
Task 1: Calibration of RGB-D Sensor and

Thermo Camera

M. Pecka, V. Kubelka, K. Zimmermann and M. Reinstein

February 27, 2014

1 Task 1 assignment

In this task you will be given images captured by a Microsoft-Kinect-like sensor
(see Figure 1, 1st and 2nd image) and by a thermo-camera (see Figure 1, 3rd
image). Your main task is to find transformation matrix between the RGB image
pixel coordinates and corresponding pixel coordinates in the thermo-camera
image (for those pixels for which the transformation exists). This procedure is
known as calibration and an example result is depicted in Figure 2.

Figure 1: Three types of images provided in the rosbag file: a standard color
image (left), a depth image (middle) and a thermo-cam image (right). The
assistant is holding a hot metal sheet, that can be easily identified in all three
image types.

1.1 Motivation

Since the thermo-camera and the depth sensor are available, it is desirable
to enrich the information the standard color image provides by temperature
and distance of the observed objects. This information can be later used for
smarter detection of interesting objects in the camera image. However, images
provided by the sensors are not the same size nor aligned since the sensors are
mounted next to each other so they observe the scene from slightly different
angles. That is the motivation to find a transformation that binds pixels of the
images together.

1

Figure 2: An example of the calibration result. Pixels corresponding to the
thermo-camera field-of-view are colored according to their temperature (blue is
cold, red is hot).

1.2 System description

There are two sensors at your disposal for Task 1. The first sensor is the ASUS
Xtion PRO LIVE providing standard color images (320x240 pixels) as well as
depth images of the same size (a combination of these two images is denoted as
RGB-D). These two images are already calibrated for you – there is both the
RGB and depth information at all pixel coordinates. The depth information
is expressed in millimeters, zero depth indicates no depth information at that
particular pixel.

The second sensor is a thermo-camera, namely thermoIMAGER TIM 160
from MICRO-EPSILON. This camera captures infrared images (160x120 pix-
els), where the value of each pixel is the temperature of the corresponding surface
observed by the camera (approximate temperature in our case, emissivity is not
taken into account).

These two sensors are attached to a common holder (see Figure 3), yet the
exact configuration is not known (by the configuration, we mean rotation and
translation of the camera optical centers). The only known parameter is the
RGB-D camera calibration matrix K ; refer to Section 1.4. This parameter is
sufficient – combined with the depth information – to project each pixel of the
RGB-D camera to corresponding 3D space coordinates. That is, for each color-
depth image pair, you are able to get 320×240 = 76800 Xrgbd = [x, y, z]T points
that create a colored point-cloud. The images are recorded using ROS, therefore
the output provided to you is a BAG file containing all the images as messages
published at appropriate topics. The BAG file is included in the provided ROS
package: data/task1.bag. The topics necessary for calibration are

• /openni camera/depth: depth images

• /openni camera/rgb/compressed: JPEG compressed color images

• /openni camera/camera info: metadata containing the K matrix

2

Figure 3: The two sensors involved: ASUS Xtion PRO LIVE (top), thermoIM-
AGER TIM 160 (bottom).

• /thermo camera/ftemp: the thermo-camera images

Feel free to call rostopic list -v to get a detailed list of all topics avail-
able and rostopic info TOPIC NAME to get more information about the chosen
topic. Of course the relevant topics will only be published when the BAG file is
played – you may find the -l option of rosbag play helpful when examining
the topics.

TECHNICAL NOTE: Due to technical reasons (buffering at the low-level
drivers), the images are not synchronized, even though time stamps of the cor-
responding ROS messages may indicate the opposite. It is necessary to consider
this fact during calibration procedure and select only the images captured while
the assistant is not moving.

1.3 Calibration dataset

To perform the calibration it is necessary to identify correspondences between
the camera images. You are provided with a BAG file containing a calibration
dataset, see Figure 1. There are three images that depict an assistant holding
a hot metal sheet. The metal sheet is held at one spot for several seconds and
then moved to another one, this procedure is repeated several times so the view
field of the thermo-camera is roughly covered while the sheet is held at several
distances from the camera. This ensures that there are enough correspondences
– the corners of the metal sheet, for example – to successfully perform the
calibration.

