Introduction to Reinforcment Learning

Karel Zimmermann

Czech Technical University in Prague Faculty of Electrical Engineering, Department of Cybernetics Center for Machine Perception http://cmp.felk.cvut.cz/~zimmerk, zimmerk@fel.cvut.cz

Some images and codes taken from P.Abbeel, J.Peters, M.Riedmiller, T.Jakab

Motivation examples

- Learning to control a dynamic process from real world interactions.
- Human teacher is not needed rewards assigned by environment.

r(x,u,x') - reward

What are the states, actions and rewards?

р

4/55

- Crawler show python demo!
- Bouncing ball show video!
- Ball in the cup show video!
- Pacman show python (01_pacman_states)

What do we search for?

• Optimal policy (strategy, control) which assigns actions u_i to states x_i .

What do we search for?

- Optimal policy (strategy, control) which assigns actions u_i to states x_i .
- Optimal = assuring long-term high rewards $\sum_{i=1}^{\infty} r_i$

Depends on the world.

- Depends on the world.
- What about this grid-world?

Ø

m p

8/55

- Dijkstra yields the optimal policy in some type worlds usually:
 - deterministic,
 - tiny,
 - static,
 - known in advance

• What if transitions are stochastic?

- What if transitions are stochastic?
 - expectimax or minmax tree search
- What if the world is dynamically changing (e.g. there is someone else like doc.lng.Zlo,CSc.)?

р

10/55

- What if transitions are stochastic?
 - expectimax or minmax tree search
- What if the world is dynamically changing (e.g. there is someone else like doc.lng.Zlo,CSc.)?
 - lift the state-space up to higher dimension

- What if transitions are stochastic?
 - expectimax or minmax tree search
- What if the world is dynamically changing (e.g. there is someone else like doc.lng.Zlo,CSc.)?

p

10/55

- lift the state-space up to higher dimension
- What if the world is unknown in advance?
- What if the robot-world interactions are not explicitly modelable?
- What if the world is huge (continuous and infinite)?

- What if transitions are stochastic?
 - expectimax or minmax tree search
- What if the world is dynamically changing (e.g. there is someone else like doc.Ing.Zlo,CSc.)?

p

10/55

- lift the state-space up to higher dimension
- What if the world is unknown in advance?
- What if the robot-world interactions are not explicitly modelable?
- What if the world is huge (continuous and infinite)?
- Under such conditions, bare state-space search is not technically possible.
- We would like to learn the optimal policy from real-world examples.

• Why can't we learn $\pi: X \to U$ mapping?

- Why can't we learn mapping $\pi: X \to U$ (policy)?
- Because we do not know the right state-action pairs to train from.
- Nevertheless, there is a way to learn mapping π directly. PRIMAL TASK.

- But we know rewards r coresponding to (x, u) touples.
- What about to learn mapping $Q: X \times U \to \mathbb{R}$ and take action $u^* = \pi(x) = \operatorname{argmax}_u Q(x, u)$?

- But we know rewards r coresponding to (x, u) touples.
- What about to learn mapping $Q: X \times U \to \mathbb{R}$ and take action $u^* = \pi(x) = \operatorname{argmax}_a Q(x, u)$?
- Toooooo greedy !!!

- But we know rewards r coresponding to (x, u) touples.
- What about to learn mapping $Q: X \times U \to \mathbb{R}$ and take action $u^* = \pi(x) = \operatorname{argmax}_a Q(x, u)$?
- Toooooo greedy !!!
- Nevertheless, also not that bad idea, there is a way to learn mapping Q assigning $\sum_i r_i$ instead of r_1 . DUAL TASK.

• This lecture is about learning the optimal mapping $\pi : X \to U$ from real-world interactions.

- This lecture is about learning the optimal mapping $\pi : X \to U$ from real-world interactions.
- Focus is on methods without model !!!

- This lecture is about learning the optimal mapping $\pi : X \to U$ from real-world interactions.
- Focus is on methods without model !!!
- MDP notation (state, reward, transition probability, etc.).

- This lecture is about learning the optimal mapping $\pi : X \to U$ from real-world interactions.
- Focus is on methods without model !!!
- MDP notation (state, reward, transition probability, etc.).
- Problem formulation in terms of criterion to be optimized.

