitution gives the vector of solutions.
For a zero entry on the diagonal, we exchange rows (or columns, but then we reorder also the entries of

the solution!).
This is always possible if the original matrix of the system was regular.

Algorithm:
For k = 1, 2, . . . , n− 1, for i = k + 1, k + 2, . . . , n a j = k + 1, k + 2, . . . , n+ 1

a
(k)
i,j = a

(k−1)
i,j −

a
(k−1)
i,k

a
(k−1)
k,k

a
(k−1)
k,j .

If the forward step gives a diagonal entry a
(i−1)
i,i = 0 (resp. |a(i−1)

i,i | < ε), then the system is (resp. may be)
singular.

Otherwise, we proceed to the backword substitution

xi = 1
a

(i−1)
i,i

(
a

(i−1)
i,n+1 −

n∑
j=i+1

a
(i−1)
i,j xj

)
, for i = n, n− 1, . . . , 1.

If (the abolute value of) the diagonal entries is small, its small change causes a large change of result of
division and round-off errors.

In each step, we choose a diagonal entry with the largest absolute value = the pivot.
GEM with pivoting
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• complete: we choose from all (n − k)2 of entries of the remaining square submatrix (computationally
complex),
• column: we choose from the column and exchange rows,
• row: we choose from the row and exchange columns (and the order of unknowns!).

GEM may continue by elimination of entries above the diagonal.
Diagonal entries can be transformed to units.
Then the column of right-hand sides is the vector of solutions.

For a single use the complexity is higher, but it is effective for many tasks with the same right-hand sides (e.g.,
computation of an inverse matrix, where we solve a system of linear equations simultaneously for n right-hand
sides originating from a unit matrix).

Let us denote

L1 =



1 0 . . . 0
−a2,1

a1,1
1 0 . . . 0

−a3,1
a1,1

0 1
...

...
. . .

1 0
−an,1

a1,1
0 . . . 0 1


and multiply L1 · A. We obtain an associated system from GEM with zeros under the diagonal in the first
column. We continue:

A0 = A , Ai+1 = Li+1 ·Ai for i = 0, 1, . . . , n− 2,

where

Li+1 =



1 0 . . . 0
0 1 0 . . . 0

0 1
...

−a
(i)
i+2,i+1

a
(i)
i+1,i+1

. . .
...

...
... 1 0

0 0 − a
(i)
n,i+1

a
(i)
i+1,i+1

. . . 0 1


.

After n− 1 matix multiplications we obtain

Ln−1 · Ln−2 . . .L2 · L1 ·A = U ,

where matrix U is upper triangular (=result of the forward step of GEM) and L = Ln−1 · Ln−2 · . . . · L2 · L1

is a lower triangular matrix with units on the diagonal. The inverse matrix L−1 = L exists and it is also lower
triangular with units on the diagonal.

L ·A = U ,

A = L−1 ·U = L ·U .

The original system A x = L ·U x = b is replaced by two systems with triangular matrices

L y = b ,
U x = y ,

(because A x = L ·U x = L y = b), which are solvable by backward substitution.
Expanding the product L ·U, we obtain
Algorithm:
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For r = 1, 2, . . . , n

ui,r = ai,r −
i−1∑
s=1

li,s as,r for i = 1, 2, . . . , r,

li,r = 1
ur,r

(
ai,r −

r−1∑
s=1

li,s us,r

)
for i = r + 1, r + 2, . . . , n,

yi = bi −
i−1∑
s=1

li,s ys for i = 1, 2, . . . , n,

xi = 1
ui,i

(
yi −

n∑
s=i+1

ui,s xs

)
for i = n, . . . , 2, 1.

We need all entries ur,r 6= 0 (during the computation) nonzero ⇒ pivoting (partial); this also reduces round-off
errors.

Comment: The whole algorithm can be performed in the same array. The diagonal entries are used for
ur,r because the diagonal of L consists of units which are neither computed nor stored.

Comment: This method is particularly useful for a series of tasks which differ only by the right-hand sides.
It can be used also for the computation of the inverse matrix A−1 (with a higher complexity).
E = unit matrix
A ·A−1 = E ⇒ A multiplied by the jth column of A−1 equals the jth column of the unit matrix E.
xj = jth column of A−1

ej = jth column of E
A xj = ej

We obtain a system of equations, where xj is the vector of unknowns.
Columns of the inverse matrix A−1 are solutions to the system for various right-hand sides—columns of

matrix E.
GEM can be used for one system and several right-hand sides simultaneously; it suffices to “extend” the

cycle to a system of type (n× 2n), i.e.,
j = k + 1, k + 2, . . . , 2n (see Gauss–Jordan reduction).

