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Task:
Find a real solution to the equation f(x) = 0, where f is a continuous real function at interval [a0, b0].
More specification is needed:
Task:
Find a real solution to the equation f(x) = 0, where f is a continuous real function at interval [a0, b0].
We assume that f(a0) · f(b0) < 0 (i.e., f(a0), f(b0) have the opposite signs) and f has exactly one root, x, at
interval [a0, b0]. The required precision of the solution is ε > 0, i.e., we have to find a value in the interval
[x− ε, x+ ε].
The first step is the separation of roots, which is not algorithmizable.

xi = ai + bi
2

• if f(xi) · f(ai) < 0, then ai+1 = ai, bi+1 = xi,

• if f(xi) · f(bi) < 0, then ai+1 = xi, bi+1 = bi,

• if f(xi) = 0, then x = xi.

Ending condition: bi − ai
2 ≤ ε

It always converges with a constant speed, approx. 3 decimal places in 10 iterations.
We divide the interval [ai, bi] in proportion |f(ai)|

|f(bi)|
:

xi − ai
xi − bi

= f(ai)
f(bi)

xi = aif(bi)− bif(ai)
f(bi)− f(ai)
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Typically, one endpoint remains unchanged (e.g., if f ′′ does not change its sign).

bi − ai 6→ 0

lim
i→∞

(bi − ai) ∈ {|x− aj |, |x− bj | : j ∈ N0}

Ending condition: |f(xi)| ≤ δ
Evaluate the Taylor series of function f with center xi at x:

f(x)︸︷︷︸
0

= f(xi) + (x− xi) f ′(θi)

for some θi ∈ I(xi, x)

x− xi = −f(xi)
f ′(θi)

If ∃m1 > 0 ∀x ∈ I(xi, x) : m1 ≤ |f ′(x)|,
for absolute values we get

|x− xi| ≤
|f(xi)|
m1

Theorem: Let f have a continuous derivative at interval I(xi, x) and
∃m1 > 0 ∀x ∈ I(xi, x) : m1 ≤ |f ′(x)|. Then

|x− xi| ≤
|f(xi)|
m1

≤ δ

m1

The theorem cannot be used if the derivative does not exist or the root is multiple. (The method can still be
applicable.)
Regula falsi converges faster if the given function is approximately linear (in a neighborhood of the root).
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Modification of regula falsi: We always continue with the last two points, independently of the signs:

x0 = b0, x1 = a0

xi = xi−2f(xi−1)− xi−1f(xi−2)
f(xi−1)− f(xi−2)

Ending condition: |f(xi)| ≤ δ or |xi − xi−1| ≤ η
The convergence is usually faster, but it is not guaranteed.
Methods

• single-point

• double-point

• multiple-point

Tangent to the graph of function f at
(
xi−1, f(xi−1)

)
:

ti−1(x) = f(xi−1) + (x− xi−1) · f ′(xi−1)

xi is its zero point (root):

xi = xi−1 −
f(xi−1)
f ′(xi−1)

It assumes the existence of a known first derivative; it is necessary to fix overlow and division by zero.
Ending condition: |f(xi)| ≤ δ or |xi − xi−1| ≤ η
The convergence is usually faster, but it is not guaranteed.
Evaluate the Taylor series of function f with center xi−1 at xi:

f(xi) = f(xi−1) + (xi − xi−1) f ′(xi−1)︸ ︷︷ ︸
0

+1
2(xi − xi−1)2 f ′′(ξi)

where ξi ∈ I(xi, xi−1). Substitute in the universal estimate of the error:

x− xi = −f(xi)
f ′(θi)

= −f
′′(ξi)

2f ′(θi)
(xi − xi−1)2

If there are estimates

∃M2 ∀x ∈ I(xi, x) : |f ′′(x)| ≤M2

∃m1 > 0 ∀x ∈ I(xi, xi−1) : |f ′(x)| ≥ m1

then we obtain (for absolute values)
|x− xi| ≤

M2

2m1
(xi − xi−1)2
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Theorem: Let x be a simple root of function f , which has a continuous second derivative at interval
I(xi, xi−1, x) (where xi is the result of one step of Newton’s method applied to the estimate xi−1). Let there
exist real numbers M2, m1 > 0 such that

