Numerical Solution of Differential Equations

Mirko Navara
http://cmp.felk.cvut.cz/~navara/
Center for Machine Perception, Department of Cybernetics, FEE, CTU
Karlovo náměstí, building G, office 104a
http://math.feld.cvut.cz/nemecek/nummet.html

January 14, 2016

Restriction: ordinary (not partial) differential equations, Cauchy initial value problem, only one differential equation of the first order
Task: On interval $\left[x_{0}, x_{n}\right]$, solve differential equation

$$
y^{\prime}(x)=f(x, y(x))
$$

with initial condition

$$
y\left(x_{0}\right)=y_{0},
$$

where f is a function of two variables and $y_{0} \in \mathbb{R}$.
Comment: If f does not depend on y, i.e., $f(x, y)=g(x)$, we get numerical integration as a special case differential equation

$$
y^{\prime}(x)=g(x)
$$

Existence and uniqueness of the solution

It is not guaranteed in general:
Example: Consider differential equation with initial condition:

$$
y^{\prime}(x)=\sqrt[3]{y(x)}, \quad y(0)=0
$$

where the third root is a real function defined also for negative arguments. It has solutions, e.g., $y(x)=0$ and $y(x)= \pm\left(\frac{2}{3} x\right)^{\frac{3}{2}}$.
Theorem: Let function f be defined and continuous at $\left[x_{0}, x_{n}\right] \times \mathbb{R}$ (e.g., for all $x \in\left[x_{0}, x_{n}\right], y \in \mathbb{R}$).
Let the Lipschitz condition

$$
\exists L \in \mathbb{R} \forall x \in\left[x_{0}, x_{n}\right] \forall y_{1}, y_{2} \in \mathbb{R}:\left|f\left(x, y_{1}\right)-f\left(x, y_{2}\right)\right| \leq L\left|y_{1}-y_{2}\right|
$$

be satisfied. Then the solution on $\left[x_{0}, x_{n}\right]$ exists and it is unique.
Sufficient condition: $\frac{\partial f}{\partial y}$ continuous and bounded on $\left[x_{0}, x_{n}\right] \times \mathbb{R}$.

Interpretation of the problem and principle of solution

Comment: Equivalent formulation of the problem: Solution

$$
y(x)=y_{0}+\int_{x_{0}}^{x} f(t, y(t)) d t
$$

may be understood as an integral of an (unknown) function $g(t)=f(t, y(t))$ of one variable or as a curve integral of a known function f along an (unknown) curve with parametrization $(t, y(t)), t \in\left[x_{0}, x_{n}\right]$.
We split interval $\left[x_{0}, x_{n}\right]$ to n subintervals of length $h=\left(x_{n}-x_{0}\right) / n$. We get nodes $x_{i}=x_{0}+i h, i=0, \ldots, n$. Correct values at nodes, $y\left(x_{i}\right)$, are replaced by their estimates y_{i}.
Values of the derivative: $f_{i}=f\left(x_{i}, y_{i}\right)$.

General principle of solution

We generate a sequence $y_{i}, i=0, \ldots, n$. In step $i+1$, we use estimates y_{0}, \ldots, y_{i} for estimation of y_{i+1}. Exact solution

$$
y\left(x_{i+1}\right)-y\left(x_{i}\right)=\int_{x_{i}}^{x_{i+1}} f(t, y(t)) d t
$$

is estimated by

$$
\begin{gathered}
\Delta y_{i}=y_{i+1}-y_{i} \approx \int_{x_{i}}^{x_{i+1}} f(t, y(t)) d t \\
y_{i+1}=y_{i}+\Delta y_{i}
\end{gathered}
$$

Particular methods differ only by the estimate Δy_{i}.

