Introduction to Reinforcment Learning

Karel Zimmermann

Czech Technical University in Prague
Faculty of Electrical Engineering, Department of Cybernetics
Center for Machine Perception
http://cmp.felk.cvut.cz/~zimmerk, zimmerk@fel.cvut.cz

Some images and codes taken from P.Abbeel, J.Peters, M.Riedmiller, T.Jakab

Motivation examples

Learning to control a dynamic process from real world interactions.

- Human teacher is not needed - rewards assigned by environment.

onFrame() {
onFrame() {
units = Broodwar->getAllUnits();
units = Broodwar->getAllUnits();
unit->attackUnit(enemyUnit);
unit->attackUnit(enemyUnit);
}
}


```
onFrame() {
    units = Broodwar->getAllUnits();
    unit->attackUnit(enemyUnit);
    }
```


Simplest possible scheme

What are the states, actions and rewards?

- Crawler - show python demo!
- Bouncing ball - show video!
- Ball in the cup - show video!
- Pacman - show python (01_pacman_states)

What do we search for?

Optimal policy (strategy, control) which assigns actions u_{i} to states x_{i}.

What do we search for?

- Optimal policy (strategy, control) which assigns actions u_{i} to states x_{i}.
- Optimal $=$ assuring long-term high rewards $\sum_{i=1}^{\infty} r_{i}$

How can we find the optimal policy?

- Depends on the world.

How can we find the optimal policy?

- Depends on the world.
- What about this grid-world?

How can we find the optimal policy?

How can we find the optimal policy?
$\overbrace{8 / 55}$

How can we find the optimal policy?

Dijkstra yields the optimal policy in some type worlds - usually:

- deterministic,
- tiny,
- static,
- known in advance

What about more realistic worlds?

- What if transitions are stochastic?

What about more realistic worlds?

- What if transitions are stochastic?
- expectimax or minmax tree search
- What if the world is dynamically changing (e.g. there is someone else like doc.Ing.Zlo, CSc.)?

What about more realistic worlds?

- What if transitions are stochastic?
- expectimax or minmax tree search
- What if the world is dynamically changing (e.g. there is someone else like doc.Ing.Zlo, CSc.)?
- lift the state-space up to higher dimension

What about more realistic worlds?

- What if transitions are stochastic?
- expectimax or minmax tree search
- What if the world is dynamically changing (e.g. there is someone else like doc.Ing.Zlo,CSc.)?
- lift the state-space up to higher dimension
- What if the world is unknown in advance?
-What if the robot-world interactions are not explicitly modelable?
- What if the world is huge (continuous and infinite)?

What about more realistic worlds?

-What if transitions are stochastic?

- expectimax or minmax tree search

What if the world is dynamically changing (e.g. there is someone else like doc.Ing.Zlo, CSc.)?

- lift the state-space up to higher dimension
- What if the world is unknown in advance?
-What if the robot-world interactions are not explicitly modelable?
- What if the world is huge (continuous and infinite)?
- Under such conditions, bare state-space search is not technically possible.
- We would like to learn the optimal policy from real-world examples.

Can machine learning help?

Why can't we learn $\pi: X \rightarrow U$ mapping?

Can machine learning help?

- Why can't we learn mapping $\pi: X \rightarrow U$ (policy)?
- Because we do not know the right state-action pairs to train from.
- Nevertheless, there is a way to learn mapping π directly. PRIMAL TASK.

Can machine learning help?

- But we know rewards r coresponding to (x, u) touples.
- What about to learn mapping $Q: X \times U \rightarrow \mathbb{R}$ and take action $u^{*}=\pi(x)=\operatorname{argmax}_{u} Q(x, u)$?

Can machine learning help?

- But we know rewards r coresponding to (x, u) touples.
- What about to learn mapping $Q: X \times U \rightarrow \mathbb{R}$ and take action $u^{*}=\pi(x)=\operatorname{argmax}_{a} Q(x, u)$?

Toooooo greedy !!!

Can machine learning help?

- But we know rewards r coresponding to (x, u) touples.
- What about to learn mapping $Q: X \times U \rightarrow \mathbb{R}$ and take action $u^{*}=\pi(x)=\operatorname{argmax}_{a} Q(x, u)$?
- Toooooo greedy !!!
- Nevertheless, also not that bad idea, there is a way to learn mapping Q assigning $\sum_{i} r_{i}$ instead of r_{1}. DUAL TASK.

Lesson outline

This lecture is about learning the optimal mapping $\pi: X \rightarrow U$ from real-world interactions.

Lesson outline

This lecture is about learning the optimal mapping $\pi: X \rightarrow U$ from real-world interactions.

- Focus is on methods without model !!!

Lesson outline

- This lecture is about learning the optimal mapping $\pi: X \rightarrow U$ from real-world interactions.
- Focus is on methods without model !!!
- MDP notation (state, reward, transition probability, etc.).

Lesson outline

- This lecture is about learning the optimal mapping $\pi: X \rightarrow U$ from real-world interactions.
- Focus is on methods without model !!!
- MDP notation (state, reward, transition probability, etc.).
- Problem formulation in terms of criterion to be optimized.