The use of LU-decomposition: A = L ·U:

A−1 = (L ·U)−1 = U−1 · L−1 .

The computation of U−1 and L−1 is easy; the inverse of a triangular matrix is again triangular.
The definition can be used only for very small orders.
GEM: the product of diagonal entries after the forward step:

det A = ±a(0)
1,1 a

(1)
2,2 a

(2)
3,3 . . . a

(n−1)
n,n .

ATTENTION! The exchange of rows or columns (during pivoting) changes the sign of the determinant.
(It suffices to remember the parity of the number of changes.)

LU-decomposition A = L ·U:

det A = det (L ·U) = det L · det U = u1,1 u2,2 u3,3 . . . un,n .

(These matrices are triangular; moreover L has units on the diagonal.)
Again the sign has to be corrected according to the number of changes of rows or columns.

The exact solution x can be expressed using an imprecise solution xc:

x = xc + δ ,

where δ = (δ1, δ2, . . . , δn)T is the vector of corrections.

A x = b
A (xc + δ) = b
A xc + A δ = b

A δ = b−A xc = r
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The vector of corrections is the solution of the same system with the right-hand side replaced by r.
The procedure can be repeated (LU-decomposition may be recommended) and obtain more precise solutions

x(1)
c , x(2)

c , x(3)
c , . . .

We construct a sequence of vectors convergent to the exact solution.
Rn ... n-dimensional arithmetical vector space

Rn,n ... space of square matrices of order n
o ∈ Rn ... null vector
O ∈ Rn,n ... null matrix

Definition: A vector norm is a mapping ‖ . ‖v : Rn → R such that
• ‖x‖v ≥ 0, where ‖x‖v = 0⇔ x = o, (positive definiteness)
• ‖cx‖v = |c| ‖x‖v, (homogeneity)
• ‖x + y‖v ≤ ‖x‖v + ‖y‖v. (triangle inequality)

Example:
• ‖x‖r = max

i=1,...,n
|xi| max-, sup-, Chebyshev

• ‖x‖s =
n∑

i=1
|xi| sum-, “Manhattan”

• ‖x‖e =
√

n∑
i=1

x2
i Euclidean

• ‖x‖q =
( n∑

i=1
|xi|q

) 1
q

, q ≥ 1 Hölder (common generalization of the above)

Change of scale: If ‖ . ‖v is a vector norm and r > 0, then ‖x‖u = r ‖x‖v is also a vector norm.
Definition: Matrix norm is a mapping ‖ . ‖M : Rn,n → R such that

• ‖A‖M ≥ 0, where ‖A‖M = 0⇔ A = O (positive definiteness)
• ‖cA‖M = |c| ‖A‖M , (homogeneity)
• ‖A + B‖M ≤ ‖A‖M + ‖B‖M , (triangle inequality)
• ‖A ·B‖M ≤ ‖A‖M ‖B‖M . (consistency, submultiplicativity, Schwarz’s inequality)

Example:
• ‖A‖R = max

i=1,...,n

n∑
j=1
|ai,j | maximum absolute row sum norm

• ‖A‖S = max
j=1,...,n

n∑
i=1
|ai,j | maximum absolute column sum norm

• ‖A‖E =
√

n∑
i=1

n∑
j=1

a2
i,j Euclidean, Frobenius

What is not a matrix norm:
‖A‖M = max

i,j=1,...,n
|aij |

satisfies the first 3 conditions, but not the Schwarz’s inequality:∥∥∥∥( 1 1
1 1

)
·
(

1 1
1 1

)∥∥∥∥
M

=
∥∥∥∥( 2 2

2 2

)∥∥∥∥
M

= 2 6≤
∥∥∥∥( 1 1

1 1

)∥∥∥∥
M

·
∥∥∥∥( 1 1

1 1

)∥∥∥∥
M

= 1 · 1 = 1 .

Consequences of the Schwarz’s inequality
The scale cannot be arbitrary: Put B := E (unit matrix):

‖A‖M = ‖A ·E‖M ≤ ‖A‖M ‖E‖M ⇒ ‖E‖M ≥ 1 .