- This lecture is about learning the optimal mapping $\pi : X \to U$ from real-world interactions.
- Focus is on methods without model !!!
- MDP notation (state, reward, transition probability, etc.).
- Problem formulation in terms of criterion to be optimized.
- Primal task (as far as we can get towards natural gradients).

- This lecture is about learning the optimal mapping $\pi : X \to U$ from real-world interactions.
- Focus is on methods without model !!!
- MDP notation (state, reward, transition probability, etc.).
- Problem formulation in terms of criterion to be optimized.
- Primal task (as far as we can get towards natural gradients).
- Dual task (without proving that it is the dual task)

- This lecture is about learning the optimal mapping $\pi : X \to U$ from real-world interactions.
- Focus is on methods without model !!!
- MDP notation (state, reward, transition probability, etc.).
- Problem formulation in terms of criterion to be optimized.
- Primal task (as far as we can get towards natural gradients).
- Dual task (without proving that it is the dual task)
- Curse of dimensionality (states represented by features).

- This lecture is about learning the optimal mapping $\pi : X \to U$ from real-world interactions.
- Focus is on methods without model !!!
- MDP notation (state, reward, transition probability, etc.).
- Problem formulation in terms of criterion to be optimized.
- Primal task (as far as we can get towards natural gradients).
- Dual task (without proving that it is the dual task)
- Curse of dimensionality (states represented by features).
- Other related problems (imitation learning, exploration)

x o

- States: $\mathbf{x} \in X$
- Actions: $\mathbf{u} \in U$

- States: $\mathbf{x} \in X$
- Actions: $\mathbf{u} \in U$
- Transition probability: $p(\mathbf{x}'|\mathbf{x}, \mathbf{u}) : X \times U \times X \rightarrow [0; 1]$

- States: $\mathbf{x} \in X$
- Actions: $\mathbf{u} \in U$
- Transition probability: $p(\mathbf{x}'|\mathbf{x}, \mathbf{u}) : X \times U \times X \rightarrow [0; 1]$
- Reward: $r(\mathbf{x}, \mathbf{u}, \mathbf{x'}) : X \times U \times X \to \mathbb{R}$

- States: $\mathbf{x} \in X$
- Actions: $\mathbf{u} \in U$
- Transition probability: $p(\mathbf{x}'|\mathbf{x}, \mathbf{u}) : X \times U \times X \rightarrow [0; 1]$
- Reward: $r(\mathbf{x}, \mathbf{u}, \mathbf{x'}) : X \times U \times X \to \mathbb{R}$
- Policy: $\pi(\mathbf{x}) : X \to U$ (at least for now, but better to use probability)

• Trajectory is sequence of visited states and performed actions: $\tau = (\mathbf{x}_0, \mathbf{u}_0, \mathbf{x}_1, \mathbf{u}_1, \mathbf{x}_2, ...)$

- Trajectory is sequence of visited states and performed actions: $\tau = (\mathbf{x}_0, \mathbf{u}_0, \mathbf{x}_1, \mathbf{u}_1, \mathbf{x}_2, ...)$
- Sum of rewards with limited horizont:

$$r(\tau) = \sum_{i=0}^{H} r(\mathbf{x}_i, \mathbf{u}_i, \mathbf{x}_{i+1})$$

MDP definition

- Trajectory is sequence of visited states and performed actions: $\tau = (\mathbf{x}_0, \mathbf{u}_0, \mathbf{x}_1, \mathbf{u}_1, \mathbf{x}_2, ...)$
- Sum of rewards with limited horizont:

$$r(\tau) = \sum_{i=0}^{H} r(\mathbf{x}_i, \mathbf{u}_i, \mathbf{x}_{i+1})$$

• Sum of discounted rewards:

$$r(\tau) = \sum_{i=0}^{\infty} \gamma^{i} \cdot r(\mathbf{x}_{i}, \mathbf{u}_{i}, \mathbf{x}_{i+1})$$

• We have a robot and we have no idea how to control it.

- We have a robot and we have no idea how to control it.
- Nevertheless, we know what is good and bad state we have a definition of rewards.

- We have a robot and we have no idea how to control it.
- Nevertheless, we know what is good and bad state we have a definition of rewards.
- We control it somehow (e.g. with some initial policy) and record the trajectory τ (or several trajectories).