Lesson outline

- This lecture is about learning the optimal mapping $\pi: X \rightarrow U$ from real-world interactions.
- Focus is on methods without model !!!
- MDP notation (state, reward, transition probability, etc.).
- Problem formulation in terms of criterion to be optimized.
- Primal task (as far as we can get towards natural gradients).

Lesson outline

- This lecture is about learning the optimal mapping $\pi: X \rightarrow U$ from real-world interactions.
- Focus is on methods without model !!!
- MDP notation (state, reward, transition probability, etc.).
- Problem formulation in terms of criterion to be optimized.
- Primal task (as far as we can get towards natural gradients).
- Dual task (without proving that it is the dual task)

Lesson outline

- This lecture is about learning the optimal mapping $\pi: X \rightarrow U$ from real-world interactions.
- Focus is on methods without model !!!
- MDP notation (state, reward, transition probability, etc.).
- Problem formulation in terms of criterion to be optimized.
- Primal task (as far as we can get towards natural gradients).
- Dual task (without proving that it is the dual task)
- Curse of dimensionality (states represented by features).

Lesson outline

- This lecture is about learning the optimal mapping $\pi: X \rightarrow U$ from real-world interactions.
- Focus is on methods without model !!!
- MDP notation (state, reward, transition probability, etc.).
- Problem formulation in terms of criterion to be optimized.
- Primal task (as far as we can get towards natural gradients).
- Dual task (without proving that it is the dual task)
- Curse of dimensionality (states represented by features).
- Other related problems (imitation learning, exploration)

MDP definition

- States: $\mathrm{x} \in X$

MDP definition

- States: $\mathrm{x} \in X$
- Actions: $\mathbf{u} \in U$

MDP definition

- States: $\mathrm{x} \in X$
- Actions: $\mathbf{u} \in U$
- Transition probability: $p\left(\mathbf{x}^{\prime} \mid \mathbf{x}, \mathbf{u}\right): X \times U \times X \rightarrow[0 ; 1]$

MDP definition

States: $\mathrm{x} \in X$
Actions: $\mathbf{u} \in U$
Transition probability: $p\left(\mathbf{x}^{\prime} \mid \mathbf{x}, \mathbf{u}\right): X \times U \times X \rightarrow[0 ; 1]$

- Reward: $r\left(\mathbf{x}, \mathbf{u}, \mathbf{x}^{\prime}\right): X \times U \times X \rightarrow \mathbb{R}$

MDP definition

- States: $\mathrm{x} \in X$
- Actions: $\mathbf{u} \in U$
- Transition probability: $p\left(\mathbf{x}^{\prime} \mid \mathbf{x}, \mathbf{u}\right): X \times U \times X \rightarrow[0 ; 1]$
- Reward: $r\left(\mathbf{x}, \mathbf{u}, \mathbf{x}^{\prime}\right): X \times U \times X \rightarrow \mathbb{R}$

Policy: $\pi(\mathrm{x}): X \rightarrow U$ (at least for now, but better to use probability)

MDP definition

- Trajectory is sequence of visited states and performed actions: $\tau=\left(\mathbf{x}_{0}, \mathbf{u}_{0}, \mathbf{x}_{1}, \mathbf{u}_{1}, \mathbf{x}_{2}, \ldots\right)$

MDP definition

- Trajectory is sequence of visited states and performed actions: $\tau=\left(\mathbf{x}_{0}, \mathbf{u}_{0}, \mathbf{x}_{1}, \mathbf{u}_{1}, \mathbf{x}_{2}, \ldots\right)$
- Sum of rewards with limited horizont:

$$
r(\tau)=\sum_{i=0}^{H} r\left(\mathbf{x}_{i}, \mathbf{u}_{i}, \mathbf{x}_{i+1}\right)
$$

MDP definition

- Trajectory is sequence of visited states and performed actions: $\tau=\left(\mathbf{x}_{0}, \mathbf{u}_{0}, \mathbf{x}_{1}, \mathbf{u}_{1}, \mathbf{x}_{2}, \ldots\right)$
- Sum of rewards with limited horizont:

$$
r(\tau)=\sum_{i=0}^{H} r\left(\mathbf{x}_{i}, \mathbf{u}_{i}, \mathbf{x}_{i+1}\right)
$$

- Sum of discounted rewards:

$$
r(\tau)=\sum_{i=0}^{\infty} \gamma^{i} \cdot r\left(\mathbf{x}_{i}, \mathbf{u}_{i}, \mathbf{x}_{i+1}\right)
$$

Problem definition

- We have a robot and we have no idea how to control it.

Problem definition

- We have a robot and we have no idea how to control it.
- Nevertheless, we know what is good and bad state - we have a definition of rewards.

Problem definition

- We have a robot and we have no idea how to control it.
- Nevertheless, we know what is good and bad state - we have a definition of rewards.
- We control it somehow (e.g. with some initial policy) and record the trajectory τ (or several trajectories).