3

1.4 Pinhole camera model

During the second IRO lecture, a general model of 3D to 2D was presented. The
convention adopted by ROS (and actually OpenCV http://opencv.org/) differs
in coordinate frame orientation, as described in Figure 4. It demonstrates the

z

y

x

z = 1

z = f

y
x

u

v

x

x’

x’’

u0

v
0

Figure 4: Projection from a 3D scene to an image plane by the ROS (OpenCV)
conventions.

usage of camera calibration matrix K: a 3D point x = [x, y, z]T is projected onto
a plane where z = 1:

x′ =

x/zy/z
1

 (1)

to obtain x′. Left-multiplication by the camera calibration matrix K will project
x′ to the image plane

Kx′ =

fmu 0 u0
0 fmv v0
0 0 1

x′ =

uv
1

 =

[
x′′

1

]
(2)

where the [u, v] coordinates are expressed in pixels and mu,mv stand for pixels
per distance unit (e.g. px/m) in the image plane (sensor); u0,v0 are image
coordinates of the center of the camera plane and f is the focal length of the
camera.

This approach can be generalized using homogeneous coordinates (see lecture

4

[2]) to uv
w

 =

fmu 0 u0 0
0 fmv v0 0
0 0 1 0



x
y
z
q

 = K[I|0]


x
y
z
q

 (3)

where u, v, w are homogeneous coordinates in the image plane, I is an identity
matrix and 0 is a zero vector.

It is important not to forget to correctly interpret the result, since the real
image coordinates are [uw ,

v
w]T . Inversely, if we are given the image coordinates

and we want to express them in homogeneous coordinates, we just set w = 1,
which results in homogeneous point [u, v, 1]T .

The homogeneous coordinates [x, y, z, q]T relate to a 3D point expressed
in the coordinate frame of the camera, as shown in Figure 4. Since they are
homogeneous, the same rule applies as in the previous case, if we construct the
vector from known values, we set q = 1. To convert the homogeneous vector to
a 3D vector, we simply multiply it by 1

q .
Note that further on, we will denote points in homogeneous coordinates by

upper case letters. So e.g. a 3D point x corresponds to point X in homogeneous
coordinates.

In the case a 3D point is not expressed in the coordinate frame of the camera
(that is our case with the RGB-D sensor points we want to project to the thermo-
camera image) it needs to be transformed to the desired frame first:

xthermo = Rxrgb + t (4)

where R and t are appropriate rotation and translation respectively. It is handy
to chain the transformation and rotation operations together, yielding the cam-
era projection matrix P:

PXrgb = K [R|t]Xrgb = K [R|t]


x
y
z
q


rgb

=

uv
w


thermo

= Xthermo (5)

The projection matrix projects 3D points expressed in the rgb frame to the
image plane of the thermo-camera. The next section explains a way how it can
be obtained from known correspondences.

1.5 Camera projection matrix P retrieval

As was explained in the previous section, the projection matrix P operates on ho-
mogeneous coordinates and projects a 3D point to the image plane as X′ = PX,
X′ = [u, v, w]T , X = [x, y, z, q]T . Our task – given known correspondences
Xi,X

′
i – is to estimate this matrix. Note that while substituting for X′i and Xi

by the actual measured values, we have to set w and q equal to 1 to comply the
definition of the homogeneous coordinates. We will follow approach presented in

5

[1]: since both Xi,X
′
i are expressed in homogeneous coordinates, their magni-

tude may differ based on scale, so we cannot use the relation X′i = PXi directly.
Nevertheless, the directions of our given point X′i and the projected point PXi

will be the same. A good test whether two vectors are parallel or not is the cross
product, which must result in a zero vector if the two operands are parallel:

X′i × PXi = 0 (6)

This leads to linear equations for P to be derived. We can rewrite PXi to a more
usable form if we denote j-th row of matrix P by pjT :

PXi =

p1TXi

p2TXi

p3TXi

 (7)

Since X′i = [ui, vi, wi]
T , we can explicitly express the cross product:

X′i × PXi =

vip3TXi − wip2TXi

wip
1TXi − uip3TXi

uip
2TXi − vip1TXi

 = 0 (8)

The order of the variables can be swapped using transposition as pjTXi =
XT
i p

j , so the previous equation can be rewritten to: 0T −wiXT
i viX

T
i

wiX
T
i 0T −uiXT

i

−viXT
i uiX

T
i 0T

p1

p2

p3

 = 0 (9)

where [p1T ,p2T ,p3T]T is a 12-element vector corresponding to the original P
matrix:

P =

p1 p2 p3 p4
p5 p6 p7 p8
p9 p10 p11 p12

 (10)

Note that for solving this equation, only the first and second rows are necessary
since the third one is a linear combination of the two previous ones. Therefore,
the final equation can be reduced to this form:[

0T −wiXT
i viX

T
i

wiX
T
i 0T −uiXT

i

]p1

p2

p3

 = 0 (11)

This equation is in form Aip = 0. By substituting for corresponding 3D and
image coordinates to Ai, one correspondence pair Xi,X

′
i is utilized to obtain 2

equations. Since there are 12 unknown members of P, at least 6 correspondence
pairs are needed to solve the problem. The equations can be stacked to form
one equation system

Ap =


A1
A2
A3
...

p = 0 (12)

6

To make to computation more robust against measurement noise, more than
6 correspondences are preferred, yet we obtain an overdetermined system of
equations. The next section discusses one way to solve such a system.

1.6 Solution of the overdetermined homogeneous linear
system

We search for a non-trivial solution p ∈ Rn of the overdetermined homogeneous
linear system

Ap = 0,

where non-trivial means p 6= 0 and overdetermined means that there are more
independent equations than unknowns (i.e. dim rng(A) ≥ n). To avoid the
trivial solution we constrain the solution on the unit sphere, i.e. ‖p‖ = 1. Of
course, there is no exact non-trivial solution of such overdetermined system,
therefore approximate solution minimizing a suitable cost function is sought.
Ideally we would like to minimize geometric distance, however minimization of
such cost functions often leads to iterative algorithms. The simplest solution
is to minimize algebraic distance ‖Ap‖ which leads to the following constrained
least-squares problem

p∗ = arg min
p
‖Ap‖, subject to ‖p‖ = 1. (13)

This problem has closed-form solution, which is equal to the eigen-vector of A>A
with the smallest corresponding eigen-value.

Unfortunatelly, the minimization of the algebraic distance is strongly depe-
dent on the origin and scale of the Euclidean coordinate system in which the
correspondence pairs x = [x y z]> ∈ R3 and x′ = [u v]> ∈ R2 (corresponding to
homogeneous coordinates X and X ′) are expressed. To supress such undesirable
property, we normalize coordinate system by transforming points x to a new set
of points y such that the centroid of the points y is the coordinate origin and the
average distance from the origin is

√
3 (then, the “average” point’s distance is

the same as the distance of point [1,1,1]). For example, points yi are computed
from points xi as follows:

yi =
√

3
(xi − x

σ

)
, (14)

where x = 1
N

∑N
i=1 xi is the centroid and σ = 1

N

∑N
i=1 ‖xi − x‖ is the average

distance. Similarly, points y′i are computed from points x′i as y′i =
√

2
(

x′
i−x′

σ′

)
.

Therefore, it is higly desirable to build matrix A from normalized points yi and
y′i and then compute the eigen-vectors of that “normalized” matrix.

For the sake of completeness, derivation of the solution of Problem (13)
is provided in the rest of this section. To solve the constrained least squares
problem, we first introduce Lagrange function

L(p, λ) = ‖Ap‖+ λ(1− ‖p‖) = (15)

= p>A>Ap + λ(1− p>p). (16)

7

and search for its critical points (i.e. points in which local extrema can be
achieved) by equaling its derivatives to zero

∂L(p, λ)

∂p
= 2A>Ap− 2λp = 0 (17)

∂L(p, λ)

∂λ
= 1− p>p = 0. (18)

Equation (17) is simply rearranged as the characteristic equation of A>A

(A>A− λI)p = 0, (19)

therefore every eigen-vector p of A>A with corresponding eigen-values λ satisfy
this equation and the one which yields the smallest cost value ‖Ap‖ of Prob-
lem (13) has to be chosen. Using Equation (19) and the contraint (18), the
following simiplification is derived

‖Ap‖ = p>A>Ap = p>λp = λp>p = λ‖p‖ = λ.

It reveals that the solution of Problem (13) is the eigen-vector of A>A with the
smallest eigen-value.

In numpy, you can find the eigen-values and eigen-vectors using the func-
tion eigenvalues,eigenvectors=numpy.linalg.eig(A). Please note that the
eigen-values are not ordered. To order both the values and the vectors, you can
use idxs = eigenvalues.argsort() to get the order of indices needed to sort
either eigenvalues or the columns of eigenvectors.