Runge-Kutta methods 1: Euler's method

It is a generalization of the left sum method of integration; function $f(t, y(t))$ is replaced by its value $f\left(x_{i}, y_{i}\right)$ at x_{i}

$$
\begin{gathered}
\Delta y_{i}=\int_{x_{i}}^{x_{i+1}} f\left(x_{i}, y_{i}\right) d t=h f\left(x_{i}, y_{i}\right) \\
y_{i+1}=y_{i}+h f\left(x_{i}, y_{i}\right)=y_{i}+h f_{i}
\end{gathered}
$$

Geometrical interpretation: $f_{i}=f\left(x_{i}, y_{i}\right)$ is the slope of the line segment with endpoints $\left(x_{i}, y_{i}\right),\left(x_{i+1}, y_{i+1}\right)$.

Estimate of the error

Evaluate the Taylor expansion of function y with center x_{0} at x_{1} :

$$
y\left(x_{1}\right)=y\left(x_{0}\right)+h y^{\prime}\left(x_{0}\right)+\frac{h^{2}}{2} y^{\prime \prime}(\xi)
$$

where $\xi \in\left[x_{0}, x_{1}\right]$.

$$
\begin{gathered}
y\left(x_{1}\right)=\underbrace{y\left(x_{0}\right)+h f\left(x_{0}, y_{0}\right)}_{y_{1}}+\frac{h^{2}}{2} y^{\prime \prime}(\xi) \\
y\left(x_{1}\right)-y_{1}=\frac{h^{2}}{2} y^{\prime \prime}(\xi)
\end{gathered}
$$

The error at the end of the first step is proportional to h^{2}.
In subsequent steps, we use an initial condition which is not exact. Nevertheless, usually the error is proportional to h^{2} and the number of steps $n=\frac{x_{n}-x_{0}}{h}$.
The error at the end of the interval is proportional to $\frac{1}{h} h^{2}=h \quad \Rightarrow$ method of the 1st order.

Runge-Kutta methods 2: First modification of Euler's method

Generalization of rectangular (midpoint) integration method; we approximate function $f(t, y(t))$ by its value at $\frac{x_{i}+x_{i+1}}{2}=x_{i}+\frac{h}{2}$. The second argument of f is the result of an auxiliary step of length $h / 2$, made by Euler's method:

$$
\begin{gathered}
\eta_{i}=y_{i}+\frac{h}{2} f_{i} \\
f(t, y(t)) \approx f\left(x_{i}+\frac{h}{2}, \eta_{i}\right) \\
\Delta y_{i}=\int_{x_{i}}^{x_{i+1}} f\left(x_{i}+\frac{h}{2}, \eta_{i}\right) d t=h f\left(x_{i}+\frac{h}{2}, \eta_{i}\right) .
\end{gathered}
$$

Method of 2nd order.

Second modification of Euler's method (Heun's method)

Generalization of trapezoidal integration method; we approximate function $f(t, y(t))$ by a linear function going through the endpoints of the interval:
at $x_{i}: \quad f_{i}=f\left(x_{i}, y_{i}\right)$,
at x_{i+1} : the lack of knowledge of the y th coordinate is compensated by an auxiliary step of length $h / 2$, made by Euler's method:

$$
\theta_{i}=y_{i}+h f_{i} .
$$

Function $f(t, y(t))$ is approximated by a linear function whose graph goes through points $\left(x_{i}, f\left(x_{i}, y_{i}\right)\right),\left(x_{i+1}, f\left(x_{i+1}, \theta_{i}\right)\right)$.

$$
\Delta y_{i}=\frac{h}{2}\left(f\left(x_{i}, y_{i}\right)+f\left(x_{i+1}, \theta_{i}\right)\right)
$$

Method of 2nd order.

Runge-Kutta methods 4: Runge-Kutta method of 4th order

Generalization of Simpson's method; we first compute auxiliary points and derivatives in them,

$$
\begin{aligned}
k_{i, 1} & =f\left(x_{i}, y_{i}\right) \\
k_{i, 2} & =f\left(x_{i}+\frac{h}{2}, y_{i}+\frac{h}{2} k_{i, 1}\right), \\
k_{i, 3} & =f\left(x_{i}+\frac{h}{2}, y_{i}+\frac{h}{2} k_{i, 2}\right), \\
k_{i, 4} & =f\left(x_{i}+h, y_{i}+h k_{i, 3}\right) .
\end{aligned}
$$

The integral is approximated by a linear combination of these values:

$$
\Delta y_{i}=\frac{h}{6}\left(k_{i, 1}+2 k_{i, 2}+2 k_{i, 3}+k_{i, 4}\right) .
$$

Runge-Kutta methods 5: General Runge-Kutta methods

They estimate the integral $\int_{x_{i}}^{x_{i+1}} f(t, y(t)) d t$ from several values of function f at points, obtained from the initial values x_{i}, y_{i} and auxiliary steps. These values are combined so that the errors of the lowest orders are compensated.