Problem definition

- We have a robot and we have no idea how to control it.
- Nevertheless, we know what is good and bad state - we have a definition of rewards.
- We control it somehow (e.g. with some initial policy) and record the trajectory τ (or several trajectories).
- Given these trajectories, change the policy to increase mean sum of rewards

$$
J(\pi)=E\{r(\tau)\}
$$

Problem definition

Denote $p(\tau \mid \pi)$ probability of trajectory τ occurs when following policy π

Problem definition

- Denote $p(\tau \mid \pi)$ probability of trajectory τ occurs when following policy π
- Criterion to me maximized is the mean sum of rewards

$$
J(\pi)=E\{r(\tau)\}=\int_{\tau \in \mathcal{T}} p(\tau \mid \pi) r(\tau) \mathrm{d} \tau
$$

Problem definition

- Denote $p(\tau \mid \pi)$ probability of trajectory τ occurs when following policy π
- Criterion to me maximized is the mean sum of rewards

$$
J(\pi)=E\{r(\tau)\}=\int_{\tau \in \mathcal{T}} p(\tau \mid \pi) r(\tau) \mathrm{d} \tau
$$

- We solve the following optimization problem

$$
\pi^{*}=\arg \max _{\pi} J(\pi)
$$

Problem solution

As usually, you can:

Problem solution

As usually, you can:

- either solve primal task e.g. by following gradient ∇J to maximize $J(\pi)$ directly.
- primal is often solved in the optimal control community (e.g. LQR),

Problem solution

- As usually, you can:
- either solve primal task e.g. by following gradient ∇J to maximize $J(\pi)$ directly.
- primal is often solved in the optimal control community (e.g. LQR),
- or solve dual task by searching for dual variable Q via lagrange multipliers and follow policy $\pi^{*}=\arg \max _{\mathbf{u}} Q(\mathbf{x}, \mathbf{u})$
- dual is often solved by Al community (e.g. state-space search for games)

Dual task provides alternative point-of-view (e.g. shadow prices in LP or sparse feature selection for SVM)

Primal task

How do we solve the following optimization problem

$$
\pi^{*}=\arg \max _{\pi} J(\pi)
$$

Primal task

- How do we solve the following optimization problem

$$
\pi^{*}=\arg \max _{\pi} J(\pi)
$$

- Let us choose policy $\pi(\theta)=\theta^{\top} \mathrm{x}$ parameterized by coeffitients θ.

Primal task

- How do we solve the following optimization problem

$$
\pi^{*}=\arg \max _{\pi} J(\pi)
$$

- Let us choose policy $\pi(\theta)=\theta^{\top} \mathrm{x}$ parameterized by coeffitients θ.
- then optimization problem reduces to

$$
\theta^{*}=\arg \max _{\theta} J(\theta)
$$

- How can we compute $J(\theta)=E\{r(\tau)\}$ fro a given θ ?

Primal task - approximating criterion.

Use $\pi(\theta)$ to get several trajectories τ_{i}.

Primal task - approximating criterion.

- Use $\pi(\theta)$ to get several trajectories τ_{i}.
- Approximate criterion value in θ as average reward

$$
J(\theta)=E\{r(\tau)\} \approx \frac{1}{N} \sum_{i=1}^{N} r\left(\tau_{i}\right)
$$

Primal task - approximating criterion.

- Use $\pi(\theta)$ to get several trajectories τ_{i}.
- Approximate criterion value in θ as average reward

$$
J(\theta)=E\{r(\tau)\} \approx \frac{1}{N} \sum_{i=1}^{N} r\left(\tau_{i}\right)
$$

- We can approximate criterion value, what about gradient?

Primal task - approximating gradient

Can we obtain the gradient by computing also $J(\theta+\Delta \theta)$?

Primal task - approximating gradient

Can we obtain the gradient by computing also $J(\theta+\Delta \theta)$?
Of course, but doing it from one sample is quite unstable (especially for high dimensional θ).

Primal task - approximating gradient

- Can we obtain the gradient by computing also $J(\theta+\Delta \theta)$?
- Of course, but doing it from one sample is quite unstable (especially for high dimensional θ).
- Perform several small random perturbations $\Delta \theta_{i}$ and compute $J\left(\theta+\Delta \theta_{i}\right)$.

Primal task - approximating gradient

Can we obtain the gradient by computing also $J(\theta+\Delta \theta)$?

- Of course, but doing it from one sample is quite unstable (especially for high dimensional θ).

Perform several small random perturbations $\Delta \theta_{i}$ and compute $J\left(\theta+\Delta \theta_{i}\right)$.

- Relation to gradient $\nabla J(\theta)$ is given by the first order Taylor polynom

$$
\begin{aligned}
& J\left(\theta+\Delta \theta_{i}\right)=J(\theta)+\nabla J(\theta)^{\top} \Delta \theta_{i} \\
& \Delta \theta_{i}^{\top} \nabla J(\theta)=J(\theta)-J\left(\theta+\Delta \theta_{i}\right) \\
& \underbrace{\left[\begin{array}{c}
\Delta \theta_{1}^{\top} \\
\vdots \\
\Delta \theta_{n}^{\top}
\end{array}\right]}_{\text {matrix } \mathrm{A}} \nabla J(\theta)=\underbrace{\left[\begin{array}{c}
\left.J(\theta)-J\left(\theta+\Delta \theta_{1}\right)\right) \\
\vdots \\
\left.J(\theta)-J\left(\theta+\Delta \theta_{n}\right)\right)
\end{array}\right]}_{\text {vector } \mathbf{b}}
\end{aligned}
$$

