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Motivation examples

� Learning to control a dynamic process from real world interactions.
� Human teacher is not needed - rewards assigned by environment.
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Simplest possible scheme
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What are the states, actions and rewards?

� Crawler - show python demo!

� Bouncing ball - show video!

� Ball in the cup - show video!

� Pacman - show python (01 pacman states)
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What do we search for?

� Optimal policy (strategy, control) which assigns actions ui to states xi.
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What do we search for?

� Optimal policy (strategy, control) which assigns actions ui to states xi.

� Optimal = assuring long-term high rewards
∑∞
i=1 ri
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How can we find the optimal policy?

� Depends on the world.
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How can we find the optimal policy?

� Depends on the world.

� What about this grid-world?
Canonical Example: Grid World 

$  The agent lives in a grid 
$  Walls block the agent’s path 
$  The agent’s actions do not 

always go as planned: 
$  80% of the time, the action North 

takes the agent North  
(if there is no wall there) 

$  10% of the time, North takes the 
agent West; 10% East 

$  If there is a wall in the direction 
the agent would have been taken, 
the agent stays put 

$  Big rewards come at the end 

http://cmp.felk.cvut.cz
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How can we find the optimal policy?
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How can we find the optimal policy?

� Dijkstra yields the optimal policy in some type worlds - usually:

• deterministic,

• tiny,

• static,

• known in advance
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What about more realistic worlds?

� What if transitions are stochastic?
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What about more realistic worlds?

� What if transitions are stochastic?
- expectimax or minmax tree search

� What if the world is dynamically changing (e.g. there is someone else like
doc.Ing.Zlo,CSc.)?
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What about more realistic worlds?

� What if transitions are stochastic?
- expectimax or minmax tree search

� What if the world is dynamically changing (e.g. there is someone else like
doc.Ing.Zlo,CSc.)?
- lift the state-space up to higher dimension

� What if the world is unknown in advance?

� What if the robot-world interactions are not explicitly modelable?

� What if the world is huge (continuous and infinite)?

� Under such conditions, bare state-space search is not technically possible.

� We would like to learn the optimal policy from real-world examples.

http://cmp.felk.cvut.cz
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Can machine learning help?

� Why can’t we learn π : X → U mapping?
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Can machine learning help?

� Why can’t we learn mapping π : X → U (policy)?

� Because we do not know the right state-action pairs to train from.

� Nevertheless, there is a way to learn mapping π directly. PRIMAL TASK.
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Can machine learning help?

� But we know rewards r coresponding to (x, u) touples.

� What about to learn mapping Q : X × U → R and take action
u∗ = π(x) = argmaxuQ(x, u)?
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Can machine learning help?

� But we know rewards r coresponding to (x, u) touples.

� What about to learn mapping Q : X × U → R and take action
u∗ = π(x) = argmaxaQ(x, u)?

� Toooooo greedy !!!
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Can machine learning help?

� But we know rewards r coresponding to (x, u) touples.

� What about to learn mapping Q : X × U → R and take action
u∗ = π(x) = argmaxaQ(x, u)?

� Toooooo greedy !!!

� Nevertheless, also not that bad idea, there is a way to learn mapping Q
assigning

∑
i ri instead of r1. DUAL TASK.

http://cmp.felk.cvut.cz
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Lesson outline

� This lecture is about learning the optimal mapping π : X → U from
real-world interactions.
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Lesson outline

� This lecture is about learning the optimal mapping π : X → U from
real-world interactions.

� Focus is on methods without model !!!

� MDP notation (state, reward, transition probability, etc.).

� Problem formulation in terms of criterion to be optimized.

� Primal task (as far as we can get towards natural gradients).

� Dual task (without proving that it is the dual task)

� Curse of dimensionality (states represented by features).

