
Numerical Analysis: Approximation of Functions

Mirko Navara
http://cmp.felk.cvut.cz/˜navara/

Center for Machine Perception, Department of Cybernetics, FEE, CTU
Karlovo náměst́ı, building G, office 104a

http://math.feld.cvut.cz/nemecek/nummet.html

November 12, 2014

Requirements for the assessment

• Adequate presence at seminars (you may install Maple on your computer* and do the tasks elsewhere).
* Contact Aleš Němeček for the license.
• Tasks 6× 5 points
18 points suffice

References

[Navara, Němeček] Navara, M., Němeček, A.: Numerical Methods (in Czech). 2nd edition, CTU, Prague, 2005.

[Knuth] Knuth, D.E.: Fundamental Algorithms. Vol. 1 of The Art of Computer Programming, 3rd ed., Addison-
Wesley, Reading, MA, 1997.

[KJD] Kub́ıček, M., Janovská, D., Dubcová, M.: Numerical Methods and Algorithms. Institute of Chemical
Technology, Prague, 2005. http://old.vscht.cz/mat/NM-Ang/NM-Ang.pdf

[Num. Recipes] Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipes
(The Art of Scientific Computing). 2nd edition, Cambridge University Press, Cambridge, 1992.
http://www.nrbook.com/a/bookcpdf.php

[Stoer, Bulirsch] Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis. Springer Verlag, New York, 2002.

[Handbook Lin. Alg.] Hogben, L. (ed.): Handbook of Linear Algebra. Chapman & Hall/CRC, Boca Ra-
ton/London/New York, 2007.

Motivation

Task: A polynomial can be factorized to the product of linear polynomials,
but only for orders up to 4.
Numerical solution is possible,
but it is imprecise and division leaves a remainder.
Also this is a subject of numerical anaysis.
Task: Linear algebra: “A system of linear equations Ax = b has a unique solution x = A−1b if and only if
det A 6= 0.”
Programming: “Real numbers cannot be tested for equality!”
Numerical anaysis: “Imprecision of coefficients causes imprecision of outputs, which for det A → 0 exceeds all
bounds.”
This is called an ill-conditioned task.
Task: Linear algebra: “det A is a sum of products∑

p

(−1)sign(p)a1,p(1) · a2,p(2) · . . . · an,p(n) =
∑

p

(−1)sign(p)
∏
i≤n

ai,p(i) ,

1



where we sum up over all permutations p of indices 1, . . . , n.”
Numerical anaysis: “This represents appr. n · n! operations.”

n 2 3 4 5 10 20 30
no. of operations 4 18 96 600 36 288 000 4.8 · 1019 7.9 · 1033

Gaussian Elimination has a complexity proportional to n3.

APPROXIMATION OF FUNCTIONS

Task: Estimate future currency exchange rates from the preceding ones.
Task: A random variable with Gaussian normal distribution has a cumulative distribution function

Φ(u) = 1√
2π

∫ u

−∞
exp

(
−t2

2

)
dt .

This is a transcendent function.
Numerical integration gives an approximate result with given precision.
(In fact, even the exponential function is computed only numerically, only the 4 basic arithmetical operations
are implemented in the processor.)
Faster evaluation can be done with a prepared table of values of Gauss integral.
Task: Estimate the remaining capacity of a battery from its voltage.
We use finitely many values, but we need an approximation on the whole interval.
Moreover, we require monotonicity.

Task: A digital image is zoomed, rotated, etc. This changes the number of pixels and their orientation.
Draw the V-A characteristic of a diode from measured data:

Motivating problems on approximation

1. Task 1: Dependence of an exchange rate on time.

2. Task 2: Fast estimation of Gauss integral (using a preprocessed table).

3. Task 3: V-A characteristic of a diode based on measured values.

2



4. Task 4: Temperatures from a meteorological station.

Basic task of approximation

Given:
n different points x0, . . . , xn−1 ∈ R (nodes)
y0, . . . , yn−1 ∈ R
set of functions F , defined at least in the nodes x0, . . . , xn−1
Task:
Find a function ϕ ∈ F , which minimizes the differences |yi − ϕ(xi)|, i = 0, . . . , n− 1.
Assumption: F is the linear hull of k known, so-called approximating functions ϕ0, . . . , ϕk−1, k ≤ n:

F = 〈ϕ0, . . . , ϕk−1〉 =
{∑

j<k

cj ϕj : cj ∈ R
}
.

