
Reinforcement Learning

Michal Jakob

Agent Technology Center

A3M33UI Spring 2010 - Lecture 11

Michal Jakob (Agent Technology Center) Reinforcement Learning A3M33UI Spring 2010 - Lecture 11 1 / 35

Outline

1 Introduction

2 Multi-armed Bandit Problem

3 Reinforcement Learning
Passive Learning
Model-based Active Learning
Model-based Active Learning

4 Conclusions

Michal Jakob (Agent Technology Center) Reinforcement Learning A3M33UI Spring 2010 - Lecture 11 2 / 35

Reinforcement Learning (RL)

Given an MDP model we know how to find optimal policies
I Value Iteration or Policy Iteration

But what if we do not have any form of model
I Like when we were babies. . .
I Like in many real-world applications
I All we can do is wander around the world observing what happens, getting

rewarded and punished

⇒ Reinforcement learning

Michal Jakob (Agent Technology Center) Reinforcement Learning A3M33UI Spring 2010 - Lecture 11 3 / 35

Reinforcement Learning

Agent

Environment

action
atst

reward
rt

rt+1

st+1

state

Learning what to do to maximize reward
No knowledge of the environment

I Can only act in the world and observe states and reward
I Try things out and see what the reward is

Percepts received by an agent should be used not only for acting, but also
for improving the agent’s ability to behave optimally in the future to
achieve the goal

Extends optimal (sequential) decision making to cases where the model
of the environment is unknown

Michal Jakob (Agent Technology Center) Reinforcement Learning A3M33UI Spring 2010 - Lecture 11 4 / 35

Learning Agent

Performance standard

Agent

E
n

viro
n

m
en

t
Sensors

Performance
 element

changes

knowledge
learning
 goals

 Problem
 generator

feedback

 Learning
 element

Critic

Actuators

Michal Jakob (Agent Technology Center) Reinforcement Learning A3M33UI Spring 2010 - Lecture 11 5 / 35

Examples

Robotics: Quadruped Gait Control, Ball
Acquisition (Robocup)

Control: Helicopters

Operations Research: Pricing, Routing,
Scheduling

Game Playing: Backgammon, Solitaire,
Chess, Checkers

Human Computer Interaction: Spoken
Dialogue Systems

Economics/Finance: Trading

Figure: Cart-Pole
balancing

Michal Jakob (Agent Technology Center) Reinforcement Learning A3M33UI Spring 2010 - Lecture 11 6 / 35

RL vs Learning

Evaluating actions vs. instructing by giving correct action
Evaluative feedback – the learner is told how good an action is in terms
of reward

I Contrast with instructive feedback in supervised learning which gives
which is the right action

Michal Jakob (Agent Technology Center) Reinforcement Learning A3M33UI Spring 2010 - Lecture 11 7 / 35

RL vs MDP

MDP
I S is a set of states
I A is a set of actions
I T (S,A,S′) is the transition model
I R(S) is the reward function

RL is based on MDPs but
I Transition model is not known
I Reward function is not known

MDP computes an optimal policy

RL learns an optimal policy

Michal Jakob (Agent Technology Center) Reinforcement Learning A3M33UI Spring 2010 - Lecture 11 8 / 35

Types of RL

Single-stage vs. sequential
I Single-shot: Agent maximizes immediate feedback after a single action
I Sequential: Agent maximizes aggregate feedback received over a

sequence of actions

Passive vs. active
I Passive: Agent executes a fixed policy and evaluates it
I Active: Agents updates policy as it learns

Model-based vs. model-free
I Model-based: Learn transition and reward model, use it to get optimal

policy
I Model free: Derive optimal policy without learning the model optimal policy

Michal Jakob (Agent Technology Center) Reinforcement Learning A3M33UI Spring 2010 - Lecture 11 9 / 35

Outline

1 Introduction

2 Multi-armed Bandit Problem

3 Reinforcement Learning
Passive Learning
Model-based Active Learning
Model-based Active Learning

4 Conclusions

Michal Jakob (Agent Technology Center) Reinforcement Learning A3M33UI Spring 2010 - Lecture 11 10 / 35

Multi-Armed Bandit Problem

Single-stage reinforcement learning

Choose repeatedly from n actions;
each choice is called play

After each play at , you get a
(stochastic) reward r

E[rt |at] = Q∗(at)

Objective is to maximize the reward in
the long term

Michal Jakob (Agent Technology Center) Reinforcement Learning A3M33UI Spring 2010 - Lecture 11 11 / 35

Exploration vs. Exploitation

To solve the multi-armed bandit problem, one must explore a variety of
actions and exploit the best of them

Action-value estimates: suppose by the t-th play, action a has been
chosen ka times producing rewards r1, r2, . . . , rka

Qt(a) =
r1 + r2 + · · ·+ rka

ka
≈ Q∗(a)

The greedy action at t is

a∗t = argmax
a

Qt(a)

I choosing the greedy action a∗t ⇒ exploitation
I choosing another action at 6= a∗t ⇒ exploration

Must balance exploitation with exploration carefully.