� Other related problems (imitation learning, exploration)

http://cmp.felk.cvut.cz
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MDP definition

� States: x ∈ X
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MDP definition

� States: x ∈ X

� Actions: u ∈ U
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MDP definition

� States: x ∈ X

� Actions: u ∈ U

� Transition probability: p(x′|x,u) : X × U ×X → [0; 1]
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MDP definition

� States: x ∈ X

� Actions: u ∈ U

� Transition probability: p(x′|x,u) : X × U ×X → [0; 1]

� Reward: r(x,u,x′) : X × U ×X → R
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MDP definition

� States: x ∈ X

� Actions: u ∈ U

� Transition probability: p(x′|x,u) : X × U ×X → [0; 1]

� Reward: r(x,u,x′) : X × U ×X → R

� Policy: π(x) : X → U (at least for now, but better to use probability)

http://cmp.felk.cvut.cz
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MDP definition

� Trajectory is sequence of visited states and performed actions:
τ = (x0,u0, x1,u1, x2, . . . )
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MDP definition

� Trajectory is sequence of visited states and performed actions:
τ = (x0,u0, x1,u1, x2, . . . )

� Sum of rewards with limited horizont:

r(τ) =

H∑
i=0

r(xi,ui,xi+1)
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MDP definition

� Trajectory is sequence of visited states and performed actions:
τ = (x0,u0, x1,u1, x2, . . . )

� Sum of rewards with limited horizont:

r(τ) =

H∑
i=0

r(xi,ui,xi+1)

� Sum of discounted rewards:

r(τ) =

∞∑
i=0

γi · r(xi,ui,xi+1)

http://cmp.felk.cvut.cz
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Problem definition

� We have a robot and we have no idea how to control it.
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Problem definition

� We have a robot and we have no idea how to control it.

� Nevertheless, we know what is good and bad state - we have a definition of
rewards.

� We control it somehow (e.g. with some initial policy) and record the
trajectory τ (or several trajectories).
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Problem definition

� We have a robot and we have no idea how to control it.

� Nevertheless, we know what is good and bad state - we have a definition of
rewards.

� We control it somehow (e.g. with some initial policy) and record the
trajectory τ (or several trajectories).

� Given these trajectories, change the policy to increase mean sum of rewards

J(π) = E{r(τ)}

http://cmp.felk.cvut.cz
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Problem definition

� Denote p(τ |π) probability of trajectory τ occurs when following policy π
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Problem definition

� Denote p(τ |π) probability of trajectory τ occurs when following policy π

� Criterion to me maximized is the mean sum of rewards

J(π) = E{r(τ)} =

∫
τ∈T

p(τ |π)r(τ) dτ
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Problem definition

� Denote p(τ |π) probability of trajectory τ occurs when following policy π

� Criterion to me maximized is the mean sum of rewards

J(π) = E{r(τ)} =

∫
τ∈T

p(τ |π)r(τ) dτ

� We solve the following optimization problem

π∗ = arg max
π

J(π)

http://cmp.felk.cvut.cz
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Problem solution

� As usually, you can:
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• either solve primal task e.g. by following gradient ∇J to maximize
J(π) directly.

- primal is often solved in the optimal control community (e.g. LQR),
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Problem solution

� As usually, you can:

• either solve primal task e.g. by following gradient ∇J to maximize
J(π) directly.

- primal is often solved in the optimal control community (e.g. LQR),

• or solve dual task by searching for dual variable Q via lagrange
multipliers and follow policy π∗ = arg maxuQ(x,u)

- dual is often solved by AI community (e.g. state-space search for games)

Dual task provides alternative point-of-view (e.g. shadow prices in LP or
sparse feature selection for SVM)

http://cmp.felk.cvut.cz
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Primal task

� How do we solve the following optimization problem

π∗ = arg max
π

J(π)
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Primal task

� How do we solve the following optimization problem

π∗ = arg max
π

J(π)

� Let us choose policy π(θ) = θ>x parameterized by coeffitients θ.
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Primal task

� How do we solve the following optimization problem

π∗ = arg max
π

J(π)

� Let us choose policy π(θ) = θ>x parameterized by coeffitients θ.