It remains to determine real coefficients
cj , j = 0, . . . , k − 1, of the linear combination

ϕ =
∑
j<k

cj ϕj .

Linearity of the procedure of approximation

We mostly assume linear dependence of the output on the inputs (“superposition principle”); this is related to
the independence of the output on the chosen scale.
Than any approximation depends linearly on the entries of the arithmetical vector ~y = (y0, . . . , yn−1) ∈ Rn.
The resulting approximation is

~ϕ =
∑
j<k

cj ~ϕj ,

where
~ϕ = (ϕ(x0), . . . , ϕ(xn−1)) ∈ Rn,
~ϕj = (ϕj(x0), . . . , ϕj(xn−1)) ∈ Rn, j = 0, . . . , k − 1.
(No other values are used.)
Vector formulation of approximation:
For a given vector ~y, we look for the “nearest” vector ~ϕ from the linear hull of known vectors ~ϕj , j = 0, . . . , k−1.
Vector ~y has coordinates (y0, . . . , yn−1) w.r.t. the standard basis

~ψ0 = (1, 0, . . . , 0), ~ψ1 = (0, 1, 0, . . . , 0), . . . , ~ψn−1 = (0, . . . , 0, 1) ,

1. For j = 0, . . . , n− 1, we can put ~y = ~ψj and find approximating functions %j , represented by vectors ~%j .
2. For a general input vector ~y, the approximation is a linear combination of results of the special cases:

ϕ =
∑
j<n

yj %j .

Functions %j , j = 0, . . . , n− 1, give sufficient information about the solution for any ~y = (y0, . . . , yn−1).

Interpolation

Special case of approximation, where we require exact match at nodes.
Given:
n different nodes x0, . . . , xn−1 ∈ R
y0, . . . , yn−1 ∈ R
set of functions F , defined at least at the nodes x0, . . . , xn−1
Task: Select a function ϕ ∈ F such that

ϕ(xi) = yi, i = 0, . . . , n− 1 .

Simple interpolation

3



Assumption:

F = 〈ϕ0, . . . , ϕn−1〉 =
{∑

j<n

cj ϕj : cj ∈ R
}
.

Substitution gives ∑
j<n

cj ϕj(xi) = yi, i = 0, . . . , n− 1 ,

which is a system of n linear equations for unknowns cj , j = 0, . . . , n− 1.
For uniqueness, we put k = n and we require linear independence of arithmetical vectors ~ϕj = (ϕj(x0), . . . , ϕj(xn−1)),
j = 0, . . . , k − 1.
The complexity is proportional to n3; we shall achieve smaller complexity for special tasks.

Polynomial interpolation

We interpolate by a polynomial of degree less than n, i.e., ≤ n− 1.
It has n coefficients, which is needed for existence and uniquness of the solution.
Interpolating functions can be chosen as ϕj(t) = tj , j = 0, . . . , n− 1.
It may be advantageous to use another bases of the n-dimensional linear space of all polynomials of degree less
than n.

Advantages of polynomial interpolation

• It is easy to integrate them, differentiate, etc.

• Solvability:

Theorem: There is exactly on polynomial of degree less than n which solves the interpolation task for
n nodes.

• Universality:

Weierstrass Theorem: Let f be a continuous function at a closed interval I and let ε > 0. Then there
exists a polynomial ϕ such that

∀t ∈ I : |f(t)− ϕ(t)| ≤ ε .

Disadvantages of polynomial interpolation

• Weierstrass Theorem does not say anything about the degree of the polynomial, thus it may be useless.

• Polynomial dependencies are rather rare in practice.

Simple interpolation works, but we shall show better methods.

Lagrange construction of the interpolating polynomial

1. We solve special cases when the jth entry of vectoru ~y is unit, others are zeros; this results in polynomials
%j , j = 0, . . . , n− 1,

%j(xi) = δij =
{

1 if i = j,
0 if i 6= j.

(δij is the Kronecker delta)
Polynomial %j of degree ≤ n− 1 has n− 1 roots x0, . . . , xj−1, xj+1, . . . , xn−1;

%j(t) = ej(t− x0) . . . (t− xj−1)(t− xj+1) . . . (t− xn−1)

= ej

∏
i<n,i6=j

(t− xi) ,

4



where ej follows from the equality %j(xj) = 1:

ej = 1∏
i<n,i 6=j

(xj − xi)
, %j(t) =

∏
i<n,i6=j

(t− xi)∏
i<n,i6=j

(xj − xi)
.