 Nevertheless, we know what is good and bad state - we have a definition of rewards.

р

- We control it somehow (e.g. with some initial policy) and record the trajectory τ (or several trajectories).
- Given these trajectories, change the policy to increase mean sum of rewards

$$J(\pi) = E\{r(\tau)\}$$

• Denote $p(\tau|\pi)$ probability of trajectory τ occurs when following policy π

- Denote $p(\tau|\pi)$ probability of trajectory τ occurs when following policy π

Criterion to me maximized is the mean sum of rewards

$$J(\pi) = E\{r(\tau)\} = \int_{\tau \in \mathcal{T}} p(\tau|\pi)r(\tau) \,\mathrm{d}\tau$$

р

- Denote $p(\tau|\pi)$ probability of trajectory τ occurs when following policy π

Criterion to me maximized is the mean sum of rewards

$$J(\pi) = E\{r(\tau)\} = \int_{\tau \in \mathcal{T}} p(\tau|\pi)r(\tau) \,\mathrm{d}\tau$$

We solve the following optimization problem

$$\pi^* = \arg\max_{\pi} J(\pi)$$

Problem solution

• As usually, you can:

Problem solution

- As usually, you can:
 - either solve primal task e.g. by following gradient ∇J to maximize $J(\pi)$ directly.
 - primal is often solved in the optimal control community (e.g. LQR),

Problem solution

- As usually, you can:
 - either solve primal task e.g. by following gradient ∇J to maximize $J(\pi)$ directly.
 - primal is often solved in the optimal control community (e.g. LQR),
 - or solve **dual task** by searching for dual variable Q via lagrange multipliers and follow policy $\pi^* = \arg \max_{\mathbf{u}} Q(\mathbf{x}, \mathbf{u})$
 - dual is often solved by AI community (e.g. state-space search for games)

Dual task provides alternative point-of-view (e.g. shadow prices in LP or sparse feature selection for SVM)

Primal task

How do we solve the following optimization problem

$$\pi^* = \arg\max_{\pi} J(\pi)$$

Primal task

How do we solve the following optimization problem

$$\pi^* = \arg\max_{\pi} J(\pi)$$

• Let us choose policy $\pi(\theta) = \theta^{\top} \mathbf{x}$ parameterized by coeffitients θ .

Primal task

• How do we solve the following optimization problem

$$\pi^* = \arg\max_{\pi} J(\pi)$$

• Let us choose policy $\pi(\theta) = \theta^{\top} \mathbf{x}$ parameterized by coeffitients θ .

then optimization problem reduces to

 $\theta^* = \arg \max_{\theta} J(\theta)$

• How can we compute $J(\theta) = E\{r(\tau)\}$ fro a given θ ?

Primal task - approximating criterion.

• Use $\pi(\theta)$ to get several trajectories τ_i .

Primal task - approximating criterion.

• Use $\pi(\theta)$ to get several trajectories τ_i .

• Approximate criterion value in θ as average reward

$$J(\theta) = E\{r(\tau)\} \approx \frac{1}{N} \sum_{i=1}^{N} r(\tau_i)$$

Primal task - approximating criterion.

• Use $\pi(\theta)$ to get several trajectories τ_i .

• Approximate criterion value in θ as average reward

$$J(\theta) = E\{r(\tau)\} \approx \frac{1}{N} \sum_{i=1}^{N} r(\tau_i)$$

• We can approximate criterion value, what about gradient?

• Can we obtain the gradient by computing also $J(\theta + \Delta \theta)$?

- Can we obtain the gradient by computing also $J(\theta + \Delta \theta)$?
- Of course, but doing it from one sample is quite unstable (especially for high dimensional θ).

- Can we obtain the gradient by computing also $J(\theta + \Delta \theta)$?
- Of course, but doing it from one sample is quite unstable (especially for high dimensional θ).

р

28/55

• Perform several small random perturbations $\Delta \theta_i$ and compute $J(\theta + \Delta \theta_i)$.

