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Restriction: ordinary (not partial) differential equations, Cauchy initial value problem, only one differential
equation of the first order
Task: On interval [x0, xn], solve differential equation

y′(x) = f(x, y(x))

with initial condition
y(x0) = y0 ,

where f is a function of two variables and y0 ∈ R.

Comment: If f does not depend on y, i.e., f(x, y) = g(x), we get numerical integration as a special case—
differential equation

y′(x) = g(x)

Existence and uniqueness of the solution

It is not guaranteed in general:
Example: Consider differential equation with initial condition:

y′(x) = 3
√
y(x), y(0) = 0 ,

where the third root is a real function defined also for negative arguments. It has solutions, e.g., y(x) = 0 and
y(x) = ±

( 2
3 x
) 3

2 .
Theorem: Let function f be defined and continuous at [x0, xn]× R (e.g., for all x ∈ [x0, xn], y ∈ R).
Let the Lipschitz condition

∃L ∈ R ∀x ∈ [x0, xn] ∀y1, y2 ∈ R : |f(x, y1)− f(x, y2)| ≤ L |y1 − y2|

be satisfied. Then the solution on [x0, xn] exists and it is unique.
Sufficient condition: ∂f

∂y continuous and bounded on [x0, xn]× R.

Interpretation of the problem and principle of solution

Comment: Equivalent formulation of the problem: Solution

y(x) = y0 +
∫ x

x0

f(t, y(t)) dt

may be understood as an integral of an (unknown) function g(t) = f(t, y(t)) of one variable or as a curve integral
of a known function f along an (unknown) curve with parametrization (t, y(t)), t ∈ [x0, xn].
We split interval [x0, xn] to n subintervals of length h = (xn − x0)/n. We get nodes xi = x0 + i h, i = 0, . . . , n.
Correct values at nodes, y(xi), are replaced by their estimates yi.
Values of the derivative: fi = f(xi, yi) .
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General principle of solution

We generate a sequence yi, i = 0, . . . , n. In step i+ 1, we use estimates y0, . . . , yi for estimation of yi+1. Exact
solution

y(xi+1)− y(xi) =
∫ xi+1

xi

f(t, y(t)) dt

is estimated by
∆yi = yi+1 − yi ≈

∫ xi+1

xi

f(t, y(t)) dt .

yi+1 = yi + ∆yi .

Particular methods differ only by the estimate ∆yi.

Runge–Kutta methods 1: Euler’s method

It is a generalization of the left sum method of integration; function f(t, y(t)) is replaced by its value f(xi, yi)
at xi

∆yi =
∫ xi+1

xi

f(xi, yi) dt = h f(xi, yi) ,

yi+1 = yi + h f(xi, yi) = yi + h fi .

Geometrical interpretation: fi = f(xi, yi) is the slope of the line segment with endpoints (xi, yi), (xi+1, yi+1).

Estimate of the error

Evaluate the Taylor expansion of function y with center x0 at x1:

y(x1) = y(x0) + h y′(x0) + h2

2 y′′(ξ) ,

where ξ ∈ [x0, x1].

y(x1) = y(x0) + h f(x0, y0)︸ ︷︷ ︸
y1

+h2

2 y′′(ξ) ,

y(x1)− y1 = h2

2 y′′(ξ) .

The error at the end of the first step is proportional to h2.
In subsequent steps, we use an initial condition which is not exact. Nevertheless, usually the error is proportional
to h2 and the number of steps n = xn−x0

h .
The error at the end of the interval is proportional to 1

h h
2 = h ⇒ method of the 1st order.

Runge–Kutta methods 2: First modification of Euler’s method

Generalization of rectangular (midpoint) integration method; we approximate function f(t, y(t)) by its value at
xi + xi+1

2 = xi + h

2 . The second argument of f is the result of an auxiliary step of length h/2, made by Euler’s
method:

ηi = yi + h

2 fi .

f(t, y(t)) ≈ f(xi + h

2 , ηi)

∆yi =
∫ xi+1

xi

f

(
xi + h

2 , ηi

)
dt = h f

(
xi + h

2 , ηi

)
.

Method of 2nd order.

Second modification of Euler’s method (Heun’s method)
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Generalization of trapezoidal integration method; we approximate function f(t, y(t)) by a linear function going
through the endpoints of the interval:
at xi: fi = f(xi, yi),
at xi+1: the lack of knowledge of the yth coordinate is compensated by an auxiliary step of length h/2,
made by Euler’s method:

θi = yi + h fi .

Function f(t, y(t)) is approximated by a linear function whose graph goes through points
(
xi, f(xi, yi)

)
,
(
xi+1, f(xi+1, θi)

)
.

∆yi = h

2 (f(xi, yi) + f(xi+1, θi)) .

Method of 2nd order.

Runge–Kutta methods 4: Runge–Kutta method of 4th order
Generalization of Simpson’s method; we first compute auxiliary points and derivatives in them,

ki,1 = f(xi, yi) ,

ki,2 = f

(
xi + h

2 , yi + h

2 ki,1

)
,

ki,3 = f

(
xi + h

2 , yi + h

2 ki,2

)
,

ki,4 = f(xi + h, yi + h ki,3) .

The integral is approximated by a linear combination of these values:

∆yi = h

6 (ki,1 + 2ki,2 + 2ki,3 + ki,4) .

Runge–Kutta methods 5: General Runge–Kutta methods
They estimate the integral

∫ xi+1
xi

f(t, y(t)) dt from several values of function f at points, obtained from the
initial values xi, yi and auxiliary steps. These values are combined so that the errors of the lowest orders are
compensated.