2 Task to be solved

The following steps have to taken to successfully accomplish the calibration.
Your procedure has to be completely documented in the submitted report. Pay
attention especially to the experimental evaluation of your results:

1. Obtain a sufficient number of suitable RGB-D and thermo camera image
triplets

• There is a ROS node prepared for this purpose: rosrun task1 image_
recorder.py _num_frames:=???.

• It requires the task1.bag rosbag file being played manually (but first
run the node!).

• You need to find out by yourself what number to use instead of the
??? in the rosrun command parameter. rosbaginfo may be useful
here. The parameter was introduced because there is no way to tell
the node the playback has stopped.

• Read through the code and fill missing parts of the code according
to the code function and purpose. All parts of the code needing your
attention are labelled by # IMPLEMENT comment.

8

• The output of this node should be four files containing all the im-
ages necessary: data/thermo images.mat, data/rgb images.mat,
data/depth images.mat, data/kinect K.mat

• The output files will be utilized by another node that is prepared as
well, but can be also opened and inspected using Mathworks MAT-
LAB.

2. Manually mark correspondences between the RGB-D and thermo camera
images

• There is ROS node prepared to help you select and mark correspon-
dences between the color images and the thermo-camera images. The
node is run by rosrun task1 create correspondences.py .

• The code provided to you is incomplete on purpose. Your task is to
understand the code and fill the missing parts.

• Modify the code so it utilizes only those images where the hot sheet
does not move to make sure that the correspondences are valid. The
reason is relatively slow sampling rate of the cameras compared to
the velocity of the moving metal sheet.

3. Evaluate 3D coordinates of points corresponding to the marked RGB-D
camera image pixels

• For this evaluation use create correspondences.py as well

• Theoretical background can be found in Section 1.4, the equation (2)
describes an inverted problem, it determines image coordinates x′′

when the 3D point x′ is known. In our case, we need to express x′

when x′′ is provided. Modify the equation appropriately.

• The values stored in the depth image are expressed in millimeters,
the value corresponds to the z part of the 3D point. Use this value
to obtain the final 3D point x from x′ – see equation (1).

• Document your solution in the report.

4. Normalize both the 3D coordinates and the 2D thermo camera pixel co-
ordinates to increase numerical stability of the following step

• The normalization step for 3D points is described by equation (14),
equation for normalizing 2D points is provided in the section as well.

• The normalization takes place in the compute_camera_pose.py ex-
ecutable.

5. Find the thermo-camera projection matrix P using the normalized 3D-2D
correspondences

• The code skeleton is prepared in compute_camera_pose.py .

9

6. Verify the obtained matrix P by re-projecting the 3D points to the 2D
coordinates and by evaluating reprojection error

• Reprojection error stands for the distance in the 2D image between
the manually marked point and the resulting point obtained by ap-
plying the projection matrix P on the corresponding 3D point.

• Project all the manually marked 3D points using your projection
matrix P and compare the results to the manually marked 2D points
in the thermo-cam image – evaluate the reprojection errors.

• To visually inspect the effect of matrix P to the projection, you can
utilize the prepared skeleton in file reprojection_viewer.py .

• Propose a way to statistically assess your results and document them
in your report.

• Please note: reports submitted without the evaluation of results using
the reprojection error will be marked as incomplete and cannot be
accepted. After revising and resubmitting such report, penalty for
late submission will be applied if the resubmission is done late. The
standard time it takes to evaluate a report is one week and you do
not have a right to demand us do it faster.

2.1 Format of the submitted data

In the Upload system you are expected to upload both your codes and the
report. Together with your codes include an ASCII text file containing the
unnormalized matrix P. The numbers have to be in normal (e.g. not scientific
or exponential) format and they should print with 5 decimal digits. The matrix
elements should be separated by either spaces or tabs. Use Linux line endings.
For example:

1.00000 0.00000 0.00000 0.00000
0.00000 1.00000 0.00000 0.00000
0.00000 0.00000 1.00000 0.00000

10

References

[1] R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vi-
sion. Cambridge University Press, ISBN: 0521540518, second edition, 2004.

[2] Vaclav Hlavac. Digital image, basic concepts.
http://cmp.felk.cvut.cz/ hlavac/TeachPresEn/17CompVision3D/11Geom1camera.pdf.

11