- Can we obtain the gradient by computing also $J(\theta + \Delta \theta)$?
- Of course, but doing it from one sample is quite unstable (especially for high dimensional θ).
- Perform several small random perturbations $\Delta \theta_i$ and compute $J(heta + \Delta \theta_i)$.
- Relation to gradient $abla J(\theta)$ is given by the first order Taylor polynom

$$\begin{split} J(\theta + \Delta \theta_i) &= J(\theta) + \nabla J(\theta)^\top \Delta \theta_i \\ \Delta \theta_i^\top \nabla J(\theta) &= J(\theta) - J(\theta + \Delta \theta_i) \\ \begin{bmatrix} \Delta \theta_1^\top \\ \vdots \\ \Delta \theta_n^\top \end{bmatrix} \nabla J(\theta) &= \begin{bmatrix} J(\theta) - J(\theta + \Delta \theta_1)) \\ \vdots \\ J(\theta) - J(\theta + \Delta \theta_n)) \end{bmatrix} \\ \text{wettor b} \end{split}$$

Primal task - solution

• Gradient is solution of overdetermined set of linear equations:

$$\nabla J(\theta) = \begin{bmatrix} \Delta \theta_1^\top \\ \vdots \\ \Delta \theta_n^\top \end{bmatrix}^+ \cdot \begin{bmatrix} J(\theta) - J(\theta + \Delta \theta_1)) \\ \vdots \\ J(\theta) - J(\theta + \Delta \theta_n)) \end{bmatrix}$$

Primal task - solution

Gradient is solution of overdetermined set of linear equations:

$$\nabla J(\theta) = \begin{bmatrix} \Delta \theta_1^\top \\ \vdots \\ \Delta \theta_n^\top \end{bmatrix}^+ \cdot \begin{bmatrix} J(\theta) - J(\theta + \Delta \theta_1) \\ \vdots \\ J(\theta) - J(\theta + \Delta \theta_n) \end{bmatrix}$$

• Algorithm is simple:

- Randomly initilize θ
- Use $\pi(\theta)$ to get trajectories.
- Compute $\nabla J(\theta)$ using pseudo-inverse.
- Update $\theta \leftarrow \theta + \alpha \frac{\nabla J(\theta)}{\|\nabla J(\theta)\|}$

Primal task - solution

Gradient is solution of overdetermined set of linear equations:

$$\nabla J(\theta) = \begin{bmatrix} \Delta \theta_1^\top \\ \vdots \\ \Delta \theta_n^\top \end{bmatrix}^+ \cdot \begin{bmatrix} J(\theta) - J(\theta + \Delta \theta_1)) \\ \vdots \\ J(\theta) - J(\theta + \Delta \theta_n)) \end{bmatrix}$$

• Algorithm is simple:

- Randomly initilize θ
- Use $\pi(\theta)$ to get trajectories.
- Compute $\nabla J(\theta)$ using pseudo-inverse.
- Update $\theta \leftarrow \theta + \alpha \frac{\nabla J(\theta)}{\|\nabla J(\theta)\|}$

Show example in MATLAB - go_toy_finite_difference.m.

Primal task - pros and cons

No model identification needed.

Primal task - pros and cons

- No model identification needed.
- Converges to local minima good initialization needed.

Primal task - pros and cons

- No model identification needed.
- Converges to local minima good initialization needed.
- There are better gradient approximations natural gradient methods [Kober-IJRR-2013].

Dual task

• State-action function $Q(\mathbf{x}, \mathbf{u}) : X \times U \to \mathbb{R}$

• Mean sum of discounted rewards when choosing action ${f u}$ from state ${f x}.$

Dual task

- State-action function $Q(\mathbf{x}, \mathbf{u}) : X \times U \to \mathbb{R}$
- igstarrow Mean sum of discounted rewards when choosing action ${f u}$ from state ${f x}.$
- Let us look at the grid world with stochastic transitions!

Dual task

- State-action function $Q(\mathbf{x}, \mathbf{u}) : X \times U \to \mathbb{R}$
- igstarrow Mean sum of discounted rewards when choosing action ${f u}$ from state ${f x}$.
- How can we learn from recorded trajectories and corresponding rewards?

- State-action function $Q(\mathbf{x}, \mathbf{u}) : X \times U \to \mathbb{R}$
- igstarrow Mean sum of discounted rewards when choosing action ${f u}$ from state ${f x}.$
- How can we learn from recorded trajectories and corresponding rewards?