Mulitistep methods

Methods

- one-step: they use only x_{i}, y_{i} and $f_{i}=f\left(x_{i}, y_{i}\right)$ (e.g. Runge-Kutta),
- mulitistep: they use also the results of previous steps, i.e., x_{j}, y_{j} a $f_{j}=f\left(x_{j}, y_{j}\right), j=i, i-1, \ldots, i-s+1$ (for an s-step method).

Mulitistep methods admit to increase the order without auxiliary steps.
However, the initialization of an s-step method requires s values $y_{0}, y_{1}, \ldots, y_{s-1}$. These are obtained by a starting method (one-step).

Adams-Bashforth methods (explicit)

We approximate s values of the derivative, $f_{i}, f_{i-1}, \ldots, f_{i-s+1}$
at nodes $x_{i}, x_{i-1}, \ldots, x_{i-s+1}$
by the interpolating polynomial φ_{i}, which is integrated instead of $f(t, y(t))$:

$$
\Delta y_{i}=\int_{x_{i}}^{x_{i+1}} \varphi_{i}(t) d t
$$

We do not need to compute φ_{i} because

$$
\Delta y_{i}=h \sum_{j=0}^{s-1} w_{j} f_{i-j}
$$

where w_{j} are known coefficients.
We use polynomial approximation of the derivative $y^{\prime}(t)=f(t, y(t))$, not of the solution, $y(t)$!

For $s=1$:
$\varphi_{i}=f_{i}$ is constant \Rightarrow Euler's method.
For $s=2$:
φ_{i} is a linear polynomial going through points $\left(x_{i}, f_{i}\right),\left(x_{i-1}, f_{i-1}\right)$,

$$
\begin{aligned}
\varphi_{i}(t) & =f_{i}+\frac{f_{i}-f_{i-1}}{h}\left(t-x_{i}\right) \\
\Delta y_{i}=\int_{x_{i}}^{x_{i+1}} \varphi_{i}(t) d t & =h f_{i}+\frac{h}{2}\left(f_{i}-f_{i-1}\right)=\frac{h}{2}\left(3 f_{i}-f_{i-1}\right) .
\end{aligned}
$$

For $s=3$:

$$
\Delta y_{i}=\frac{h}{12}\left(23 f_{i}-16 f_{i-1}+5 f_{i-2}\right)
$$

For $s=4$:

$$
\Delta y_{i}=\frac{h}{24}\left(55 f_{i}-59 f_{i-1}+37 f_{i-2}-9 f_{i-3}\right)
$$

The order of these methods is $s=$ number of points used in the approximation.
Advantage:

- simplicity

Disadvantages:

- different signs of coefficients (\Rightarrow round-off errors)
- systematic error caused by the polynomial extrapolation
\Rightarrow effort to avoid extrapolation

Adams-Moulton methods (implicit)

Function $f(t, y(t))$ is approximated by an interpolating polynomial φ_{i} through values $f_{i}, f_{i-1}, \ldots, f_{i-s+1}$ and value at x_{i+1}, i.e., $f_{i+1}=f\left(x_{i+1}, y_{i+1}\right)$.
Again it reduces to a linear combination

$$
y_{i+1}-y_{i}=\Delta y_{i}=h \sum_{j=-1}^{s-1} w_{j} f_{i-j}
$$

where w_{j} are known coefficients (different from the above).
We obtain an equation

$$
y_{i+1}=y_{i}+h w_{-1} f\left(x_{i+1}, y_{i+1}\right)+h \sum_{j=0}^{s-1} w_{j} f_{i-j}
$$

for an unknown value y_{i+1}, which is determined only implicitly.