Michal Jakob (Agent Technology Center) Reinforcement Learning A3M33UI Spring 2010 - Lecture 11 12 / 35

ε-greedy Action Selection

The simplest way to balance exploration and exploitation

at =

{
a∗ with probability 1− ε

random action a with probability ε

Michal Jakob (Agent Technology Center) Reinforcement Learning A3M33UI Spring 2010 - Lecture 11 13 / 35

ε-greedy Action Selection Convergence

Example for n = 10 and normally distributed Q∗(a) and rt

 = 0 (greedy)

 = 0.01

0

0.5

1

1.5

Average
reward

0 250 500 750 1000

Plays

0%

20%

40%

60%

80%

100%

%
Optimal
action

0 250 500 750 1000

 = 0.1

Plays

 = 0.01

 = 0.1

Michal Jakob (Agent Technology Center) Reinforcement Learning A3M33UI Spring 2010 - Lecture 11 14 / 35

Softmax Action Selection

Grade action probabilities by estimated utilities

The most common softmax uses a Gibbs (Boltzman) distribution

Choose action a on play t with probability

eQt(a)/τ

∑
n
b=1 eQt(b)/τ

I τ is the “computational temperature” (should decrease with time)

Michal Jakob (Agent Technology Center) Reinforcement Learning A3M33UI Spring 2010 - Lecture 11 15 / 35

Optimistic Initial Estimates

Previous methods depend on the initial action-value estimates Q0(a)⇒
they are biased
Instead initialize the action values optimistically

I e.g. Q0(a) = 5 for all a on the 10-armed test problem

0%

20%

40%

60%

80%

100%

%
Optimal
action

0 200 400 600 800 1000

Plays

optimistic, greedy
Q0 = 5, = 0

realistic, ε-greedy
Q0 = 0, = 0.1

Michal Jakob (Agent Technology Center) Reinforcement Learning A3M33UI Spring 2010 - Lecture 11 16 / 35

Other Metods

Reinforcement comparison

Pursuit methods

Interval estimation

Gittins indices

Bays optimal

Michal Jakob (Agent Technology Center) Reinforcement Learning A3M33UI Spring 2010 - Lecture 11 17 / 35

Outline

1 Introduction

2 Multi-armed Bandit Problem

3 Reinforcement Learning
Passive Learning
Model-based Active Learning
Model-based Active Learning

4 Conclusions

Michal Jakob (Agent Technology Center) Reinforcement Learning A3M33UI Spring 2010 - Lecture 11 18 / 35

Reinforcement Learning

Sequential reinforcement learning
I Rewards can be delayed

Passive learning
I A passive learner simply watches the world going by, and tries to learn the

utility of being in various states.
I Another perspective: a passive learner is as an agent with a fixed policy π

trying to determine its benefits.
I Serves as a component of active learning algorithms

Active learning
I Agent updates its policy as it learns
I Agent attempts to find the optimal (or at least good) policy
I Analogous to solving the underlying MDP

Michal Jakob (Agent Technology Center) Reinforcement Learning A3M33UI Spring 2010 - Lecture 11 19 / 35

Passive Learning

Policy π is fixed/given
I Evaluate the policy by learning utility Uπ(s) of each state

Same as policy evaluation for known transition and reward models
I Only this time the policy is executed in the real world not simulated in

agent’s mind

Several approaches
I Direct Estimation (= LMS) - mode-free
I Adaptive Dynamic Programming (ADP) - model-based
I Temporal Difference Learning (TD) - model-free

Michal Jakob (Agent Technology Center) Reinforcement Learning A3M33UI Spring 2010 - Lecture 11 20 / 35

Active Learning

Agent updates its policy as it interacts with the environment
Model-based approaches – active ADP algorithm

I estimates the model of the environment during learning

Model-free approaches – Q-learning
I does not use environment model

Michal Jakob (Agent Technology Center) Reinforcement Learning A3M33UI Spring 2010 - Lecture 11 21 / 35