∀x ∈ I(xi, x) : |f ′(x)| ≥ m1

∀x ∈ I(xi, xi−1) : |f ′′(x)| ≤M2

Then we have an estimate of the error

|x− xi| ≤
M2

2m1
(xi − xi−1)2

Corollary: When the ending condition |xi − xi−1| ≤ η is satisfied, we get an estimate of the error

|x− xi| ≤
M2

2m1
η2

Simple rule: If Newton’s method converges and the approximation is near the root, the number of valid digits
behind the decimal point doubles in each iteration.
Correction: If the error is much smaller than 1 and absolute values of the first two derivatives of f are
approximately the same, then we may neglect the factor M2

2m1
and the latter rule is valid because

|x− xi| ≈ (xi − xi−1)2 ≈ (x− xi−1)2 .

However, if the proportion M2
2m1

is much different from 1, the rule cannot be used.
Not guaranteed, in particular for a bad initial estimate.
Assumption: Function f has a continuous second derivative in a neighborhood of a simple root x.
Then f ′(x) 6= 0 and f ′ is continuous in a neighborhood of x
⇒ we can find a neighborhood I of point x such that

∃m1 > 0 ∀x ∈ I : |f ′(x)| ≥ m1

∃M2 ∀x ∈ I : |f ′′(x)| ≤M2

Let xi−1 ∈ I \ {x}.
We evaluate the Taylor series of function f with center xi−1 at x:

f(x)︸︷︷︸
0

= f(xi−1) + (x− xi−1) f ′(xi−1) + 1
2 (x− xi−1)2 f ′′(ξi) ,

where ξi ∈ I(x, xi−1). Subtract

0 = f(xi−1) + (xi − xi−1) f ′(xi−1)
0 = (x− xi) f ′(xi−1) + 1

2 (x− xi−1)2 f ′′(ξi)
x− xi

(x− xi−1)2 = − f ′′(ξi)
2f ′(xi−1)

|x− xi|
(x− xi−1)2 ≤ M2

2m1

|x− xi|
|x− xi−1|

≤ M2

2m1
|x− xi−1|

For xi−1 “sufficiently close” to x:

M2

2m1
|x− xi−1| ≤ q

|x− xi|
|x− xi−1|

≤ q

for some (fixed) q < 1, i.e., the error is reduced at least by a factor q in one iteration and the method converges.
Theorem: Let f have a continuous second derivative in a neighborhood of a simple root x. Then Newton’s
method converges in some neighborhood of the root x.
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Alternative: Numerical approximation of the derivative as a part of the method.
We avoid the need of additional evaluations of the function by using the last two computed values, f(xi−1),
f(xi−2); the derivative (=the slope of the tangent) is approximated by the slope of the secant:

f ′(xi−1) ≈ f(xi−1)− f(xi−2)
xi−1 − xi−2

xi = xi−1 −
f(xi−1)

f(xi−1)− f(xi−2)
xi−1 − xi−2

= xi−2f(xi−1)− xi−1f(xi−2)
f(xi−1)− f(xi−2)

This is nothing new but the secant method (but the idea was good).
Definition: Let a method solving the equation f(x) = 0 produce a sequence of approximations xi, i ∈ N,
converging to a root x. Then the order of the method is a number p such that the limit

lim
i→∞

|x− xi|
|x− xi−1|p

exists and it is finite and nonzero.
For smaller p, |x−xi|

|x−xi−1|p → 0. For bigger p, |x−xi|
|x−xi−1|p → ∞. For at most one p the limit exists and it is finite

and nonzero; this value is the order of the method.
method order condition
bisection undef. (∼ 1)
regula falsi 1 the second derivative does not change its sign
secant (1 +

√
5)/2 simple root

Newton’s 2 simple root
Equation f(x) = 0 can be tranformed to an equivalent form ϕ(x) = x,
e.g., by taking ϕ(x) = f(x) + x
Initial estimate x0,

xi = ϕ(xi−1) .
Ending condition:

|xi − xi−1| < η .