Primal task - solution

Gradient is solution of overdetermined set of linear equations:

$$
\nabla J(\theta)=\left[\begin{array}{c}
\Delta \theta_{1}^{\top} \\
\vdots \\
\Delta \theta_{n}^{\top}
\end{array}\right]^{+} \cdot\left[\begin{array}{c}
\left.J(\theta)-J\left(\theta+\Delta \theta_{1}\right)\right) \\
\vdots \\
\left.J(\theta)-J\left(\theta+\Delta \theta_{n}\right)\right)
\end{array}\right]
$$

Primal task - solution

Gradient is solution of overdetermined set of linear equations:

$$
\nabla J(\theta)=\left[\begin{array}{c}
\Delta \theta_{1}^{\top} \\
\vdots \\
\Delta \theta_{n}^{\top}
\end{array}\right]^{+} \cdot\left[\begin{array}{c}
\left.J(\theta)-J\left(\theta+\Delta \theta_{1}\right)\right) \\
\vdots \\
\left.J(\theta)-J\left(\theta+\Delta \theta_{n}\right)\right)
\end{array}\right]
$$

- Algorithm is simple:
- Randomly initilize θ
- Use $\pi(\theta)$ to get trajectories.
- Compute $\nabla J(\theta)$ using pseudo-inverse.
- Update $\theta \leftarrow \theta+\alpha \frac{\nabla J(\theta)}{\|\nabla J(\theta)\|}$

Primal task - solution

- Gradient is solution of overdetermined set of linear equations:

$$
\nabla J(\theta)=\left[\begin{array}{c}
\Delta \theta_{1}^{\top} \\
\vdots \\
\Delta \theta_{n}^{\top}
\end{array}\right]^{+} \cdot\left[\begin{array}{c}
\left.J(\theta)-J\left(\theta+\Delta \theta_{1}\right)\right) \\
\vdots \\
\left.J(\theta)-J\left(\theta+\Delta \theta_{n}\right)\right)
\end{array}\right]
$$

- Algorithm is simple:
- Randomly initilize θ
- Use $\pi(\theta)$ to get trajectories.
- Compute $\nabla J(\theta)$ using pseudo-inverse.
- Update $\theta \leftarrow \theta+\alpha \frac{\nabla J(\theta)}{\|\nabla J(\theta)\|}$
- Show example in MATLAB - go_toy_finite_difference.m.

Primal task - pros and cons

- No model identification needed.

Primal task - pros and cons

- No model identification needed.
- Converges to local minima - good initialization needed.

Primal task - pros and cons

- No model identification needed.
- Converges to local minima - good initialization needed.
- There are better gradient approximations - natural gradient methods [Kober-IJRR-2013].

Dual task

- State-action function $Q(\mathbf{x}, \mathbf{u}): X \times U \rightarrow \mathbb{R}$
- Mean sum of discounted rewards when choosing action u from state x .

Dual task

- State-action function $Q(\mathbf{x}, \mathbf{u}): X \times U \rightarrow \mathbb{R}$
- Mean sum of discounted rewards when choosing action u from state x .
- Let us look at the grid world with stochastic transitions!

Dual task

- State-action function $Q(\mathbf{x}, \mathbf{u}): X \times U \rightarrow \mathbb{R}$
- Mean sum of discounted rewards when choosing action u from state x .
- How can we learn from recorded trajectories and corresponding rewards?

Dual task - naive learning example

- State-action function $Q(\mathbf{x}, \mathbf{u}): X \times U \rightarrow \mathbb{R}$
- Mean sum of discounted rewards when choosing action u from state x .
- How can we learn from recorded trajectories and corresponding rewards?
$\tau_{1}:(\mathrm{a}, \mathrm{R}, \mathrm{b}, \mathrm{R}, \mathrm{c}, \mathrm{R}, \mathrm{d}), \quad r\left(\tau_{1}\right)=1$

Dual task - naive learning example

- State-action function $Q(\mathbf{x}, \mathbf{u}): X \times U \rightarrow \mathbb{R}$
- Mean sum of discounted rewards when choosing action u from state x .
- How can we learn from recorded trajectories and corresponding rewards?
- $\tau_{1}:(\mathrm{a}, \mathrm{R}, \mathrm{b}, \mathrm{R}, \mathrm{c}, \mathrm{R}, \mathrm{d}), \quad r\left(\tau_{1}\right)=1$
$\tau_{2}:(\mathrm{a}, \mathrm{R}, \mathrm{b}, \mathrm{D}, \mathrm{e}, \mathrm{R}, \mathrm{f}, \mathrm{R}, \mathrm{g}), \quad r\left(\tau_{2}\right)=-1$