• τ_1 : (a, R, b, R, c, R, d), $r(\tau_1) = 1$

- State-action function $Q(\mathbf{x}, \mathbf{u}) : X \times U \to \mathbb{R}$
- igstarrow Mean sum of discounted rewards when choosing action ${f u}$ from state ${f x}.$
- + How can we learn from recorded trajectories and corresponding rewards?
- τ_1 : (a, R, b, R, c, R, d), $r(\tau_1) = 1$
- τ_2 : (a, R, b, D, e, R, f, R, g), $r(\tau_2) = -1$

- State-action function $Q(\mathbf{x}, \mathbf{u}) : X \times U \to \mathbb{R}$
- igstarrow Mean sum of discounted rewards when choosing action ${f u}$ from state ${f x}.$

р

- How can we learn from recorded trajectories and corresponding rewards?
- τ_1 : (a, R, b, R, c, R, d), $r(\tau_1) = 1$
- τ_2 : (a, R, b, D, e, R, f, R, g), $r(\tau_2) = -1$

- State-action function $Q(\mathbf{x}, \mathbf{u}) : X \times U \to \mathbb{R}$
- igstarrow Mean sum of discounted rewards when choosing action ${f u}$ from state ${f x}.$

р

m

- How can we learn from recorded trajectories and corresponding rewards?
- τ_1 : (a, R, b, R, c, R, d), $r(\tau_1) = 1$
- τ_2 : (a, R, b, D, e, R, f, R, g), $r(\tau_2) = -1$

- State-action function $Q(\mathbf{x}, \mathbf{u}) : X \times U \to \mathbb{R}$
- igstarrow Mean sum of discounted rewards when choosing action ${f u}$ from state ${f x}.$

m p

- How can we learn from recorded trajectories and corresponding rewards?
- τ_1 : (a, R, b, R, c, R, d), $r(\tau_1) = 1$
- τ_2 : (a, R, b, D, e, R, f, R, g), $r(\tau_2) = -1$
- What is wrong? Why I learned nothing about policy for a?

- State-action function $Q(\mathbf{x}, \mathbf{u}) : X \times U \to \mathbb{R}$
- igstarrow Mean sum of discounted rewards when choosing action ${f u}$ from state ${f x}.$

m p

- How can we learn from recorded trajectories and corresponding rewards?
- τ_1 : (a, R, b, R, c, R, d), $r(\tau_1) = 1$
- τ_2 : (a, R, b, D, e, R, f, R, g), $r(\tau_2) = -1$
- I know that I can behave better from b, can I use it?

Dual task - naive learning example

- State-action function $Q(\mathbf{x}, \mathbf{u}) : X \times U \to \mathbb{R}$
- igstarrow Mean sum of discounted rewards when choosing action ${f u}$ from state ${f x}.$
- + How can we learn from recorded trajectories and corresponding rewards?
- τ_1 : (a, R, b, R, c, R, d), $r(\tau_1) = 1$
- τ_2 : (a, R, b, D, e, R, f, R, g), $r(\tau_2) = -1$
- I know that I can behave better from b, can I use it?
- Recursively: $Q(a, R) = average(reward_for_a + best_rewards_from_b)$

m p 40/55

recursive definition of **Q**

- Define $Q(\mathbf{x}, \mathbf{u})$ recursively:
 - If transition deterministic

$$p(\mathbf{x}'|\mathbf{u},\mathbf{x}) = 1 \implies \mathbf{x} \to \mathbf{x}'$$

$$Q(\mathbf{x}, \mathbf{u}) = r(\mathbf{x}, \mathbf{u}, \mathbf{x}') + \gamma \max_{\mathbf{u}'} Q(\mathbf{x}', \mathbf{u}')$$

(C) m p 40/55

recursive definition of **Q**

- Define $Q(\mathbf{x}, \mathbf{u})$ recursively:
 - If transition deterministic

$$p(\mathbf{x}'|\mathbf{u}, \mathbf{x}) = 1 \implies \mathbf{x} \to \mathbf{x}'$$
$$Q(\mathbf{x}, \mathbf{u}) = r(\mathbf{x}, \mathbf{u}, \mathbf{x}') + \gamma \max_{\mathbf{u}'} Q(\mathbf{x}', \mathbf{u}')$$