Proposition: If the iteration method converges to x̃ where ϕ is continuous, then ϕ(x̃) = x̃, f(x̃) = 0.
Proof:

ϕ(x̃) = ϕ
(

lim
i→∞

xi

)
= lim
i→∞

ϕ(xi) = lim
i→∞

xi+1 = lim
i→∞

xi = x̃ .

Find the least positive solution to the equation f(x) = 0, where f(x) = x− cotx.
f(π4 ) = π

4 − 1 < 0, f(π2 ) = π
2 > 0 ⇒ x ∈ (π4 ,

π
2 )

Choose ϕ(x) = λf(x) + x, where λ 6= 0; ending condition for η = 0.001.
We shall try λ ∈ {−0.2, 0.2,−0.65,−0.8}.

xi+1 = 0.8xi + 0.2 cotxi, xi+1 = 1.2xi − 0.2 cotxi,
x0 = 1.5, x0 = 0.88
converges monotonically diverges monotonically
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xi+1 = 0.35xi + 0.65 cotxi, xi+1 = 0.2xi + 0.8 cotxi,
x0 = 1.5, x0 = 0.88,
converges non-monotonically diverges non-monotonically

Definition: A function ϕ is called contractive at interval I (with coefficient q) if

∃q < 1 ∀u, v ∈ I : |ϕ(u)− ϕ(v)| ≤ q · |u− v| .

contractivity ⇒ continuity
Theorem: (Sufficient condition for contractivity) Let function ϕ have a continuous derivative at interval I and
let there exist q < 1 such that

∀x ∈ I : |ϕ′(x)| ≤ q .

Then ϕ is contractive at I with coefficient q.

Proof:
|ϕ(u)− ϕ(v)| =

∣∣∣∣∫ u

v

ϕ′(x) dx
∣∣∣∣ ≤ ∫ u

v

|ϕ′(x)| dx ≤
∫ u

v

q dx = q · |u− v| .

Theorem: (Banach fixed point theorem for a real function) Let ϕ be a function contractive at a closed
interval I = [a, b] with coefficient q < 1 and let ϕ map I into I. Then the equation ϕ(x) = x as a unique
solution, x, at interval I. This solution is the limit of the iteration method with an arbitrary initial value x0 ∈ I
and the following estimate of the error holds:

|x− xi| ≤
q

1− q |xi − xi−1| .

Proof:
• Existence of the solution:
ϕ maps I into I
ψ(x) = ϕ(x)− x is ψ non-negative at a and non-positive at b; it is continuous, hence it has a root in I, which
is a solution to the equation ϕ(x) = x.
• Uniqueness of the solution: Assume that x ∈ I is another solution. Then

|x− x| = |ϕ(x)− ϕ(x)| ≤ q · |x− x| ⇒ x = x

• Convergence of the iteration method to the solution:

|x− xi| = |ϕ(x)− ϕ(xi−1)| ≤ q · |x− xi−1| ≤ . . . ≤ qi · |x− x0| → 0

• Estimate of the error:

|x− xi| ≤ q · |x− xi−1| = q · |(x− xi) + (xi − xi−1)|
≤ q · |x− xi|+ q · |xi − xi−1|

|x− xi| ≤
q

1− q |xi − xi−1|
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How to transform the equations f(x) = 0 to an equivalent form ϕ(x) = x such that the iteration method
converges fast?
Possible solution:

ϕ(x) = x+ λf(x) ,

where λ 6= 0 and
ϕ′(x) = 1 + λf ′(x)

is small.

Example: (continued) f ′(x) = 2 + cot2 x ∈ [2, 3]⇒ λ ∈ [− 1
2 ,−

1
3 ]

−1/f ′(0.86) ≈ −0.365⇒ λ = −0.365

ϕ(x) = 0.635x+ 0.365 cotx .

xi+1 = 0.635xi + 0.365 cotxi, x0 = 1.5
converges monotonically and fast

Theorem: Let the iteration method converge to x. Let p be the least natural number such that ϕ(p)(x) 6= 0,
and let ϕ(p) be continuous in some neighborhood of x. Then the order of the iteration method is p.