Dual task - naive learning example

- State-action function $Q(\mathbf{x}, \mathbf{u}): X \times U \rightarrow \mathbb{R}$
- Mean sum of discounted rewards when choosing action u from state x .
- How can we learn from recorded trajectories and corresponding rewards?
- $\tau_{1}:(\mathrm{a}, \mathrm{R}, \mathrm{b}, \mathrm{R}, \mathrm{c}, \mathrm{R}, \mathrm{d}), \quad r\left(\tau_{1}\right)=1$
$\tau_{2}:(\mathrm{a}, \mathrm{R}, \mathrm{b}, \mathrm{D}, \mathrm{e}, \mathrm{R}, \mathrm{f}, \mathrm{R}, \mathrm{g}), \quad r\left(\tau_{2}\right)=-1$

Q	R - right	D - down
a		
b		
c		
e	$?$	

Dual task - naive learning example

- State-action function $Q(\mathbf{x}, \mathbf{u}): X \times U \rightarrow \mathbb{R}$
- Mean sum of discounted rewards when choosing action u from state x .
- How can we learn from recorded trajectories and corresponding rewards?
- $\tau_{1}:(\mathrm{a}, \mathrm{R}, \mathrm{b}, \mathrm{R}, \mathrm{c}, \mathrm{R}, \mathrm{d}), \quad r\left(\tau_{1}\right)=1$
$\tau_{2}:(\mathrm{a}, \mathrm{R}, \mathrm{b}, \mathrm{D}, \mathrm{e}, \mathrm{R}, \mathrm{f}, \mathrm{R}, \mathrm{g}), \quad r\left(\tau_{2}\right)=-1$

Q	R - right	D - down
a		
b		
c		
e	-1	

Dual task - naive learning example

- State-action function $Q(\mathbf{x}, \mathbf{u}): X \times U \rightarrow \mathbb{R}$
- Mean sum of discounted rewards when choosing action u from state x .
- How can we learn from recorded trajectories and corresponding rewards?
- $\tau_{1}:(\mathrm{a}, \mathrm{R}, \mathrm{b}, \mathrm{R}, \mathrm{c}, \mathrm{R}, \mathrm{d}), \quad r\left(\tau_{1}\right)=1$
- $\tau_{2}:(\mathrm{a}, \mathrm{R}, \mathrm{b}, \mathrm{D}, \mathrm{e}, \mathrm{R}, \mathrm{f}, \mathrm{R}, \mathrm{g}), \quad r\left(\tau_{2}\right)=-1$
-What is wrong? Why I learned nothing about policy for a?

Q	R - right	D - down
a	$\mathbf{0}$	
b	1	-1
c	1	
e	-1	

Dual task - naive learning example

- State-action function $Q(\mathbf{x}, \mathbf{u}): X \times U \rightarrow \mathbb{R}$
- Mean sum of discounted rewards when choosing action u from state x .
- How can we learn from recorded trajectories and corresponding rewards?
- $\tau_{1}:(\mathrm{a}, \mathrm{R}, \mathrm{b}, \mathrm{R}, \mathrm{c}, \mathrm{R}, \mathrm{d}), \quad r\left(\tau_{1}\right)=1$
$\tau_{2}:(\mathrm{a}, \mathrm{R}, \mathrm{b}, \mathrm{D}, \mathrm{e}, \mathrm{R}, \mathrm{f}, \mathrm{R}, \mathrm{g}), \quad r\left(\tau_{2}\right)=-1$
- I know that I can behave better from b, can I use it?

Q	R - right	D - down
a	$\mathbf{0}$	
b	1	-1
c	1	
e	-1	

Dual task - naive learning example

- State-action function $Q(\mathbf{x}, \mathbf{u}): X \times U \rightarrow \mathbb{R}$
- Mean sum of discounted rewards when choosing action u from state x .
- How can we learn from recorded trajectories and corresponding rewards?
- $\tau_{1}:(\mathrm{a}, \mathrm{R}, \mathrm{b}, \mathrm{R}, \mathrm{c}, \mathrm{R}, \mathrm{d}), \quad r\left(\tau_{1}\right)=1$
- $\tau_{2}:(\mathrm{a}, \mathrm{R}, \mathrm{b}, \mathrm{D}, \mathrm{e}, \mathrm{R}, \mathrm{f}, \mathrm{R}, \mathrm{g}), \quad r\left(\tau_{2}\right)=-1$
- I know that I can behave better from b, can I use it?
- Recursively: $Q(\mathrm{a}, \mathrm{R})=$ average(reward_for_a + best_rewards_from_b)

Q	R - right	D - down
a	$\mathbf{1}$	
b	1	-1
c	1	
e	-1	

recursive definition of Q

Define $Q(\mathbf{x}, \mathbf{u})$ recursively:

- If transition deterministic

$$
\begin{gathered}
p\left(\mathbf{x}^{\prime} \mid \mathbf{u}, \mathbf{x}\right)=1 \Rightarrow \mathbf{x} \rightarrow \mathbf{x}^{\prime} \\
Q(\mathbf{x}, \mathbf{u})=r\left(\mathbf{x}, \mathbf{u}, \mathbf{x}^{\prime}\right)+\gamma \max _{\mathbf{u}^{\prime}} Q\left(\mathbf{x}^{\prime}, \mathbf{u}^{\prime}\right)
\end{gathered}
$$

recursive definition of Q

Define $Q(\mathbf{x}, \mathbf{u})$ recursively:

- If transition deterministic

$$
\begin{gathered}
p\left(\mathbf{x}^{\prime} \mid \mathbf{u}, \mathbf{x}\right)=1 \Rightarrow \mathbf{x} \rightarrow \mathbf{x}^{\prime} \\
Q(\mathbf{x}, \mathbf{u})=r\left(\mathbf{x}, \mathbf{u}, \mathbf{x}^{\prime}\right)+\gamma \max _{\mathbf{u}^{\prime}} Q\left(\mathbf{x}^{\prime}, \mathbf{u}^{\prime}\right)
\end{gathered}
$$

- If transition stochastic

$$
\begin{gathered}
p\left(\mathbf{x}^{\prime} \mid \mathbf{u}, \mathbf{x}\right)<1 \Rightarrow \mathbf{x} \rightarrow ? \\
Q(\mathbf{x}, \mathbf{u})=\sum_{\mathbf{x}^{\prime}} p\left(\mathbf{x}^{\prime} \mid \mathbf{u}, \mathbf{x}\right)\left[r\left(\mathbf{x}, \mathbf{u}, \mathbf{x}^{\prime}\right)+\gamma \max _{\mathbf{u}^{\prime}} Q\left(\mathbf{x}^{\prime}, \mathbf{u}^{\prime}\right)\right] \\
\text { (Bellman equation) }
\end{gathered}
$$

Q-learning

Initialize $Q(\mathbf{x}, \mathbf{u})=0 \quad \forall_{\mathbf{x}, \mathbf{u}}$

Q-learning

Initialize $Q(\mathbf{x}, \mathbf{u})=0 \quad \forall_{\mathrm{x}, \mathrm{u}}$
Drive the robot and record trajectories like that:

$$
\left(\mathbf{x}_{0}, \mathbf{u}_{0}, \mathbf{x}_{0}^{\prime}, r_{0}\right), \quad\left(\mathbf{x}_{1}=\mathbf{x}_{0}^{\prime}, \mathbf{u}_{1}, \mathbf{x}^{\prime}{ }_{1}, r_{1}\right),
$$

Q-learning

Initialize $Q(\mathbf{x}, \mathbf{u})=0 \quad \forall_{\mathbf{x}, \mathbf{u}}$
Drive the robot and record trajectories like that:

$$
\left(\mathbf{x}_{0}, \mathbf{u}_{0}, \mathbf{x}_{0}^{\prime}, r_{0}\right), \quad\left(\mathbf{x}_{1}=\mathbf{x}_{0}^{\prime}, \mathbf{u}_{1}, \mathbf{x}_{1}^{\prime}, r_{1}\right), \quad \ldots
$$

- For $\mathbf{x} \in X, \mathbf{u} \in U$

$$
Q(\mathbf{x}, \mathbf{u})=\frac{1}{n} \sum_{i \in\left\{\mathbf{x}_{i}=\mathbf{x}, \mathbf{u}_{i}=\mathbf{u}\right\}} r_{i}+\gamma \max _{\mathbf{u}^{\prime}} Q\left(\mathbf{x}_{i}^{\prime}, \mathbf{u}^{\prime}\right)
$$

End

Q-learning

Initialize $Q(\mathbf{x}, \mathbf{u})=0 \quad \forall_{\mathbf{x}, \mathbf{u}}$
Drive the robot and record sequences:
$\left(\mathbf{x}_{0}, \mathbf{u}_{0}, \mathbf{x}^{\prime}{ }_{0}, r_{0}\right), \quad\left(\mathbf{x}_{1}=\mathbf{x}^{\prime}{ }_{0}, \mathbf{u}_{1}, \mathbf{x}^{\prime}{ }_{1}, r_{1}\right), \quad \ldots$

For $\mathbf{x} \in X, \mathbf{u} \in U$

$$
Q(\mathbf{x}, \mathbf{u})=\frac{1}{n} \sum_{i \in\left\{\mathbf{x}_{i}=\mathbf{x}, \mathbf{u}_{i}=\mathbf{u}\right\}} r_{i}+\gamma \max _{\mathbf{u}^{\prime}} Q\left(\mathbf{x}_{i}^{\prime}, \mathbf{u}^{\prime}\right)
$$

End
(fixed point algorithm for system of lin. eq.)

Q-learning

Initialize $Q(\mathbf{x}, \mathbf{u})=0 \quad \forall_{\mathbf{x}, \mathbf{u}}$

- Drive the robot and record sequences:
$\left(\mathbf{x}_{0}, \mathbf{u}_{0}, \mathrm{x}_{0}^{\prime}, r_{0}\right), \quad\left(\mathbf{x}_{1}=\mathrm{x}^{\prime}{ }_{0}, \mathbf{u}_{1}, \mathrm{x}^{\prime}{ }_{1}, r_{1}\right), \quad \ldots$
For $\mathbf{x} \in X, \mathbf{u} \in U$

$$
Q(\mathbf{x}, \mathbf{u})=\frac{1}{n} \sum_{i \in\left\{\mathbf{x}_{i}=\mathbf{x}, \mathbf{u}_{i}=\mathbf{u}\right\}} r_{i}+\gamma \max _{\mathbf{u}^{\prime}} Q\left(\mathbf{x}_{i}^{\prime}, \mathbf{u}^{\prime}\right)
$$

End

State-value function example I - grid-world

- Show python demo 00_grid_world and 01_grid_world_noise

State-value function example I - grid-world

Q-VALUES AFTER 1000 EPISODES

State-value function example II - crawler

- Show python demo-02_crawler
- What are rewards?

