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� Bayes theorem

� Maximum likelihood - MLE

� Maximum aposteriori - MAP
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Probability

is a function P , which assigns number from the interval 〈0, 1〉 to events and
fulfils the following two conditions:

� P (true) = 1,

� P

( ⋃
n∈N

An

)
=
∑
n∈N

P (An), if the events An, n ∈ N, are mutually

exclusive.

From these conditions, it follows:

P (false) = 0, P (¬A) = 1− P (A), if A⇒ B then P (A) ≤ P (B).
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Joint Probability

� The joint probability P (A,B), also sometimes denoted P (A ∩B), is the
probability that events A, B co-occur.

� The joint probability is symmetric: P (A,B) = P (B,A).

� Marginalization (the sum rule): P (A) =
∑
B

P (A,B) allows computing the
probability of a single event A by summing the joint probabilities over all
possible events B. The probability P (A) is called the marginal probability.
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Marginalization
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Conditional Probability

� Let us have the probability representation of a system given by the joint
probability P (A,B).

� If an additional information is available that the event B occurred then our
knowledge about the probability of the event A changes to

P (A|B) =
P (A,B)

P (B)
,

which is the conditional probability of the event A under the condition B.

� The conditional probability is defined only for P (B) 6= 0.

� Product rule: P (A,B) = P (A|B)P (B) = P (B|A)P (A).
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Conditional Probability

� P (true|B) = 1, P (false|B) = 0.

� If A =
⋃
n∈N

An and events A1, A2, . . . are mutually exclusive then

P (A|B) =
∑
n∈N

P (An|B).

� Events A,B are independent ⇔ P (A|B) = P (A).

� If B ⇒ A then P (A|B) = 1.

� If B ⇒ ¬A then P (A|B) = 0.
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Conditional Probability

Example

Consider rolling a single dice. What is the probability that the number higher
than three comes up (event A) under the conditions that the odd number came
up (event B)?

Ω = {1, 2, 3, 4, 5, 6} , A = {4, 5, 6} , B = {1, 3, 5}

P (A) = P (B) =
1

2

P (A,B) = P ({5}) =
1

6

P (A|B) =
P (A,B)

P (B)
=

1
6
1
2

=
1

3
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Independent Events

Events A,B are independent ⇔ P (A,B) = P (A) P (B),
since independence means: P (A|B) = P (A), P (B|A) = P (B)

Example

Rolling the dice once, events are: A > 3, event B is odd. Are A,B independent?

Ω = {1, 2, 3, 4, 5, 6} , A = {4, 5, 6} , B = {1, 3, 5}

P (A) = P (B) =
1

2

P (A,B) = P ({5}) =
1

6

P (A) P (B) =
1

2
· 1
2

=
1

4

P (A,B) 6= P (A) P (B)⇔ The events are dependent.
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Conditional Independence

Random events A,B are conditionally independent under the condition C, if

P (A,B|C) = P (A|C)P (B|C) .

Similarly, a conditional independence of more events, random variables, etc. is
defined.
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Definition of Bayes Theorem

P(B|A) =
P(A|B) P (B)

P (A)
,

where P(B|A) is the posterior probability and P(A|B) is the likelihood.

� This is a fundamental rule for machine learning (pattern recognition) as it
allows to compute the probability of an output B given measurements A.

� The prior probability is P (B) without any evidence from measurements.

� The likelihood P(A|B) evaluates the measurements given an output B.
Seeking the output that maximizes the likelihood (the most likely output) is
known as the maximum likelihood estimation (ML).

� The posterior probability P(B|A) is the probability of B after taking the
measurement A into account. Its maximization leads to the maximum
a-posteriori estimation (MAP).
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Probability Rules

� The Product rule: P (A,B) = P (A|B)P (B) = P (B|A)P (A)

� The Sum rule: P (B) =
∑
A

P (A,B) =
∑
A

P (B|A)P (A)

� Random events A,B are independent ⇔ P (A,B) = P (A) P (B),
� and the independence means: P (A|B) = P (A), P (B|A) = P (B)

� A,B are conditionally independent ⇔ P (A,B|C) = P (A|C)P (B|C)

� The Bayes theorem:

P (A|B) = P (A,B)
P (B) = P (B|A)P (A)

P (B) = P (B|A)P (A)∑
A
P (B|A)P (A)

� General inference:

P (V |S) =
P (V, S)

P (S)
=

∑
A,B,C

P (S,A,B,C, V )∑
V,A,B,C

P (S,A,B,C, V )
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Bayes Theorem

In Urban Search & Rescue (USAR), the ability of robots to reliably detect
presence of a victim is crucial. How do we implement and evaluate this ability?

Example - Victim detection (1)

Assume we have a sensor S (e.g. a camera) and a computer vision algorithm that
detects victims. We evaluated the sensor on ground truth data statistically:

� There is 20% chance of false negative detection (missed target).

� There is 10% chance of false positive detection.