Proof: Evaluate the Taylor series of function ϕ with center x at xi−1:

ϕ(xi−1) = ϕ(x) + 1
p! (xi−1 − x)p ϕ(p)(ξi−1) , where ξi−1 ∈ I(x, xi−1),

xi = x+ 1
p! (xi−1 − x)p ϕ(p)(ξi−1) ,

|x− xi|
|x− xi−1|p

= 1
p! |ϕ

(p)(ξi−1)| → 1
p! |ϕ

(p)(x)| ∈ (0,+∞) .

Comment: Usually ϕ′(x) 6= 0, hence the iteration method is of order 1. However, this is not a rule, e.g.,
Newton’s method is a special case of the iteration method.

Idea: In each iteration, choose a new coefficient λi so that ϕ′(xi) = 0, i.e.

λi = − 1
f ′(xi)

,

We get
xi+1 = xi + λi f(xi) = xi −

f(xi)
f ′(xi)

,

which is Newton’s method (as a special case of the iteration method); this is usually of order 2, while the
iteration method is usually of order 1.
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xi+1 = xi − f(xi)
f ′(xi) , x0 = 1.5

converges non-monotonically and fast

• single-point, e.g., iteration method (which is in a sense a universal single-point method), Newton’s method,
• double-point, e.g., bisection, regula falsi, secant method,
• multiple-point.

From the programmer’s point of view:
• not requiring the derivative, e.g., bisection, regula falsi, secant method, and usually iteration method
(depending on the iterative formula),
• requiring the first derivative, e.g., Newton’s method,
• requiring higher-order derivatives.
According to convergence, we divide the methods to
• always convergent, e.g., bisection and regula falsi,
• others, e.g., Newton’s, secant, and iteration method.
• In a neighborhood of a root of an even multiplicity, the function does not change its sign, hence bisection and
regula falsi cannot be used.
• Secant and Newton’s method are applicable to the computation of multiple roots, but in this case their
convergence is only of the first order.
• In the iteration method, only the iterative formula, not the multiplicity of the root in the original equation,
is important.
Method 1: Find all roots of function f ′ and test whether some of them is a root of function f . At roots of f
of an even multiplicity, f ′ has a root of an odd multiplicity and changes its sign.
Method 2: Consider the function h(x) = f(x)

f ′(x) (where “removable discontinuities are removed”).
Proposition: Let x be a root of function f of multiplicity k, such that in its neighborhood f has a continuous
derivative of order k. Then x is a simple root of function h = f/f ′.

Proof: The definition of a root of multiplicity k says that f (j)(x) = 0 if j < k and f (k)(x) 6= 0. Repeated
application of l’Hospital’s rule results in a nonzero limit

lim
x→x

f(x)
(x− x)k = lim

x→x

f ′(x)
k (x− x)k−1 = . . . = lim

x→x

f (k)(x)
k! 6= 0 .

Thus the proportion of the first two expressions is defined and equal to 1,

lim
x→x

f(x)
(x− x)k ·

k (x− x)k−1

f ′(x) = 1 ,

which implies the limit of h
lim
x→x

h(x)
x− x

= 1
k
6= 0 .

In the latter limit, the denominator converges to zero and so does the numerator, hence limx→x h(x) = 0 and
x is a root of function h. According to l’Hospital’s rule, also limx→x h

′(x) is nonzero, hence x is a simple root
of function h.
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If function f has only roots of finite multiplicities, then function h has the same roots, but simple (however, h
is usually not continuous).
Special case of equation f(x) = 0, where f is a polynomial.
Theorem: (Estimate of the position of the roots of a polynomial) The absolute value of all (complex) roots of
the equation

n∑
i=0

ai x
i = 0

is at most
1 +

max
(
|a0|, . . . , |an−1|

)
|an|

.

Bisection and regula falsi depend on the total order of reals ⇒ not useful for higher dimensions.
The secant and Newton’s method are applicable.
Complex roots can be found only for initial estimates with a nonzero imaginary part.
Newton’s method can be generalized to systems of equations; the Jacobian plays the role of a derivative and
instead of division, multiplication by an inverse matrix is needed. This causes higher complexity and problems
with singularities. The conditions of convergence are more complex than in the one-dimensional case.
The iterative method is applicable; it may by difficult to maintain contractivity.
Because of problems with convergence, other methods were suggested which work on different principles not
used in the one-dimensional case.

9