• If transition stochastic

$$\begin{split} p(\mathbf{x}'|\mathbf{u},\mathbf{x}) < 1 &\Rightarrow \mathbf{x} \rightarrow ?\\ Q(\mathbf{x},\mathbf{u}) = \sum_{\mathbf{x}'} p(\mathbf{x}'|\mathbf{u},\mathbf{x}) \Big[r(\mathbf{x},\mathbf{u},\mathbf{x}') + \gamma \max_{\mathbf{u}'} Q(\mathbf{x}',\mathbf{u}') \Big]\\ \text{(Bellman equation)} \end{split}$$

 $\bullet \text{ Initialize } Q(\mathbf{x}, \mathbf{u}) = 0 \quad \forall_{\mathbf{x}, \mathbf{u}}$

- $\bullet \ \text{Initialize} \ Q(\mathbf{x},\mathbf{u}) = 0 \quad \forall_{\mathbf{x},\mathbf{u}}$
- Drive the robot and record trajectories like that:

 $(\mathbf{x}_0, \mathbf{u}_0, \mathbf{x}'_0, r_0), (\mathbf{x}_1 = \mathbf{x}'_0, \mathbf{u}_1, \mathbf{x}'_1, r_1), \dots$

- Initialize $Q(\mathbf{x}, \mathbf{u}) = 0 \quad \forall_{\mathbf{x}, \mathbf{u}}$
- Drive the robot and record trajectories like that:
 - $(\mathbf{x}_0, \mathbf{u}_0, \mathbf{x}'_0, r_0), (\mathbf{x}_1 = \mathbf{x}'_0, \mathbf{u}_1, \mathbf{x}'_1, r_1), \dots$

• For $\mathbf{x} \in X$, $\mathbf{u} \in U$

$$Q(\mathbf{x}, \mathbf{u}) = \frac{1}{n} \sum_{i \in \{\mathbf{x}_i = \mathbf{x}, \mathbf{u}_i = \mathbf{u}\}} r_i + \gamma \max_{\mathbf{u}'} Q(\mathbf{x}'_i, \mathbf{u}')$$

Drive the robot and record sequences:

 $(\mathbf{x}_0, \mathbf{u}_0, \mathbf{x}'_0, r_0), \quad (\mathbf{x}_1 = \mathbf{x}'_0, \mathbf{u}_1, \mathbf{x}'_1, r_1), \quad \dots$

Iterate until convergence –

р

42/55

• For $\mathbf{x} \in X$, $\mathbf{u} \in U$

$$Q(\mathbf{x}, \mathbf{u}) = \frac{1}{n} \sum_{i \in \{\mathbf{x}_i = \mathbf{x}, \mathbf{u}_i = \mathbf{u}\}} r_i + \gamma \max_{\mathbf{u}'} Q(\mathbf{x}'_i, \mathbf{u}')$$

🔶 End

(fixed point algorithm for system of lin. eq.)-

• Initialize $Q(\mathbf{x}, \mathbf{u}) = 0 \quad \forall_{\mathbf{x}, \mathbf{u}}$

Iterate until good policy found —

Drive the robot and record sequences:

 $(\mathbf{x}_0, \mathbf{u}_0, \mathbf{x}'_0, r_0), \quad (\mathbf{x}_1 = \mathbf{x}'_0, \mathbf{u}_1, \mathbf{x}'_1, r_1), \quad \dots$

• For $\mathbf{x} \in X$, $\mathbf{u} \in U$

$$Q(\mathbf{x}, \mathbf{u}) = \frac{1}{n} \sum_{i \in \{\mathbf{x}_i = \mathbf{x}, \mathbf{u}_i = \mathbf{u}\}} r_i + \gamma \max_{\mathbf{u}'} Q(\mathbf{x}'_i, \mathbf{u}')$$

State-value function example I - grid-world

State-value function example I - grid-world

State-value function example II - crawler

- Show python demo 02_crawler
- What are rewards?
- What is U, X and Q dimensionality?

- Curse of dimensionality considered state space for pacman.
- Show python demo 03_pacman_small_states and 04_pacman_small_states_long_training

Curse of dimensionality - are these states the same? Do we want it?