� then optimization problem reduces to

θ∗ = arg max
θ
J(θ)

� How can we compute J(θ) = E{r(τ)} fro a given θ?

http://cmp.felk.cvut.cz
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Primal task - approximating criterion.

� Use π(θ) to get several trajectories τi.
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Primal task - approximating criterion.

� Use π(θ) to get several trajectories τi.

� Approximate criterion value in θ as average reward

J(θ) = E{r(τ)} ≈ 1

N

N∑
i=1

r(τi)
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Primal task - approximating criterion.

� Use π(θ) to get several trajectories τi.

� Approximate criterion value in θ as average reward

J(θ) = E{r(τ)} ≈ 1

N

N∑
i=1

r(τi)

� We can approximate criterion value, what about gradient?

http://cmp.felk.cvut.cz
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Primal task - approximating gradient

� Can we obtain the gradient by computing also J(θ + ∆θ)?
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dimensional θ).
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Primal task - approximating gradient

� Can we obtain the gradient by computing also J(θ + ∆θ)?

� Of course, but doing it from one sample is quite unstable (especially for high
dimensional θ).

� Perform several small random perturbations ∆θi and compute J(θ + ∆θi).

� Relation to gradient ∇J(θ) is given by the first order Taylor polynom

J(θ + ∆θi) = J(θ) +∇J(θ)>∆θi

∆θ>i ∇J(θ) = J(θ)− J(θ + ∆θi)∆θ>1
...

∆θ>n


︸ ︷︷ ︸
matrix A

∇J(θ) =

J(θ)− J(θ + ∆θ1))
...

J(θ)− J(θ + ∆θn))


︸ ︷︷ ︸

vector b

http://cmp.felk.cvut.cz
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Primal task - solution

� Gradient is solution of overdetermined set of linear equations:

∇J(θ) =

∆θ>1
...

∆θ>n


+

·

J(θ)− J(θ + ∆θ1))
...

J(θ)− J(θ + ∆θn))
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Primal task - solution

� Gradient is solution of overdetermined set of linear equations:

∇J(θ) =

∆θ>1
...

∆θ>n


+

·

J(θ)− J(θ + ∆θ1))
...

J(θ)− J(θ + ∆θn))



� Algorithm is simple:

• Randomly initilize θ

• Use π(θ) to get trajectories.

• Compute ∇J(θ) using pseudo-inverse.

• Update θ ← θ + α ∇J(θ)
‖∇J(θ)‖
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Primal task - solution

� Gradient is solution of overdetermined set of linear equations:

∇J(θ) =

∆θ>1
...

∆θ>n


+

·

J(θ)− J(θ + ∆θ1))
...

J(θ)− J(θ + ∆θn))



� Algorithm is simple:

• Randomly initilize θ

• Use π(θ) to get trajectories.

• Compute ∇J(θ) using pseudo-inverse.

• Update θ ← θ + α ∇J(θ)
‖∇J(θ)‖

� Show example in MATLAB - go toy finite difference.m.

http://cmp.felk.cvut.cz
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Primal task - pros and cons

� No model identification needed.
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Primal task - pros and cons

� No model identification needed.

� Converges to local minima - good initialization needed.
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Primal task - pros and cons

� No model identification needed.

� Converges to local minima - good initialization needed.

� There are better gradient approximations - natural gradient methods
[Kober-IJRR-2013].

http://cmp.felk.cvut.cz
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Dual task

� State-action function Q(x,u) : X × U → R

� Mean sum of discounted rewards when choosing action u from state x.
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Dual task

� State-action function Q(x,u) : X × U → R

� Mean sum of discounted rewards when choosing action u from state x.