Mulitistep methods
Methods

• one-step: they use only xi, yi and fi = f(xi, yi)
(e.g. Runge–Kutta),

• mulitistep: they use also the results of previous steps, i.e., xj , yj a fj = f(xj , yj), j = i, i− 1, . . . , i− s+ 1
(for an s-step method).

Mulitistep methods admit to increase the order without auxiliary steps.
However, the initialization of an s-step method requires s values y0, y1, . . . , ys−1. These are obtained by a
starting method (one-step).

Adams–Bashforth methods (explicit)
We approximate s values of the derivative, fi, fi−1, . . . , fi−s+1
at nodes xi, xi−1, . . . , xi−s+1
by the interpolating polynomial ϕi, which is integrated instead of f(t, y(t)):

∆yi =
∫ xi+1

xi

ϕi(t) dt .

We do not need to compute ϕi because

∆yi = h

s−1∑
j=0

wj fi−j ,

where wj are known coefficients.
We use polynomial approximation of the derivative y′(t) = f(t, y(t)), not of the solution, y(t) !
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For s = 1:
ϕi = fi is constant ⇒ Euler’s method.
For s = 2:
ϕi is a linear polynomial going through points (xi, fi), (xi−1, fi−1),

ϕi(t) = fi + fi − fi−1

h
(t− xi)

∆yi =
∫ xi+1

xi

ϕi(t) dt = h fi + h

2 (fi − fi−1) = h

2 (3fi − fi−1) .

For s = 3:
∆yi = h

12 (23fi − 16fi−1 + 5fi−2) ,

For s = 4:
∆yi = h

24 (55fi − 59fi−1 + 37fi−2 − 9fi−3) .

The order of these methods is s=number of points used in the approximation.
Advantage:

• simplicity

Disadvantages:

• different signs of coefficients (⇒ round-off errors)

• systematic error caused by the polynomial extrapolation

⇒ effort to avoid extrapolation

Adams–Moulton methods (implicit)
Function f(t, y(t)) is approximated by an interpolating polynomial ϕi through values fi, fi−1, . . . , fi−s+1 and
value at xi+1, i.e., fi+1 = f(xi+1, yi+1) .
Again it reduces to a linear combination

yi+1 − yi = ∆yi = h

s−1∑
j=−1

wj fi−j ,

where wj are known coefficients (different from the above).
We obtain an equation

yi+1 = yi + hw−1 f(xi+1, yi+1) + h

s−1∑
j=0

wj fi−j

for an unknown value yi+1, which is determined only implicitly.

For s = 1: ϕi is a linear polynomial going through points (xi, fi), (xi+1, fi+1), e.g.,

ϕi(t) = fi + fi+1 − fi

h
(t− xi) .

∆yi =
∫ xi+1

xi

ϕi(t) dt = h

2 (fi+1 + fi) ,

with substitution fi+1 = f(xi+1, yi+1)

yi+1 − yi = h

2
(
f(xi+1, yi+1) + fi

)
.

For s = 2:
∆yi = h

12
(
5f(xi+1, yi+1) + 8fi − fi−1

)
,
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For s = 3:
∆yi = h

24
(
9f(xi+1, yi+1) + 19fi − 5fi−1 + fi−2

)
.

The order of these methods is s+ 1=number of points used in the approximation.
Advantage:

• higher precision

Disadvantages:

• difficult solution of the implicit equation (an analytical solution is usually impossible, numerical solution
increases the computational complexity)

• even the polynomial interpolation can cause large systematic errors

Predictor–corrector methods

Based on a corrector, which might be some of implicit methods, in which the corresponding equation is solved
numerically.
In the mth iteration, we compute an estimate yi+1,m of yi+1, where we use the results of the preceding iteration,
yi+1,m−1, on the right-hand side:

yi+1,m = yi + h

s−1∑
j=0

wj fi−j + hw−1 f(xi+1, yi+1,m−1) .

The initial estimate yi+1,0 is computed from the results of previous steps using another method, predictor,
e.g., some of explicit methods.

Control mechanism

P = Predictor
C = Corrector
E = Evaluation
Most common choices:

• The cycle of the corrector is repeated until the difference yi+1,m − yi+1,m−1 is sufficiently small.

• Constant number k of repetitions of the corrector, P(EC)kE.

• Single use of the corrector, PECE.

Adams methods

Predictor: Adams–Bashforth method
Corrector: Adams–Moulton method
Example: The simplest variant of an Adams method, s = 1:
Predictor: Euler’s method (1st order)

yi+1,0 = yi + h fi .

Corrector: Adams–Moulton method of 2nd order

yi+1,m = yi + h

2
(
fi + f(xi+1, yi+1,m−1)

)
.

Choice of starting methods (of their order)
Step size control

Richardson’s extrapolation in solution of differential equations
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ỹ(x, h) ... numerical solution at x with step h
ỹ(x, 2h) ... numerical solution at x with step 2h
(here q = 2)
The error of estimate ỹ(x, h) is approximately 2p× smaller than the error of estimate ỹ(x, 2h)
⇒ estimate of the error of ỹ(x, h):

ỹ(x, h)− y(x) ≈ 1
2p − 1(ỹ(x, 2h)− ỹ(x, h)) .

Estimate improved by Richardson’s extrapolation:

y(x) ≈ ỹ(x, h) + 1
2p − 1(ỹ(x, h)− ỹ(x, 2h)) .

Richardson’s extrapolation

• passive

• active
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