2. The general solution is the linear combination

ϕ =
∑
j<n

yj %j ,

ϕ(t) =
∑
j<n

yj %j(t) =
∑
j<n

yj

∏
i<n,i6=j

(t− xi)∏
i<n,i6=j

(xj − xi)
.

Check:
ϕ(xi) =

∑
j<n

yj %j(xi) =
∑
j<n

yj δij = yi .

The complexity is proportional to n2.
The idea of the Lagrange construction of the interpolating polynomial is applicable to more general tasks.
Motivation for dissatisfaction:
Approximating exchange rates, we continuously receive new data.
Is it necessary to comput all again from scratch?
Some intermediate results can be used, provided that we recorded them.
The previous result can be used and only corrected by certain polynomial.

Newton construction of the interpolating polynomial

5



It is still the same (unique) polynomial
The constant polynomial c0 = y0 has the right value at x0.
The resulting polynomial ϕ is a sum of an appropriate polynomial ω0 vanishing at x0: t 7→ (t−x0)ω0(t), where
ω0 is a polynomial of degree ≤ n− 2:

ϕ(t) = c0 + (t− x0)ω0(t) , c0 = y0 , ω0(t) = ϕ(t)− c0

t− x0

(cancel out). Values at nodes: ω0(xi) = yi − c0

xi − x0
. Induction:

Polynomial ω0 is of the form (ω1 is a polynomial of degree ≤ n− 3):

ω0(t) = c1 + (t− x1)ω1(t) , c1 = ω0(x1) , ω1(t) = ω0(t)− c1

t− x1
,

ω1(t) = c2 + (t− x2)ω2(t) , c2 = ω1(x2) , ω2(t) = ω1(t)− c2

t− x2
,

ω2(t) = c3 + (t− x3)ω3(t) , c3 = ω2(x3) , ω3(t) = ω2(t)− c3

t− x3
,

...
ωn−2(t) = cn−1 = ωn−3(xn−2) .

6



Back substitution gives

ϕ(t) = c0 + (t− x0) · [c1 + (t− x1) · [c2 +
+ . . . (t− xn−3) · [cn−2 + (t− xn−2) · cn−1] . . .]] .

Expansion (not recommended!):

ϕ(t) = c0 + (t− x0) c1 + (t− x0) (t− x1) c2 + . . .+ cn−1
∏

i<n−1
(t− xi)

=
∑
j<n

cj

∏
i<j

(t− xi) .

The complexity of the computation of coefficients is ∼ n2, then each function value is obtained with the
complexity ∼ n.

Nevill’s algorithm

We need to evaluate the interpolating polynomial just for a single argument t; the coefficients are irrelevant.
One point (xi, yi) gives an approximation by a constant polynomial yi.
Two points (xi, yi), (xi+1, yi+1) are approximated by a linear polynomial; its value at t is a linear combination
of values yi, yi+1, namely

yi,i+1 = (t− xi+1) yi + (xi − t) yi+1

xi − xi+1
,

etc.
yi,i+1,...,i+m−1 ... the value at t of the interpolating polynomial with m nodes xi, xi+1, . . . , xi+m−1
yi+1,...,i+m−1,i+m ... the value at t of the interpolating polynomial with m nodes xi+1, . . . , xi+m−1, xi+m

The value at t of the interpolating polynomial with m+ 1 nodes xi, xi+1, . . . , xi+m is

yi,i+1,...,i+m = (t− xi+m) yi,i+1,...,i+m−1 + (xi − t) yi+1,...,i+m−1,i+m

xi − xi+m

We proceed from values y0, y1, . . . , yn−1 to y0,1,...,n−1 = ϕ(t) = result.
Numerical errors can be reduced if, instead of the polynomial values, we compute only their differences,

Ci,m = yi,...,i+m − yi,...,i+m−1 ,
Di,m = yi,...,i+m − yi+1,...,i+m ,

using recurrent formulas

Ci,m = (xi − t) (Ci+1,m−1 −Di,m−1)
xi − xi+m

,

Di,m = (xi+m − t) (Ci+1,m−1 −Di,m−1)
xi − xi+m

.

The result is, e.g.,

y0,1,...,n−1 = y0 +
n−1∑
m=1

C0,m .