� Let us look at the grid world with stochastic transitions!
Canonical Example: Grid World 

$  The agent lives in a grid 
$  Walls block the agent’s path 
$  The agent’s actions do not 

always go as planned: 
$  80% of the time, the action North 

takes the agent North  
(if there is no wall there) 

$  10% of the time, North takes the 
agent West; 10% East 

$  If there is a wall in the direction 
the agent would have been taken, 
the agent stays put 

$  Big rewards come at the end 

http://cmp.felk.cvut.cz
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Dual task

� State-action function Q(x,u) : X × U → R

� Mean sum of discounted rewards when choosing action u from state x.

� How can we learn from recorded trajectories and corresponding rewards?
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Dual task - naive learning example

� State-action function Q(x,u) : X × U → R

� Mean sum of discounted rewards when choosing action u from state x.

� How can we learn from recorded trajectories and corresponding rewards?

� τ1 : (a,R,b,R, c,R,d), r(τ1) = 1
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Dual task - naive learning example

� State-action function Q(x,u) : X × U → R

� Mean sum of discounted rewards when choosing action u from state x.

� How can we learn from recorded trajectories and corresponding rewards?

� τ1 : (a,R,b,R, c,R,d), r(τ1) = 1

� τ2 : (a,R,b,D, e,R, f,R, g), r(τ2) = −1
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Dual task - naive learning example

� State-action function Q(x,u) : X × U → R

� Mean sum of discounted rewards when choosing action u from state x.

� How can we learn from recorded trajectories and corresponding rewards?

� τ1 : (a,R,b,R, c,R,d), r(τ1) = 1

� τ2 : (a,R,b,D, e,R, f,R, g), r(τ2) = −1

Q R - right D - down
a
b
c
e ?
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Dual task - naive learning example

� State-action function Q(x,u) : X × U → R

� Mean sum of discounted rewards when choosing action u from state x.

� How can we learn from recorded trajectories and corresponding rewards?

� τ1 : (a,R,b,R, c,R,d), r(τ1) = 1

� τ2 : (a,R,b,D, e,R, f,R, g), r(τ2) = −1

Q R - right D - down
a
b
c
e -1
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Dual task - naive learning example

� State-action function Q(x,u) : X × U → R

� Mean sum of discounted rewards when choosing action u from state x.

� How can we learn from recorded trajectories and corresponding rewards?

� τ1 : (a,R,b,R, c,R,d), r(τ1) = 1

� τ2 : (a,R,b,D, e,R, f,R, g), r(τ2) = −1

� What is wrong? Why I learned nothing about policy for a?

Q R - right D - down
a 0
b 1 -1
c 1
e -1
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Dual task - naive learning example

� State-action function Q(x,u) : X × U → R

� Mean sum of discounted rewards when choosing action u from state x.

� How can we learn from recorded trajectories and corresponding rewards?

� τ1 : (a,R,b,R, c,R,d), r(τ1) = 1

� τ2 : (a,R,b,D, e,R, f,R, g), r(τ2) = −1

� I know that I can behave better from b, can I use it?

Q R - right D - down
a 0
b 1 -1
c 1
e -1
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Dual task - naive learning example

� State-action function Q(x,u) : X × U → R
� Mean sum of discounted rewards when choosing action u from state x.
� How can we learn from recorded trajectories and corresponding rewards?
� τ1 : (a,R,b,R, c,R,d), r(τ1) = 1

� τ2 : (a,R,b,D, e,R, f,R, g), r(τ2) = −1

� I know that I can behave better from b, can I use it?
� Recursively: Q(a,R) = average(reward for a + best rewards from b)

Q R - right D - down
a 1
b 1 -1
c 1
e -1

http://cmp.felk.cvut.cz
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recursive definition of Q

� Define Q(x,u) recursively:

• If transition deterministic

p(x′|u,x)=1 ⇒ x→ x′

Q(x,u) = r(x,u,x′) + γmax
u′

Q(x′,u′)
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recursive definition of Q

� Define Q(x,u) recursively:

• If transition deterministic

p(x′|u,x)=1 ⇒ x→ x′

Q(x,u) = r(x,u,x′) + γmax
u′

Q(x′,u′)

• If transition stochastic

p(x′|u,x)<1 ⇒ x→?