Greedy Active ADP Agent

1: initialize U(s), T (s,a,s′) and R(s) arbitrarily for all s
2: initialize s to the current state perceived
3: loop
4: select a greedy optimum action a using the current R and T
5: receive immediate reward r and observe the new state s′

6: use the observed tuple (s,a,s′, r) to update R(s′) and T (s,a,s′)
(see next slide)

7: calculate updated state utilities U(s) for all states
(use any MDP algorithm)

8: end loop

Michal Jakob (Agent Technology Center) Reinforcement Learning A3M33UI Spring 2010 - Lecture 11 22 / 35

Learning the Model

Use simple estimation

Learning transition model T (s,a,s′)

T (s,a,s′) =
Nsas′(s,a,s′)

Nsa(s,a)

Learning reward function R(s) (if reward is deterministic)

R(s) = r(s)

Michal Jakob (Agent Technology Center) Reinforcement Learning A3M33UI Spring 2010 - Lecture 11 23 / 35

Problem - Convergence to Suboptimal Policy

The greedy agent does not learn the true utilities of the true optimal
policy!

I Rarely converges to the optimum policy

⇐ Learned model is not the same as the true environment

Michal Jakob (Agent Technology Center) Reinforcement Learning A3M33UI Spring 2010 - Lecture 11 24 / 35

Problem - Convergence to Suboptimal Policy

The greedy agent does not learn the true utilities of the true optimal
policy!

I Rarely converges to the optimum policy

⇐ Learned model is not the same as the true environment

Michal Jakob (Agent Technology Center) Reinforcement Learning A3M33UI Spring 2010 - Lecture 11 24 / 35

Exploitation vs. Exploration

Exploitation: Exploit current knowledge to maximize immediate reward.
Exploration: Acquire more information to maximize long-term rewards

I To explore requires taking actions that do not seem best according to the
current model

Managing the trade-off between exploration and exploitation is a critical
issue in RL
Basic intuition behind most approaches:

I Explore more when knowledge is weak
I Exploit more as we gain knowledge

Michal Jakob (Agent Technology Center) Reinforcement Learning A3M33UI Spring 2010 - Lecture 11 25 / 35

Explore/Exploit Policies

Exploration policy should be greedy in the limit of infinite exploration
(GLIE)
Agent must try each action infinite number of times

I Rules out the chance of missing a good action

Eventually must become greedy
Simple GLIE

I Choose random action ε− fraction of the time
I Use greedy policy otherwise

Converges to the optimal policy but the convergence is very slow

Michal Jakob (Agent Technology Center) Reinforcement Learning A3M33UI Spring 2010 - Lecture 11 26 / 35

Simple Exploring Active ADP Agent

1: initialize U(s), T (s,a,s′) and R(s) arbitrarily for all s
2: initialize s and r to the current state and reward observed
3: loop
4: select action a using the explore/exploit policy on the current R and T
5: receive immediate reward r and observe the new state s′

6: use the tuple (s,a,s′, r ′) to update R(s′) and T (s,a,s′)
7: calculate updated state utilities U(s) for all states

(use any MDP algorithm)
8: s← s′, r ← r ′

9: end loop

Michal Jakob (Agent Technology Center) Reinforcement Learning A3M33UI Spring 2010 - Lecture 11 27 / 35

Optimistic Utilities

Smarter GLIE – give higher weights to actions not tried very often

Modified Bellman equations with optimistic utilities U+(s)

U+(s) = R(s)+ γ max
a

f

(
∑
s′

T (s,a,s′)U+(s′),N(s,a)

)
∀s ∈ S

I N(s,a) is the number of times a was taken in s

The exploration function f (u,n) determines how greed (preference for
high values of a) is traded off against curiosity (preference for low values
of n)

I should increase with expected utility u
I should decrease with the number of trials n

Simple exploration function

f (u,n) =

{
r+ if n ≤ Ne

u otherwise

Michal Jakob (Agent Technology Center) Reinforcement Learning A3M33UI Spring 2010 - Lecture 11 28 / 35

Optimistic Utilities

Smarter GLIE – give higher weights to actions not tried very often

Modified Bellman equations with optimistic utilities U+(s)

U+(s) = R(s)+ γ max
a

f

(
∑
s′

T (s,a,s′)U+(s′),N(s,a)

)
∀s ∈ S

I N(s,a) is the number of times a was taken in s

The exploration function f (u,n) determines how greed (preference for
high values of a) is traded off against curiosity (preference for low values
of n)