- Curse of dimensionality we need to replace high-dimensional states \mathbf{x} and control \mathbf{u} by low-dimensional features $\Phi(\mathbf{x}, \mathbf{u})$.
- Show python demo 05_pacman_small_features and 06_pacman_large_features
- Solution: describe a state using a vector of features (properties)
 - Features are functions from states to real numbers (often 0/1) that capture important properties of the state
 - Example features:
 - Distance to closest ghost
 - Distance to closest dot
 - Number of ghosts
 - 1 / (dist to dot)²
 - Is Pacman in a tunnel? (0/1)
 - etc.
 - Is it the exact state on this slide?
 - Can also describe a q-state (s, a) with features (e.g. action moves closer to food)

Curse of dimensionality - Q-learning

Iterate until convergence –

• For $\mathbf{x} \in X, \ \mathbf{u} \in U$

$$Q(\mathbf{x}, \mathbf{u}) = \frac{1}{n} \sum_{i \in \{\mathbf{x}_i = \mathbf{x}, \mathbf{u}_i = \mathbf{u}\}} r_i + \gamma \max_{\mathbf{u}'} Q(\mathbf{x}'_i, \mathbf{u}')$$

• End

Curse of dimensionality - approximate Q-learning

Iterate until convergence

• For all $\mathbf{x}_i, \mathbf{u}_i$

$$y_i = r_i + \gamma \max_{\mathbf{u}'} \left[\theta^\top \Phi(\mathbf{x}'_i, \mathbf{u}') \right)$$

- End
- Fit Q-function to approximate mapping between $\Phi(\mathbf{x}_i, \mathbf{u}_i)$ and y_i

$$\theta \leftarrow \arg\min_{\theta} \|\theta^{\top} \Phi(\mathbf{x}_i, \mathbf{u}_i) - y_i\|$$

Curse of dimensionality - approximate Q-learning

Iterate until convergence

• For all $\mathbf{x}_i, \mathbf{u}_i$

$$y_i = r_i + \gamma \max_{\mathbf{u}'} \left[\theta^\top \Phi(\mathbf{x}'_i, \mathbf{u}') \right) \right]$$

• End

• Fit Q-function to approximate mapping between $\Phi(\mathbf{x}_i, \mathbf{u}_i)$ and y_i

$$\theta \leftarrow \arg\min_{\theta} \|\theta^{\top} \Phi(\mathbf{x}_i, \mathbf{u}_i) - y_i\|$$

• Inaccurate
$$Q$$
 function - do we really need it?

- Curse of dimensionality
- Reward tuning (reasons: reward improvement, initialization, imitation learning).

- Curse of dimensionality
- Reward tuning (reasons: reward improvement, initialization, imitation learning).
 - Define reward as $R(\mathbf{x}, \mathbf{u}, \mathbf{x}' | \mathbf{w}) = \mathbf{w}^\top \cdot \Phi(\mathbf{x}, \mathbf{u}, \mathbf{x}')$

- Curse of dimensionality
- Reward tuning (reasons: reward improvement, initialization, imitation learning).
 - Define reward as $R(\mathbf{x}, \mathbf{u}, \mathbf{x}' | \mathbf{w}) = \mathbf{w}^\top \cdot \Phi(\mathbf{x}, \mathbf{u}, \mathbf{x}')$
 - Learn policy wrt some weights

- Curse of dimensionality
- Reward tuning (reasons: reward improvement, initialization, imitation learning).
 - Define reward as $R(\mathbf{x}, \mathbf{u}, \mathbf{x}' | \mathbf{w}) = \mathbf{w}^\top \cdot \Phi(\mathbf{x}, \mathbf{u}, \mathbf{x}')$
 - Learn policy wrt some weights
 - Use policy \Rightarrow trajectory τ_p with reward $R(\tau_p | \mathbf{w}) = \sum_{\tau_p} R(\mathbf{x}, \mathbf{u}, \mathbf{x}' | \mathbf{w})$