Error of approximation by the interpolating polynomial

Zero at nodes (only numerical errors occur).
Error in other points if we approximate a function f by the interpolating polynomial.

Derivation of the error of approximation by the interpolating polynomial

Assumptions:
f has continuous derivatives up to order n at a closed interval I ⊇ {x0, . . . , xn−1},
u ∈ I \ {x0, . . . , xn−1}

7



We define a function
gu(t) = f(t)− ϕ(t)︸ ︷︷ ︸

error of interpolation at t

−Pu W (t) ,

where Pu = f(u)− ϕ(u)
W (u) is a suitable constant,

W (t) =
∏

i<n

(t − xi) is a polynomial of degree n with roots x0, . . . , xn−1 and a unit coefficient at the highest

power, tn (these conditions determine the polynomial uniquely),
Its nth derivative is W (n)(t) = n!

gu = f − ϕ− Pu W

has roots u, x0, . . . , xn−1 and a continuous nth derivative

g(n)
u = f (n) − Pu n!

Between every two roots of gu, there is a root of its derivative g′u.
Between n+ 1 roots of gu, there are
≥ n roots of g′u,
≥ n− 1 roots of g′′u,
...
≥ 1 root of g(n)

u , say ξ.

0 = g(n)
u (ξ) = f (n)(ξ)− Pu n! = f (n)(ξ)− f(u)− ϕ(u)

W (u) n!

f(u)− ϕ(u) = f (n)(ξ)
n! W (u)

f(u)− ϕ(u) = f (n)(ξ)
n! W (u)

|f(u)− ϕ(u)| = |f
(n)(ξ)|
n! |W (u)|

We replace |f (n)(ξ)| by its upper estimate Mn: ∀t ∈ I : |f (n)(t)| ≤Mn

|f(u)− ϕ(u)| ≤ Mn

n! |W (u)|

Using an upper estimate W of W , ∀t ∈ I : |W (t)| ≤W , we get an upper estimate independent of u:

|f(u)− ϕ(u)| ≤ Mn

n! W

8



(Red: upper estimate of error; green: real error.)
Two cases:

• Extrapolation: approximation outside the interval I(x0, . . . , xn−1) of nodes

• Interpolaci (in the narrow sense): approximation outside the interval I(x0, . . . , xn−1)

Recommendation for minimization of error: cosine distribution of nodes
On interval [−1, 1], choose nodes

zi = cos
π(i+ 1

2 )
n

, i = 0, . . . , n− 1 ,

on a general interval [a, b] choose

xi = b+ a

2 + b− a
2 zi = b+ a

2 + b− a
2 cos

π(i+ 1
2 )

n

Approximation error of polynomial interpolation for a cosine distribution of nodes

9



(Red: upper estimate of error; green: real error.)

Motivating problem - polynomial interpolation

10



Dependence of interpolating polynomial on local changes

11



12



Hermite interpolating polynomial - example

Given:
x0 = 0, x1 = 1,
y0,0, y1,0, y0,1, y1,1 ∈ R
Task:
Find a polynomial ϕ of degree at most 3, such that

ϕ(x0) = y0,0 , ϕ(x1) = y1,0 , ϕ′(x0) = y0,1 , ϕ′(x1) = y1,1

As in the Lagrange construction of the interpolating polynomial, we first find polynomials η, %, σ, τ of degree 3:

ψ ψ(0) ψ(1) ψ′(0) ψ′(1)
η 1 0 0 0
% 0 1 0 0
σ 0 0 1 0
τ 0 0 0 1

Polynomial η has a double root 1, thus it is of the form

η(t) = (a0t+ b0)(t− 1)2 ,

where a0, b0 can be determined from the values at 0:

η(0) = b0 = 1
η′(0) = a0 − 2b0 = 0

a0 = 2, b0 = 1, η(t) = (2t+ 1)(t− 1)2

% has a double root 0, thus it is of the form

%(t) = (a1t+ b1) t2 ,

where a1, b1 can be determined from the values at 1:

%(1) = a1 + b1 = 1
%′(1) = 3a1 + 2b1 = 0

a1 = −2, b1 = 3, %(t) = (−2t+ 3)t2

13



σ has a double root 1 and a single root 0, thus it is of the form

σ(t) = c0 t (t− 1)2 ,

where c0 can be determined from the derivative at 0:

σ′(0) = c0 = 1

σ(t) = t(t− 1)2

τ has a double root 0 and a single root 1, thus it is of the form

τ(t) = c1 t
2(t− 1) ,

where c1 can be determined from the derivative at 1:

τ ′(1) = c1 = 1

τ(t) = t2(t− 1)

ϕ is a linear combination of η, %, σ, τ ,

ϕ = y0,0 η + y1,0 %+ y0,1 σ + y1,1 τ

14



Approximation by Taylor series (more exactly, by Taylor polynomial)

Special case of Hermite interpolating polynomial with one node, where the first n derivatives (including the 0’s)
are given.
Given:
Node x0
n values y0,0, y0,1, . . . , y0,n−1 ∈ R
Task:
Find a polynomial ϕ of degree less than n, such that

ϕ(j)(x0) = y0,j , j = 0, . . . , n− 1 .

The solution is of the form

ϕ =
∑
j<n

y0,j ψj , ψ
(i)
j (x0) = δij , ψj(t) = 1

j! (t− x0)j

ϕ(t) =
∑
j<n

y0,j

j! (t− x0)j

If y0,0, y0,1, . . . , y0,n−1 are the derivatives of some function f at x0, i.e., y0,j = f (j)(x0), then ϕ is a finite Taylor
series with center x0:

ϕ(t) =
∑
j<n

f (j)(x0)
j! (t− x0)j .

If f has a continuous nth derivative at interval I(u, x0), then

f(u)− ϕ(u) = f (n)(ξ)
n! (u− x0)n ,

where ξ ∈ I(u, x0)
|f(u)− ϕ(u)| ≤ Mn

n! |(u− x0)n|

The only difference from the error of the interpolating polynomial is that polynomialW (u) with roots x0, . . . , xn−1
is replaced by polynomial (u− x0)n (of the same degree) with a single root x0 of multiplicity n.
Approximation by Taylor polynomial is very precise in the neighborhood of x0, but less precise in more distant
points.

15



Approximations by Taylor polynomials of degrees 5, 10, and 15 for positive arguments.
Approximation by Taylor polynomial

16



Approximations by Taylor polynomials of degrees 5, 10, and 15 for negative arguments.
Approximation by Taylor polynomial

17



Approximations by Taylor polynomials of degrees 5, 10, and 15 for positive and negative arguments.
Spline interpolation
Disadvantage of polynomial interpolation: small change of input can cause big change of output at distant
points (the influence is not localized).
Spline is a piecewise polynomial functionÃŋ. (It coincides with polynomials of small degree at particular
intervals.)
The simplest case is linear spline, which is the approximation by a piecewise linear function.

Cubic spline

Given:
n nodes x0, . . . , xn−1 ordered increasingly,
n values y0, . . . , yn−1.
Task:
Find function ϕ, defined on interval [x0, xn−1], such that:
• ϕ(xi) = yi, i = 0, . . . , n− 1,
• at each interval [xi−1, xi], i = 1, . . . , n− 1, function ϕ coincides with a polynomial ϕi of degree at most 3,
• the first two derivatives of ϕ are continuous at interval [x0, xn−1].

(We shall find it necessary to make this task more precise.)

It suffices to ensure continuity of derivatives at n− 1 nodes x1, . . . , xn−2:

ϕ′i(xi) = ϕ′i+1(xi), i = 1, . . . , n− 2 ,
ϕ′′i (xi) = ϕ′′i+1(xi), i = 1, . . . , n− 2 .

Suppose that values ϕ′(xi) = ϕ′i(xi) = ϕ′i+1(xi), i = 1, . . . , n− 2 are known. Then ϕ′ is continuous.

18



Polynomials ϕi, i = 1, . . . , n − 1 can be found just as the Hermite interpolating polynomial in the previous
example; the only difference is that the nodes 0, 1 are replaced by xi−1, xi.
The general case is obtained by an easy linear transformation of coordinates:

t = xi−1 + (xi − xi−1)u , u = t− xi−1

xi − xi−1
.