Q(x,u) =
∑
x′

p(x′|u,x)
[
r(x,u,x′) + γmax

u′
Q(x′,u′)

]
(Bellman equation)

http://cmp.felk.cvut.cz
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Q-learning

� Initialize Q(x,u) = 0 ∀x,u
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Q-learning

� Initialize Q(x,u) = 0 ∀x,u

� Drive the robot and record trajectories like that:

(x0,u0,x
′
0, r0), (x1 = x′0,u1,x

′
1, r1), . . .
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Q-learning

� Initialize Q(x,u) = 0 ∀x,u

� Drive the robot and record trajectories like that:

(x0,u0,x
′
0, r0), (x1 = x′0,u1,x

′
1, r1), . . .

� For x ∈ X, u ∈ U

Q(x,u) =
1

n

∑
i∈{xi=x,ui=u}

ri + γmax
u′

Q(x′i,u
′)

� End

http://cmp.felk.cvut.cz
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Q-learning

� Initialize Q(x,u) = 0 ∀x,u

� Drive the robot and record sequences:

(x0,u0,x
′
0, r0), (x1 = x′0,u1,x

′
1, r1), . . .

—————————— Iterate until convergence ——————————

� For x ∈ X, u ∈ U

Q(x,u) =
1

n

∑
i∈{xi=x,ui=u}

ri + γmax
u′

Q(x′i,u
′)

� End

——————(fixed point algorithm for system of lin. eq.)——————–
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Q-learning

� Initialize Q(x,u) = 0 ∀x,u

————————– Iterate until good policy found ————————–

� Drive the robot and record sequences:

(x0,u0,x
′
0, r0), (x1 = x′0,u1,x

′
1, r1), . . .

� For x ∈ X, u ∈ U

Q(x,u) =
1

n

∑
i∈{xi=x,ui=u}

ri + γmax
u′

Q(x′i,u
′)

� End

—————————————————————————————–
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State-value function example I - grid-world

� Show python demo 00 grid world and 01 grid world noise

Canonical Example: Grid World 

$  The agent lives in a grid 
$  Walls block the agent’s path 
$  The agent’s actions do not 

always go as planned: 
$  80% of the time, the action North 

takes the agent North  
(if there is no wall there) 

$  10% of the time, North takes the 
agent West; 10% East 

$  If there is a wall in the direction 
the agent would have been taken, 
the agent stays put 

$  Big rewards come at the end 
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State-value function example I - grid-world
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State-value function example II - crawler

� Show python demo - 02 crawler

� What are rewards?

� What is U,X and Q dimensionality?

http://cmp.felk.cvut.cz
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Where is the catch?
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Where is the catch?

� Curse of dimensionality - considered state space for pacman.

� Show python demo 03 pacman small states and
04 pacman small states long training
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Where is the catch?

� Curse of dimensionality - are these states the same? Do we want it?
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Where is the catch?

� Curse of dimensionality - we need to replace high-dimensional states x and
control u by low-dimensional features Φ(x,u).

� Show python demo 05 pacman small features and
06 pacman large features
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Where is the catch?

� Curse of dimensionality - Q-learning

———————– Iterate until convergence ———————–

• For x ∈ X, u ∈ U

Q(x,u) =
1

n

∑
i∈{xi=x,ui=u}

ri + γmax
u′

Q(x′i,u
′)

• End

——————————————————————————-
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Where is the catch?

� Curse of dimensionality - approximate Q-learning

———————– Iterate until convergence ———————–

• For all xi, ui
yi = ri + γmax

u′
[θ>Φ(x′i,u

′))]

• End

• Fit Q-function to approximate mapping between Φ(xi,ui) and yi

θ ← arg min
θ
‖θ>Φ(xi,ui)− yi‖

——————————————————————————-
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Where is the catch?