- Curse of dimensionality
- Reward tuning (reasons: reward improvement, initialization, imitation learning).
 - Define reward as $R(\mathbf{x}, \mathbf{u}, \mathbf{x}' | \mathbf{w}) = \mathbf{w}^\top \cdot \Phi(\mathbf{x}, \mathbf{u}, \mathbf{x}')$
 - Learn policy wrt some weights
 - Use policy \Rightarrow trajectory τ_p with reward $R(\tau_p | \mathbf{w}) = \sum_{\tau_p} R(\mathbf{x}, \mathbf{u}, \mathbf{x}' | \mathbf{w})$
 - Use expert \Rightarrow trajectory τ_e with reward $R(\tau_e | \mathbf{w}) = \sum_{\tau_e} R(\mathbf{x}, \mathbf{u}, \mathbf{x}' | \mathbf{w})$

- Curse of dimensionality
- Reward tuning (reasons: reward improvement, initialization, imitation learning).
 - Define reward as $R(\mathbf{x}, \mathbf{u}, \mathbf{x}' | \mathbf{w}) = \mathbf{w}^\top \cdot \Phi(\mathbf{x}, \mathbf{u}, \mathbf{x}')$
 - Learn policy wrt some weights
 - Use policy \Rightarrow trajectory τ_p with reward $R(\tau_p | \mathbf{w}) = \sum_{\tau_p} R(\mathbf{x}, \mathbf{u}, \mathbf{x}' | \mathbf{w})$
 - Use expert \Rightarrow trajectory τ_e with reward $R(\tau_e | \mathbf{w}) = \sum_{\tau_e} R(\mathbf{x}, \mathbf{u}, \mathbf{x}' | \mathbf{w})$
 - Find weights making expert better:

$$\mathbf{w}^* = \arg\max_{w} R(\tau_e | \mathbf{w}) - R(\tau_e | \mathbf{w})$$

- Curse of dimensionality
- Reward tuning (reasons: reward improvement, initialization, imitation learning).
 - Define reward as $R(\mathbf{x}, \mathbf{u}, \mathbf{x}' | \mathbf{w}) = \mathbf{w}^{\top} \cdot \Phi(\mathbf{x}, \mathbf{u}, \mathbf{x}')$
 - Learn policy wrt some weights
 - Use policy \Rightarrow trajectory τ_p with reward $R(\tau_p | \mathbf{w}) = \sum_{\tau_p} R(\mathbf{x}, \mathbf{u}, \mathbf{x}' | \mathbf{w})$
 - Use expert \Rightarrow trajectory τ_e with reward $R(\tau_e | \mathbf{w}) = \sum_{\tau_e} R(\mathbf{x}, \mathbf{u}, \mathbf{x}' | \mathbf{w})$
 - Find weights making expert better:

$$\mathbf{w}^* = \arg\max_{w} R(\tau_e | \mathbf{w}) - R(\tau_e | \mathbf{w})$$

• Iterate.

(2) m p 52/55

- Curse of dimensionality
- Reward tuning (reasons: reward improvement, initialization, imitation learning).
- Exploration vs exploitation (show demo 02_crawler).
 - ϵ -greedy exploration
 - or exploration extension $Q(\Phi(\mathbf{x},\mathbf{u})) + \frac{k}{N(\Phi)}$

- Curse of dimensionality
- Reward tuning (reasons: reward improvement, initialization, imitation learning).
- Exploration vs exploitation (show demo 02_crawler).
 - ϵ -greedy exploration
 - or exploration extension $Q(\Phi(\mathbf{x},\mathbf{u})) + \frac{k}{N(\Phi)}$
- Simulator/model (inaccuracy problem but it can decrease real-world interactions).
- Safe exploration, cooperative tasks, hierarchical reinforcment learning.

Conclusions

🔶 Primal Dual task

- convergence issues
- do we need to know sum of rewards?
- Do not forget features!
- What you can do?

What you can do?

- Pacman (show roomba pacman !!!) http://inst.eecs.berkeley.edu/~cs188/pacman/html/ navigation.html?page=p3/p3_introduction
- Work with us on:
 - Nifti robot show adaptive traversability demo!
 - better IRO tasks can doc.Ing.Zlo,CSc. be captured via reinforcment learning?

55/55

- Starcraft competition http://webdocs.cs.ualberta.ca/~cdavid/starcraftaicomp/
- TORCS Racing and demolishon derby simulator competition. http://en.wikipedia.org/wiki/TORCS