For $s=1: \varphi_{i}$ is a linear polynomial going through points $\left(x_{i}, f_{i}\right),\left(x_{i+1}, f_{i+1}\right)$, e.g.,

$$
\begin{gathered}
\varphi_{i}(t)=f_{i}+\frac{f_{i+1}-f_{i}}{h}\left(t-x_{i}\right) \\
\Delta y_{i}=\int_{x_{i}}^{x_{i+1}} \varphi_{i}(t) d t=\frac{h}{2}\left(f_{i+1}+f_{i}\right)
\end{gathered}
$$

with substitution $f_{i+1}=f\left(x_{i+1}, y_{i+1}\right)$

$$
y_{i+1}-y_{i}=\frac{h}{2}\left(f\left(x_{i+1}, y_{i+1}\right)+f_{i}\right) .
$$

For $s=2$:

$$
\Delta y_{i}=\frac{h}{12}\left(5 f\left(x_{i+1}, y_{i+1}\right)+8 f_{i}-f_{i-1}\right)
$$

For $s=3$:

$$
\Delta y_{i}=\frac{h}{24}\left(9 f\left(x_{i+1}, y_{i+1}\right)+19 f_{i}-5 f_{i-1}+f_{i-2}\right) .
$$

The order of these methods is $s+1=$ number of points used in the approximation.
Advantage:

- higher precision

Disadvantages:

- difficult solution of the implicit equation (an analytical solution is usually impossible, numerical solution increases the computational complexity)
- even the polynomial interpolation can cause large systematic errors

Predictor-corrector methods

Based on a corrector, which might be some of implicit methods, in which the corresponding equation is solved numerically.
In the m th iteration, we compute an estimate $y_{i+1, m}$ of y_{i+1}, where we use the results of the preceding iteration, $y_{i+1, m-1}$, on the right-hand side:

$$
y_{i+1, m}=y_{i}+h \sum_{j=0}^{s-1} w_{j} f_{i-j}+h w_{-1} f\left(x_{i+1}, y_{i+1, m-1}\right) .
$$

The initial estimate $y_{i+1,0}$ is computed from the results of previous steps using another method, predictor, e.g., some of explicit methods.

Control mechanism

$\mathrm{P}=$ Predictor
C $=$ Corrector
$\mathrm{E}=$ Evaluation
Most common choices:

- The cycle of the corrector is repeated until the difference $y_{i+1, m}-y_{i+1, m-1}$ is sufficiently small.
- Constant number k of repetitions of the corrector, $\mathrm{P}(\mathrm{EC})^{k} \mathrm{E}$.
- Single use of the corrector, PECE.

Adams methods

Predictor: Adams-Bashforth method
Corrector: Adams-Moulton method
Example: The simplest variant of an Adams method, $s=1$:
Predictor: Euler's method (1st order)

$$
y_{i+1,0}=y_{i}+h f_{i} .
$$

Corrector: Adams-Moulton method of 2nd order

$$
y_{i+1, m}=y_{i}+\frac{h}{2}\left(f_{i}+f\left(x_{i+1}, y_{i+1, m-1}\right)\right)
$$

Choice of starting methods (of their order)
Step size control
Richardson's extrapolation in solution of differential equations
$\tilde{y}(x, h) \quad \ldots$ numerical solution at x with step h
$\tilde{y}(x, 2 h) \ldots$ numerical solution at x with step $2 h$
(here $q=2$)
The error of estimate $\tilde{y}(x, h)$ is approximately $2^{p} \times$ smaller than the error of estimate $\tilde{y}(x, 2 h)$
\Rightarrow estimate of the error of $\tilde{y}(x, h)$:

$$
\tilde{y}(x, h)-y(x) \approx \frac{1}{2^{p}-1}(\tilde{y}(x, 2 h)-\tilde{y}(x, h)) .
$$

Estimate improved by Richardson's extrapolation:

$$
y(x) \approx \tilde{y}(x, h)+\frac{1}{2^{p}-1}(\tilde{y}(x, h)-\tilde{y}(x, 2 h))
$$

Richardson's extrapolation

- passive
- active