What is U, X and Q dimensionality?

Where is the catch?

Where is the catch?

- Curse of dimensionality - considered state space for pacman.
- Show python demo 03_pacman_small_states and 04_pacman_small_states_long_training

Where is the catch?

Curse of dimensionality - are these states the same? Do we want it?

Where is the catch?

- Curse of dimensionality - we need to replace high-dimensional states x and control \mathbf{u} by low-dimensional features $\Phi(\mathbf{x}, \mathbf{u})$.
- Show python demo 05_pacman_small_features and 06_pacman_large_features
- Solution: describe a state using a vector of features (properties)
- Features are functions from states to real numbers (often $0 / 1$) that capture important properties of the state
- Example features:
- Distance to closest ghost
- Distance to closest dot
- Number of ghosts
- $1 /$ (dist to dot) ${ }^{2}$
- Is Pacman in a tunnel? (0/1)
- etc.
- Is it the exact state on this slide?
- Can also describe a q-state (s, a) with features (e.g. action moves closer to food)

Where is the catch?

Curse of dimensionality - Q-learning

- For $\mathbf{x} \in X, \mathbf{u} \in U$

$$
Q(\mathbf{x}, \mathbf{u})=\frac{1}{n} \sum_{i \in\left\{\mathbf{x}_{i}=\mathbf{x}, \mathbf{u}_{i}=\mathbf{u}\right\}} r_{i}+\gamma \max _{\mathbf{u}^{\prime}} Q\left(\mathbf{x}_{i}^{\prime}, \mathbf{u}^{\prime}\right)
$$

- End

Where is the catch?

Curse of dimensionality - approximate Q-learning Iterate until convergence

- For all $\mathbf{x}_{i}, \mathbf{u}_{i}$

$$
\left.y_{i}=r_{i}+\gamma \max _{\mathbf{u}^{\prime}}\left[\theta^{\top} \Phi\left(\mathbf{x}^{\prime}, \mathbf{u}^{\prime}\right)\right)\right]
$$

- End
- Fit Q-function to approximate mapping between $\Phi\left(\mathbf{x}_{i}, \mathbf{u}_{i}\right)$ and y_{i}

$$
\theta \leftarrow \arg \min _{\theta}\left\|\theta^{\top} \Phi\left(\mathbf{x}_{i}, \mathbf{u}_{i}\right)-y_{i}\right\|
$$

Where is the catch?

Curse of dimensionality - approximate Q-learning

- For all $\mathbf{x}_{i}, \mathbf{u}_{i}$

$$
\left.y_{i}=r_{i}+\gamma \max _{\mathbf{u}^{\prime}}\left[\theta^{\top} \Phi\left(\mathbf{x}^{\prime}{ }_{i}, \mathbf{u}^{\prime}\right)\right)\right]
$$

- End
- Fit Q-function to approximate mapping between $\Phi\left(\mathbf{x}_{i}, \mathbf{u}_{i}\right)$ and y_{i}

$$
\theta \leftarrow \arg \min _{\theta}\left\|\theta^{\top} \Phi\left(\mathbf{x}_{i}, \mathbf{u}_{i}\right)-y_{i}\right\|
$$

- Inaccurate Q function - do we really need it?

Where is the catch?

Curse of dimensionality
Reward tuning (reasons: reward improvement, initialization, imitation learning).

Where is the catch?

Curse of dimensionality

Reward tuning (reasons: reward improvement, initialization, imitation learning).

- Define reward as $R\left(\mathbf{x}, \mathbf{u}, \mathbf{x}^{\prime} \mid \mathbf{w}\right)=\mathbf{w}^{\top} \cdot \Phi\left(\mathbf{x}, \mathbf{u}, \mathbf{x}^{\prime}\right)$

Where is the catch?

- Curse of dimensionality
- Reward tuning (reasons: reward improvement, initialization, imitation learning).
- Define reward as $R\left(\mathbf{x}, \mathbf{u}, \mathbf{x}^{\prime} \mid \mathbf{w}\right)=\mathbf{w}^{\top} \cdot \Phi\left(\mathbf{x}, \mathbf{u}, \mathbf{x}^{\prime}\right)$
- Learn policy wrt some weights

Where is the catch?

- Curse of dimensionality
- Reward tuning (reasons: reward improvement, initialization, imitation learning).
- Define reward as $R\left(\mathbf{x}, \mathbf{u}, \mathbf{x}^{\prime} \mid \mathbf{w}\right)=\mathbf{w}^{\top} \cdot \Phi\left(\mathbf{x}, \mathbf{u}, \mathbf{x}^{\prime}\right)$
- Learn policy wrt some weights
- Use policy \Rightarrow trajectory τ_{p} with reward $R\left(\tau_{p} \mid \mathbf{w}\right)=\sum_{\tau_{p}} R\left(\mathbf{x}, \mathbf{u}, \mathbf{x}^{\prime} \mid \mathbf{w}\right)$

Where is the catch?