On interval [xi−1, xi], i = 1, . . . , n− 1, we get

ϕi(t) = yi−1ηi(t) + yi%i(t) + ϕ′(xi−1)σi(t) + ϕ′(xi)τi(t) ,

where ηi, %i, σi, τi are polynomials of degree at most 3 (computed as the polynomials η, %, σ, τ in the example of
Hermite interpolating polynomial).
It remains to find ϕ′(xi), i = 0, . . . , n− 1:

yi−1η
′′
i (xi) + yi%

′′
i (xi) + ϕ′(xi−1)σ′′i (xi) + ϕ′(xi)τ ′′i (xi) =

= yiη
′′
i+1(xi) + yi+1%

′′
i+1(xi) + ϕ′(xi)σ′′i+1(xi) + ϕ′(xi+1)τ ′′i+1(xi) ,

where i = 1, . . . , n− 2
(system of n− 2 linear equations with n unknowns).
There remain 2 undefined parameters. The usual choice ϕ′′(x0) = ϕ′′(xn−1) = 0 leads to so-called natural
spline. This choice influences the result only at the endpoints of the interval [x0, xn−1].
The algorithm consists of 2 parts:
1. Computation of coefficients ϕ′(xi), i = 0, . . . , n− 1.
2. Evaluation of the spline.
The matrix of the system of linear equations is three-diagonal (its particular properties allow more effective
solutions).
Splins cannot be used for extrapolation!

Still many implementations allow it.
Comment: The choice of nodes has smaller influence than in polynomial interpolation.

Influence of local changes on a spline

Influence of local changes on a spline

19



Influence of local changes on a spline

Motivating problem - spline

20



Given:
n nodes x0, . . . , xn−1
n values y0, . . . , yn−1
k functions ϕ0, . . . , ϕk−1, k ≤ n, defined at least at the nodes.
Task:
Find coefficients c0, . . . , ck−1 ∈ R of a linear combination of functions ϕj

ϕ =
∑
j<k

cj ϕj

21



which minimizes

H2 =
∑
i<n

(ϕ(xi)− yi)2 =
∑
i<n

(∑
j<k

cj ϕj(xi)− yi

)2

Modified criteria

H2w =
∑
i<n

wi (ϕ(xi)− yi)2

can be solved analogously,

H1 =
∑
i<n

|ϕ(xi)− yi|

not used, the solution is not unique,

H0 = max
i<n
|ϕ(xi)− yi|

is more difficult to solve (Chebyshev approximation).

Solution of approximation by LSM

We introduce an inner (=scalar) product on Rn, defined for ~u = (u0, . . . , un−1), ~v = (v0, . . . , vn−1) by

~u · ~v =
∑
i<n

ui · vi .

We have to approximate vector ~y by a linear combination ~ϕ =
∑
j<k

cj ~ϕj ,

the criterion is H2 = (~ϕ− ~y) · (~ϕ− ~y) = ‖~ϕ− ~y‖2 .
Solution: The orthogonal projection; it satisfies the system of equations (for m = 0, . . . , k − 1)

(~ϕ− ~y) ⊥ ~ϕm,

(~ϕ− ~y) · ~ϕm = 0,
~ϕ · ~ϕm = ~y · ~ϕm.

Vectors ~ϕ and ~y have the same inner products with vectors ~ϕm.(∑
j<k

cj ~ϕj

)
· ~ϕm = ~y · ~ϕm,∑

j<k

cj(~ϕj · ~ϕm) = ~y · ~ϕm, m = 0, . . . , k − 1;

system of linear equations for unknowns c0, . . . , ck−1 - system of normal equations.
Special case: Approximation by a polynomial of degree less than k; we may choose ϕj(t) = tj ,

~ϕj · ~ϕm =
∑
i<n

xj
i · x

m
i =

∑
i<n

xj+m
i .

Motivating problem - LSM

22



Approximation of V-A characteristic of a diode by a linear combination of a constant and two exponencials
with appropriate bases.
In linear subspace P = 〈~ϕ0, . . . , ~ϕk−1〉, we find an orthogonal basis (~ψ0, . . . , ~ψk−1),

~ψj · ~ψm = 0 for j 6= m.

Orthogonality depends not only on functions ϕ0, . . . , ϕk−1, but also on the choice of nodes!
We look for a solution in the form ϕ =

∑
j<k

dj ψj , where dj , j = 0, . . . , k − 1 are coordinates w.r.t. a new basis.

23



The matrix of the system of normal equations is diagonal:

dj

(
~ψj · ~ψj

)
= ~y · ~ψj , j = 0, . . . , k − 1,

dj = ~y · ~ψj

~ψj · ~ψj

= ~y · ~ψj

‖~ψj‖2
, j = 0, . . . , k − 1.