Convergence of an infinite product: Put B := Bk, k ∈ N:

‖A ·Bk‖M ≤ ‖A‖M ‖B‖k
M ⇒ ‖A ·Bk‖M → 0 for ‖B‖M < 1 , k →∞ .

Definition: Matrix norm ‖ . ‖M is consistent with a vector norm ‖ . ‖v, if

∀A ∈ Rn,n ∀x ∈ Rn : ‖A x‖v ≤ ‖A‖M ‖x‖v .
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(A change of the scale of a vector norm has no influence.)
Theorem: For each vector norm ‖ . ‖v, there exists at least one consistent matrix norm ‖ . ‖M , namely

‖A‖M = sup
x6=o

‖A x‖v

‖x‖v
= sup
‖x‖v=1

‖A x‖v .

The norm ‖ . ‖M (induced by ‖ . ‖v) satisfies ‖E‖M = 1.
Theorem: For each matrix norm ‖ . ‖M , there exists at least one consistent vector norm ‖ . ‖v, namely

‖x‖v = ‖X‖M , where

X =


x1 0 0 . . . 0
x2 0 0 . . . 0

...
xn 0 0 . . . 0

 .

Proof:

‖A x‖v =

∥∥∥∥∥∥∥∥∥∥


∑n

j=1 a1,j xj 0 . . . 0∑n
j=1 a2,j xj 0 . . . 0

...∑n
j=1 an,j xj 0 . . . 0


∥∥∥∥∥∥∥∥∥∥

M

= ‖A ·X‖M ≤ ‖A‖M ‖X‖M = ‖A‖M ‖x‖v .

Example: The Euclidean matrix norm is consistent with the Euclidean vector norm:∥∥∥∥∥∥∥∥∥


x1 0 0 . . . 0
x2 0 0 . . . 0

...
xn 0 0 . . . 0


∥∥∥∥∥∥∥∥∥

2

E

=
n∑

i=1
x2

i = ‖x‖2
e .

Theorem: The following couples of norms (vector, matrix) are consistent:
‖ . ‖r, ‖ . ‖R ,
‖ . ‖s, ‖ . ‖S ,
‖ . ‖e, ‖ . ‖E .

Moreover,
matrix norm ‖ . ‖R is induced by vector norm ‖ . ‖r,
matrix norm ‖ . ‖S is induced by vector norm ‖ . ‖s, but
matrix norm ‖ . ‖E is not induced by vector norm ‖ . ‖e.

Definition: A sequence of vectors x(0),x(1),x(2), . . . converges to a vector x ∈ Rn if

lim
k→∞

x
(k)
i = xi for i = 1, 2, . . . , n.

Theorem: A sequence of vectors x(0),x(1),x(2), . . . converges to a vector x ∈ Rn iff

lim
k→∞

‖x(k) − x‖v = 0 ,

where the norm can be any of the above vector norms.

(The convergence does not depend on the choice of the norm.)
Definition: A sequence of matrices A(0) =

(
a

(0)
i,j

)n

i,j=1, A(1) =
(
a

(1)
i,j

)n

i,j=1, A(2) =
(
a

(2)
i,j

)n

i,j=1, . . . converges
to a matrix A =

(
ai,j

)n

i,j=1 if

lim
k→∞

a
(k)
i,j = ai,j for all i, j = 1, 2, . . . , n.

(A(k) ... kth element of the sequence)
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Definition: Matrix B is convergent if the sequence of matrices B,B2,B3,B4, . . . converges to the zero
matrix. Otherwise, matrix B is called divergent.
(Bk ... kth power of matrix B)

Definition: Number λ ∈ C is an eigenvalue of a matrix A ∈ Rn,n if there exists a nonzero vector x ∈ Rn

(eigenvector) satisfying
λx = A x .

Theorem: Number λ is an eigenvalue of a matrix A iff det(A− λE) = 0.

Proof: If λ is an eigenvalue of a matrix A, then ∃x 6= o : λx = A x, hence A x−λx = o, (A−λE) x = o.
Let det(A − λE) 6= 0, so matrix A − λE is regular. Homogenous system of equations with a regular matrix
has only the trivial solution ⇒ a contradiction.

Conversely, the assumption det(A − λE) = 0 implies that matrix A − λE is singular and ∃x 6= o :
(A− λE) x = o. Hence A x− λx = o, λx = A x.