I should increase with expected utility u
I should decrease with the number of trials n

Simple exploration function

f (u,n) =

{
r+ if n ≤ Ne

u otherwise

Michal Jakob (Agent Technology Center) Reinforcement Learning A3M33UI Spring 2010 - Lecture 11 28 / 35

Exploring ADP Agent with Optimistic Utilites

1: initialize U+(s), T (s,a,s′) and R(s) arbitrarily for all s
2: initialize s and r to the current state and reward observed
3: loop
4: choose greedy action a using the current R and T
5: perform a, receive immediate reward r and observe the new state s′

6: use the tuple (s,a,s′, r ′) to update R(s′) and T (s,a,s′)
7: calculate updated optimistic state utilities U+(s) for all states
8: s← s′, r ← r ′

9: end loop

Actions towards unexplored regions are encouraged

Fast convergence to almost optimal policy in practice

Michal Jakob (Agent Technology Center) Reinforcement Learning A3M33UI Spring 2010 - Lecture 11 29 / 35

Q-Learning

No model for learning or action selection
Instead of learning the optimal utility function U∗(s), learn the optimal
action-value function Q(a,s)

I utility values U(s) = maxaQ(s,a)

Optimality equations for Q-values at equilibrium

Q∗(s,a) = R(s)+ γ ∑
s′

T (s,a,s′)maxa′Q
∗(s′,a′)

I Q(s,a) is the expected value of taking action a in state s and following the
optimal policy thereafter

Next action anext = argmaxa f (Q(s,a),N(s,a))

Converges to the optimal policy as active ADP

Michal Jakob (Agent Technology Center) Reinforcement Learning A3M33UI Spring 2010 - Lecture 11 30 / 35

Temporal Difference Q-learning

TD Q-learning does not require a model

Iterative correction to approach the optimality equations

Q(s,a)← Q(s,a)+α(R(s)+ γmaxa′Q(a′,s′)︸ ︷︷ ︸
(noisy) sample of Q-value based on next state

−Q(s,a))

Learning rate α determines convergence to true utility
I decrease αs proportional to te number of state visits
I convergence guaranteed if ∑

∞
i=1 as(i) = ∞ and ∑

∞
i=1 as(i)2 < ∞

I decay αi = 1/i satisfies the condition

Michal Jakob (Agent Technology Center) Reinforcement Learning A3M33UI Spring 2010 - Lecture 11 31 / 35

TD Q-Learning Algorithm

1: initialize Q(s,a) arbitrarily for all a and s
2: initialize s and r to the current state and reward observed
3: loop
4: select action a according to explore/exploit policy based on current Q(s,a)
5: receive immediate reward r ′ and observe the new state s′

6: use the tuple (s,a,s′, r ′) to update Q(s,a)

Q(s,a)← Q(s,a)+α(r ′+ γmaxa′Q(a′,s′)−Q(s,a))

7: s← s′, r ← r ′

8: end loop

Michal Jakob (Agent Technology Center) Reinforcement Learning A3M33UI Spring 2010 - Lecture 11 32 / 35

Comparison with active ADP

Q-learning is simpler to implement since we don not need to worry about
representing and learning a model

But Q-functions can be substantially more complex than utility functions
(must somehow make up for not having the model)

Usually takes more iterations to converge

Less efficient use of experience

Generally does not matters for small state spaces

Michal Jakob (Agent Technology Center) Reinforcement Learning A3M33UI Spring 2010 - Lecture 11 33 / 35

Outline

1 Introduction

2 Multi-armed Bandit Problem

3 Reinforcement Learning
Passive Learning
Model-based Active Learning
Model-based Active Learning

4 Conclusions

Michal Jakob (Agent Technology Center) Reinforcement Learning A3M33UI Spring 2010 - Lecture 11 34 / 35

Conclusion

RL is necessary for agents in unknown environments
RL can be viewed as the ultimate level of AI

I only minimum is given and the agent needs to learn the rest

Single-stage decisions→ multi-armed bandit problems
I ballancing exploration with exploitation critical

Sequential decisions→ full RL
I model-based (on-policy) – active asynchronous dynamic programming

(ADP)
I model-free – TD Q-learning

Function approximation necessary for real/large state spaces

Michal Jakob (Agent Technology Center) Reinforcement Learning A3M33UI Spring 2010 - Lecture 11 35 / 35

	Introduction
	Multi-armed Bandit Problem
	Reinforcement Learning
	Passive Learning
	Model-based Active Learning
	Model-based Active Learning

	Conclusions