� Curse of dimensionality - approximate Q-learning

———————– Iterate until convergence ———————–

• For all xi, ui
yi = ri + γmax

u′
[θ>Φ(x′i,u

′))]

• End

• Fit Q-function to approximate mapping between Φ(xi,ui) and yi

θ ← arg min
θ
‖θ>Φ(xi,ui)− yi‖

——————————————————————————-

� Inaccurate Q function - do we really need it?
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Where is the catch?

� Curse of dimensionality

� Reward tuning (reasons: reward improvement, initialization, imitation
learning).

http://cmp.felk.cvut.cz


52/55
Where is the catch?

� Curse of dimensionality

� Reward tuning (reasons: reward improvement, initialization, imitation
learning).

• Define reward as R(x,u,x′|w) = w> · Φ(x,u,x′)

http://cmp.felk.cvut.cz


52/55
Where is the catch?

� Curse of dimensionality

� Reward tuning (reasons: reward improvement, initialization, imitation
learning).

• Define reward as R(x,u,x′|w) = w> · Φ(x,u,x′)

• Learn policy wrt some weights

http://cmp.felk.cvut.cz


52/55
Where is the catch?

� Curse of dimensionality

� Reward tuning (reasons: reward improvement, initialization, imitation
learning).

• Define reward as R(x,u,x′|w) = w> · Φ(x,u,x′)

• Learn policy wrt some weights
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Where is the catch?

� Curse of dimensionality

� Reward tuning (reasons: reward improvement, initialization, imitation
learning).

• Define reward as R(x,u,x′|w) = w> · Φ(x,u,x′)

• Learn policy wrt some weights

• Use policy ⇒ trajectory τp with reward R(τp|w) =
∑
τp
R(x,u,x′|w)

• Use expert⇒ trajectory τe with reward R(τe|w) =
∑
τe
R(x,u,x′|w)

• Find weights making expert better:

w∗ = arg max
w

R(τe|w)−R(τe|w)
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Where is the catch?

� Curse of dimensionality

� Reward tuning (reasons: reward improvement, initialization, imitation
learning).

• Define reward as R(x,u,x′|w) = w> · Φ(x,u,x′)

• Learn policy wrt some weights

• Use policy ⇒ trajectory τp with reward R(τp|w) =
∑
τp
R(x,u,x′|w)

• Use expert⇒ trajectory τe with reward R(τe|w) =
∑
τe
R(x,u,x′|w)

• Find weights making expert better:

w∗ = arg max
w

R(τe|w)−R(τe|w)

• Iterate.
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Where is the catch?

� Curse of dimensionality

� Reward tuning (reasons: reward improvement, initialization, imitation
learning).

� Exploration vs exploitation (show demo 02 crawler).

• ε-greedy exploration

• or exploration extension Q(Φ(x,u)) + k
N(Φ)
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Where is the catch?

� Curse of dimensionality

� Reward tuning (reasons: reward improvement, initialization, imitation
learning).

� Exploration vs exploitation (show demo 02 crawler).

• ε-greedy exploration

• or exploration extension Q(Φ(x,u)) + k
N(Φ)

� Simulator/model (inaccuracy problem but it can decrease real-world
interactions).

� Safe exploration, cooperative tasks, hierarchical reinforcment learning.
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Conclusions

� Primal Dual task

• convergence issues

• do we need to know sum of rewards?

� Do not forget features!

� What you can do?
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What you can do?

� Pacman (show roomba pacman !!!)
http://inst.eecs.berkeley.edu/~cs188/pacman/html/
navigation.html?page=p3/p3_introduction

� Work with us on:

• Nifti robot - show adaptive traversability demo!

• better IRO tasks - can doc.Ing.Zlo,CSc. be captured via reinforcment
learning?

� Starcraft competition
http://webdocs.cs.ualberta.ca/~cdavid/starcraftaicomp/

� TORCS - Racing and demolishon derby simulator competition.
http://en.wikipedia.org/wiki/TORCS

http://cmp.felk.cvut.cz
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