For matrices of small orders:
• Find det(A − λE), which is a polynomial in variable λ of order n (characteristic polynomial of

matrix A).
• Eigenvalues λi are roots of the characteristic polynomial of matrix A (equation det(A − λE) = 0 is the

characteristic equation).
Comment: “Eigenvalues” of a real matrix may be complex. (We may speak of complex eigenvalues in a

complex vector space, not in a real one, where the multiplication by a complex number is undefined.

Definition: Spectral radius of a matrix A ∈ Rn,n is the number

%(A) = max
i=1,2,...,n

|λi| ,

where λi, i = 1, 2, . . . , n, are eigenvalues of matrix A.

Theorem: Each matrix norm ‖ . ‖M satisfies

‖A‖M ≥ %(A) .

Proof: Let %(A) = |λ|,
λ = the eigenvalue with the largest absolute value,
y = an eigenvector corresponding to λ, λy = A y.
Matrix norm ‖ . ‖M is consistent with some vector norm ‖ . ‖v satisfying

‖A‖M = sup
x 6=o

‖A x‖v

‖x‖v
≥ ‖A y‖v

‖y‖v
= |λ| ‖y‖v

‖y‖v
= |λ| = %(A) .

Theorem: Matrix B is convergent ⇐⇒ %(B) < 1.

Theorem: Sufficient condition for a matrix B to be convergent:

• ‖B‖M < 1 for some matrix norm,

i.e.,

• the linear mapping represented by matrix B is contractive (w.r.t. some vector norm, consistent with
matrix norm ‖ . ‖M ).

We look for a sequence of vectors x(k) ∈ Rn satisfying x(k) → x, i.e., ‖x(k) − x‖ → 0.
We use a recurrent formula

x(k+1) = Fk(x(k),x(k−1), . . . ,x(k−m)) .

We restrict attention to linear single-point stationary matrix iterative methods, i.e., Fk is independent
of k, depends only (linearly) on x(k),

x(k+1) = B x(k) + c .
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E.g.,

b = A x ,
x + b = x + A x = (E + A) x ,

x = (E + A) x− b ,
x(k+1) = (E + A)︸ ︷︷ ︸

B

x(k) −b︸︷︷︸
c

.

Vector of errors:

ε(k) = x(k) − x (we assume 6= o)
x(k) = B x(k−1) + c

x = B x + c
x(k) − x = B (x(k−1) − x) = B2 (x(k−2) − x) = . . . = Bk (x(0) − x)

ε(k) = B ε(k−1) = . . . = Bk ε(0)

lim
k→∞

ε(k) = o ⇔ lim
k→∞

Bk = O .

Theorem: Necessary and sufficient condition for convergence of the iterative method of the form
x(k+1) = Bx(k) + c is %(B) < 1.

Comment: The convergence is independent of the right-hand side and the initial estimate.
Theorem: Sufficient condition for convergence of the iterative method of the form x(k+1) = Bx(k) + c is

‖B‖M < 1 (for some matrix norm).
We express matrix A in the form

A = D + L + U ,

where D is diagonal, L is strictly lower triangular and U is strictly upper triangular.

A x = (D + L + U) x = D x + (L + U) x = b ,
D x = −(L + U) x + b ,

x = D−1 (−(L + U) x + b) ,

we choose
x(k+1) = −D−1 (L + U)︸ ︷︷ ︸

BJIM

x(k) + D−1 b︸ ︷︷ ︸
cJIM

.

We assume that the main diagonal of matrix A has no zero entries (this can be achieved by an exchange of
rows or columns).

Moreover, we want the diagonal entries to be “large”.
Componentwise:

x1 = − 1
a1,1

(a1,2 x2 + a1,3 x3 + . . .+ a1,n xn) + b1

a1,1

x2 = − 1
a2,2

(a2,1 x1 + a2,3 x3 + . . .+ a2,n xn) + b2

a2,2
...

xn = − 1
an,n

(an,1 x1 + an,2 x2 + . . .+ an,n−1 xn−1) + bn

an,n

x
(k+1)
i = − 1

ai,i

(i−1∑
j=1

ai,j x
(k)
j +

n∑
j=i+1

ai,j x
(k)
j

)
+ bi

ai,i
, i = 1, 2, . . . , n.

Ending condition: ‖x(k+1) − x(k)‖v < ε.
Each already computed entry of vector x(k+1) is immediately used in further computations.

x
(k+1)
i = − 1

ai,i

(i−1∑
j=1

ai,j x
(k+1)
j +

n∑
j=i+1

ai,j x
(k)
j

)
+ bi

ai,i
, i = 1, 2, . . . , n.
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A single vector x suffices for saving the results.
Matrix form:

(D + L) x = −U x + b ,
x = −(D + L)−1 (U x− b) ,

x(k+1) = −(D + L)−1 U︸ ︷︷ ︸
BGSM

x(k) + (D + L)−1 b︸ ︷︷ ︸
cGSM

.