Moreover, vectors ~ψj can be chosen unit, then also the denominator is 1.
Constructs an orthogonal basis

~ψ0 = ~ϕ0

~ψ1 = ~ϕ1 + α10 ~ψ0

~ψ1 · ~ψ0 = 0 ⇒ ~ϕ1 · ~ψ0 + α10 ~ψ0 · ~ψ0 = 0

⇒ α10 = −~ϕ1 · ~ψ0
~ψ0 · ~ψ0

~ψ2 = ~ϕ2 + α20 ~ψ0 + α21 ~ψ1

~ψ2 · ~ψ0 = 0 ⇒ ~ϕ2 · ~ψ0 + α20 ~ψ0 · ~ψ0 + α21 ~ψ1 · ~ψ0︸ ︷︷ ︸
0

= 0

⇒ α20 = −~ϕ2 · ~ψ0
~ψ0 · ~ψ0

~ψ2 · ~ψ1 = 0 ⇒ ~ϕ2 · ~ψ1 + α20 ~ψ0 · ~ψ1︸ ︷︷ ︸
0

+α21 ~ψ1 · ~ψ1 = 0

⇒ α21 = −~ϕ2 · ~ψ1
~ψ1 · ~ψ1
. . .

~ψj = ~ϕj +
∑
m<j

αjm
~ψm

∀p, p < j : ~ψj · ~ψp = 0 = ~ϕj · ~ψp +
∑
m<j

αjm
~ψm · ~ψp = ~ϕj · ~ψp + αjp

~ψp · ~ψp

⇒ αjp = −~ϕj · ~ψp

~ψp · ~ψp

Approximation by LSM with the choice of approximating functions

1, cos 2π t
T
, sin 2π t

T
, cos 4π t

T
, sin 4π t

T
, . . .

For equidistant nodes at an interval of length T ,

xi = a+ i
T

n
, i = 0, . . . , n− 1,

24



(at most n) vectors ~ϕj are orthogonal.
Given:
Bounded interval I,
continuous function f na I,
k ∈ N
Task:
Find a polynomial ϕ of degree less than k minimizing

H0 = max
t∈I
|ϕ(t)− f(t)|

There are methods solving this task, but their complexity is much higher;
instead of that, we usually apply modified LSM:
For simplicity, we take interval I = 〈−1, 1〉; generalization to any interval 〈a, b〉 is done by a linear transformation

x = b+ a

2 + b− a
2 z ,

the inverse transformation is
z =

x− b+a
2

b−a
2

.

We choose n ≥ k nodes x0, . . . , xn−1 ∈ 〈−1, 1〉 with cosine distribution:

zi = cos
π(i+ 1

2 )
n

, i = 0, . . . , n− 1.

For a basis of the linear space of all polynomials of degree less than k, we take Chebyshev polynomials:

Chebyshev polynomials

ϕj(t) = cos(j arccos t), j = 0, . . . , k − 1, k < n.

They can be computed by a recurrent formula

ϕ0(t) = 1,
ϕ1(t) = t,

ϕj(t) = 2tϕj−1(t)− ϕj−2(t), j ≥ 2

The range of functions ϕj , j ≥ 1, at interval I is 〈−1, 1〉.

25



The vectors ~ϕ0, . . . , ~ϕk−1 are orthogonal,

~ϕj · ~ϕm =

 0 if j 6= m,
n
2 if j = m > 0,
n if j = m = 0.

For k = n, we obtain the interpolating polynomial (with the recommended distribution of nodes). The solution
for k < n differs by ignoring the summands of higher order. Coefficients ck, . . . , cn−1 are usually small (they
depend on higher derivatives of the approximated function!). An upper estimate of the error at nodes is

|ϕ(xi)− f(xi)| ≤
n−1∑
j=k

|cj |.

Remarks on Chebyshev approximation

• We do not optimize the criterion H0, but the result is not much different from the optimal solution.

• We cannot say much about the error at other points than the nodes; nevertheless, the method can be
recommended.

• The recurrent formula is used not only for computation of Chebyshev polynomials, but also to their direct
evaluation at given points.

• It is not recommended to expand the result to the standard form ϕ(t) =
∑
j<k

bj t
j .

• Chebyshev approximation can be generalized to an approximation by a product of a known function and
an unknown polynomial.

26