- Curse of dimensionality
- Reward tuning (reasons: reward improvement, initialization, imitation learning).
- Define reward as $R\left(\mathbf{x}, \mathbf{u}, \mathbf{x}^{\prime} \mid \mathbf{w}\right)=\mathbf{w}^{\top} \cdot \Phi\left(\mathbf{x}, \mathbf{u}, \mathbf{x}^{\prime}\right)$
- Learn policy wrt some weights
- Use policy \Rightarrow trajectory τ_{p} with reward $R\left(\tau_{p} \mid \mathbf{w}\right)=\sum_{\tau_{p}} R\left(\mathbf{x}, \mathbf{u}, \mathbf{x}^{\prime} \mid \mathbf{w}\right)$
- Use expert \Rightarrow trajectory τ_{e} with reward $R\left(\tau_{e} \mid \mathbf{w}\right)=\sum_{\tau_{e}} R\left(\mathbf{x}, \mathbf{u}, \mathbf{x}^{\prime} \mid \mathbf{w}\right)$

Where is the catch?

- Curse of dimensionality
- Reward tuning (reasons: reward improvement, initialization, imitation learning).
- Define reward as $R\left(\mathbf{x}, \mathbf{u}, \mathbf{x}^{\prime} \mid \mathbf{w}\right)=\mathbf{w}^{\top} \cdot \Phi\left(\mathbf{x}, \mathbf{u}, \mathbf{x}^{\prime}\right)$
- Learn policy wrt some weights
- Use policy \Rightarrow trajectory τ_{p} with reward $R\left(\tau_{p} \mid \mathbf{w}\right)=\sum_{\tau_{p}} R\left(\mathbf{x}, \mathbf{u}, \mathbf{x}^{\prime} \mid \mathbf{w}\right)$
- Use expert \Rightarrow trajectory τ_{e} with reward $R\left(\tau_{e} \mid \mathbf{w}\right)=\sum_{\tau_{e}} R\left(\mathbf{x}, \mathbf{u}, \mathbf{x}^{\prime} \mid \mathbf{w}\right)$
- Find weights making expert better:

$$
\mathbf{w}^{*}=\arg \max _{w} R\left(\tau_{e} \mid \mathbf{w}\right)-R\left(\tau_{e} \mid \mathbf{w}\right)
$$

Where is the catch?

- Curse of dimensionality
- Reward tuning (reasons: reward improvement, initialization, imitation learning).
- Define reward as $R\left(\mathbf{x}, \mathbf{u}, \mathbf{x}^{\prime} \mid \mathbf{w}\right)=\mathbf{w}^{\top} \cdot \Phi\left(\mathbf{x}, \mathbf{u}, \mathbf{x}^{\prime}\right)$
- Learn policy wrt some weights
- Use policy \Rightarrow trajectory τ_{p} with reward $R\left(\tau_{p} \mid \mathbf{w}\right)=\sum_{\tau_{p}} R\left(\mathbf{x}, \mathbf{u}, \mathbf{x}^{\prime} \mid \mathbf{w}\right)$
- Use expert \Rightarrow trajectory τ_{e} with reward $R\left(\tau_{e} \mid \mathbf{w}\right)=\sum_{\tau_{e}} R\left(\mathbf{x}, \mathbf{u}, \mathbf{x}^{\prime} \mid \mathbf{w}\right)$
- Find weights making expert better:

$$
\mathbf{w}^{*}=\arg \max _{w} R\left(\tau_{e} \mid \mathbf{w}\right)-R\left(\tau_{e} \mid \mathbf{w}\right)
$$

- Iterate.

Where is the catch?

- Curse of dimensionality
- Reward tuning (reasons: reward improvement, initialization, imitation learning).
- Exploration vs exploitation (show demo 02_crawler).
- ϵ-greedy exploration
- or exploration extension $Q(\Phi(\mathbf{x}, \mathbf{u}))+\frac{k}{N(\Phi)}$

Where is the catch?

- Curse of dimensionality
- Reward tuning (reasons: reward improvement, initialization, imitation learning).
- Exploration vs exploitation (show demo 02_crawler).
- ϵ-greedy exploration
- or exploration extension $Q(\Phi(\mathbf{x}, \mathbf{u}))+\frac{k}{N(\Phi)}$
- Simulator/model (inaccuracy problem but it can decrease real-world interactions).
- Safe exploration, cooperative tasks, hierarchical reinforcment learning.

Conclusions

- Primal Dual task
- convergence issues
- do we need to know sum of rewards?
- Do not forget features!
-What you can do?

What you can do?

- Pacman (show roomba pacman !!!)
http://inst.eecs.berkeley.edu/~cs188/pacman/html/
navigation.html?page=p3/p3_introduction
- Work with us on:
- Nifti robot - show adaptive traversability demo!
- better IRO tasks - can doc.Ing.Zlo,CSc. be captured via reinforcment learning?
- Starcraft competition http://webdocs.cs.ualberta.ca/~cdavid/starcraftaicomp/
- TORCS - Racing and demolishon derby simulator competition. http://en.wikipedia.org/wiki/TORCS