Theorem: JIM (resp. GSM) converges for any initial estimate iff %(BJIM) < 1 (resp. %(BGSM) < 1).

If %(BJIM) = %(BGSM) = 0, we obtain (theoretically) an exact solution within finitely many steps.
It may happen that only one (or none) of the two methods converges.
Problem: computation of eigenvalues of a matrix.
Theorem: Let ‖BJIM‖M < 1 (resp. ‖BGSM‖M < 1). Then JIM (resp. GSM) converges from any initial

estimate and the following error estimate holds:

‖x(k) − x‖v ≤
‖B‖M

1− ‖B‖M
‖x(k) − x(k−1)‖v ,

where B is the corresponding iteration matrix (the norms of matrices and vectors must be consistent).

Definition: Matrix A ∈ Rn,n is strictly diagonally dominant, if

|ai,i| >
n∑

j=1,j 6=i

|ai,j | for all i = 1, 2, . . . , n.

Comment: For the transposed matrix, we obtain another condition (as useful as this one).

Theorem: Let matrix A ∈ Rn,n be strictly diagonally dominant. Then JIM and GSM converge for any
initial estimate.

Comment: E.g., the matrix of the system of equations for coefficients of a cubic spline is strictly diagonally
dominant. Moreover, it is sparse, so the complexity of one iteration is proportional to n.

Definition: Matrix A ∈ Rn,n is positive definite if each nonzero vector x ∈ Rn satisfies

x>A x > 0 .

Theorem: Let matrix A ∈ Rn,n be symmetric and positive definite. Then GSM converges.

Comment: E.g., the matrix of the system of normal equations in LSM is symmetric and positive definite.

Faster convergence can be achieved by any modification which reduces the spectral radius of matrix B.

D x = D x + ω

o︷ ︸︸ ︷
(−A x + b) =

= D x + ω ((−L−D−U) x + b) ,
D x + ωL x = (1− ω) D x− ωU x + ω b , (GSM: ω := 1)
(D + ωL) x = [(1− ω) D− ωU] x + ω b ,

x = (D + ωL)−1 ([(1− ω) D− ωU] x + ω b) =
= (D + ωL)−1 [(1− ω) D− ωU] x + ω (D + ωL)−1 b ,

x(k+1) = (D + ωL)−1 [(1− ω) D− ωU]︸ ︷︷ ︸
Bω

x(k) + ω (D + ωL)−1 b︸ ︷︷ ︸
cω

,

where ω is relaxation factor. (For ω = 1, we obtain GSM.) Componentwise:

x
(k+1)
i = ω

ai,i

(
−

i−1∑
j=1

ai,j x
(k+1)
i −

n∑
j=i+1

ai,j x
(k)
i + bj

)
+ (1− ω)x(k)

i
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Theorem: SOR converges for any initial estimate iff %(Bω) < 1.

Theorem: (Ostrowski) Let A be a symmetric matrix with positive diagonal entries. Then %(Bω) < 1 iff
matrix A is positive definite and 0 < ω < 2.

Comment: It is often better to overestimate the relaxation factor.

Comment: The complexity of solving a system of n linear equations with n unknowns and with a single
vector of right-hand sides using GEM or other direct methods is proportional to n3. If the matrix of the system
is triangular (in particular, during the backward part of GEM or for a known LU-decomposition), the complexity
proportional to n2. Also the multiplication of the vector of right-hand sides by a known inverse matrix has a
complexity is proportional to n2. If the matrix of the system is diagonal, the complexity is proportional to n.

For iterative methods in general, the complexity of a single iteration is proportional to n2. The number of
iterations depends on the required precision and the speed of convergence (and this on the spectral radius of
the iteration matrix).

Task:
A x = B

Comment: Here matrix B representes the right-hand sides of the system of equations, not the iteration
matrix.

• A is dense (has many nonzero entries), B has a few columns: GEM or its modifications
• A is dense, B has many columns: computation of A−1 and matrix multiplication or LU-decomposition
• A is sparse, has a few nonzero entries distributed irregularly: GEM with pivoting
• A is sparse with nonzero entries distributed regularly: iterative methods JIM, GSM, SOR
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