� A priori probability of the victim presence V is 60%.

What is the probability that there is a victim if the sensor says no victim is
detected?
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Bayes Theorem

We express the sensor S measurements as a conditional probability of V :

P (S|V ) S = True S = False

V = True 0.8 0.2
V = False 0.1 0.9

Express the a priori knowledge as the probability:
P (V = True) = 0.6 and P (V = False) = 1− 0.6 = 0.4

Express what-we-want: P (V |S) =? given S = False (not detecting a victim)
and V = True (but there is one).
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Bayes Theorem

� Use the tools to express what-we-want in the terms of what-we-know:

P (V |S) =
P (V, S)

P (S)
=
P (S|V )P (V )∑
V

P (S, V )
=

P (S|V )P (V )∑
V

P (S|V )P (V )

� Substitute S = False and V = True and sum over V to obtain:

P (V |S) =
P (S = False|V = True)P (V = True)∑
V

P (S = False|V = True)P (V = True)
=

= 0.2·0.6
0.2·0.6+0.9·0.4 = 0.25

Conclusion: if our sensors says there is no victim, we have 25% chance of
missing out someone! We need an additional sensor . . .
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Bayes Theorem

In Urban Search & Rescue (USAR), the reliability is achieved through the sensor
fusion: use the statistics to evaluate sensors and the probability theory to perform
fusion.

Example - Victim detection (2)

Assume we have a sensor S as in the previous case and we add one more sensor
T with the following properties:

� There is 5% chance of false negative detection (missed target).

� There is 5% chance of false positive detection.

� A priori probability of the victim presence is the same, V is 60%.

What is the probability that there is a victim if both sensors confirm its presence?
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Bayes Theorem

We express the sensor T measurements as a conditional probability of V :

P (T |V ) T = True T = False

V = True 0.95 0.05
V = False 0.05 0.95

The a priori probability is the same:
P (V = True) = 0.6 and P (V = False) = 1− 0.6 = 0.4

Express what-we-want: P (V |S, T ) =? given S = True, T = True (both
sensors see a victim) and V = True (and there is one). Furthermore, we know
that both sensors provide independent measurements with respect to each other.
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Bayes Theorem

� Naive approach using joint probability: P (S, T, V ) = P (S, T |V )P (V )

� Conditional independence: P (S, T |V )P (V ) = P (S|V )P (T |V )P (V )

� Applying the tools:

P (V |S, T ) =
P (V, S, T )

P (S, T )
=
P (S|V )P (T |V )P (V )∑

V

P (V, S, T )
=

=
P (S|V )P (T |V )P (V )∑
V

P (S|V )P (T |V )P (V )

� Substitute: S = True, T = True, V = True and sum over V to obtain:

= 0.8·0.95·0.6
0.8·0.95·0.6+0.1·0.05·0.4 = 0.9956

Conclusion: if both sensors confirm there is a victim, we have 99.56% chance
that there is a victim.
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Random Variable

� The random variable is an arbitrary function X : Ω→ R, where Ω is a
sample space.

� There are two basic types of random variables:

• Discrete – a countable number of values.
Examples: rolling a dice
The discrete probability is given as: P (X = ai) = p(ai), i = 1, . . .,∑
i p(ai) = 1.

• Continuous – values from some interval, i.e. infinite number of values.
Example: the height persons.
The continuous probability is given by the distribution function or the
probability density function.
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Distribution Function of a Random Variable

Distribution function of the random variable X is a function F : X → [0, 1]

defined as F (x) = P (X ≤ x), where P is a probability.

Properties:

1. F (x) is a non-decreasing function, i.e. ∀ pair x1 < x2 it holds
F (x1) ≤ F (x2).

2. F (X) is continuous from the right, i.e. it holds lim
h→0+

F (x+ h) = F (x).

3. � It holds for every distribution function lim
x→−∞

F (x) = 0 a
lim
x→∞

F (x) = 1. Written more concisely: F (−∞) = 0, F (∞) = 1.

� If the possible values of F (x) are from the interval (a, b) then
F (a) = 0, F (b) = 1.
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Continuous Distribution Function

� The distribution function F is called (absolutely) continuous if a
nonnegative function f (probability density) exists and it holds

F (x) =

∫ x

−∞
f(u) du for every x ∈ X.

� The probability density fulfills∫ ∞
−∞

f(x) dx = 1 .

� If the derivative of F (x) exists in the point x then F ′(x) = f(x).

� For a, b ∈ R, a < b, it holds

P (a < X < b) =

∫ b

a

f(x) dx = F (b)− F (a) .
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Normal Distribution

F (x) f(x) = 1√
2πσ2

e
−−x

2

2σ2

Distribution function Probability density
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Expectation

� Expectation = the average of a variable under the probability distribution.

� Continuous definition: E(x) =
∞∫
−∞

x f(x) dx.

� Discrete definition: E(x) =
∑
x
x P (x).

� The expectation can be estimated from a N number of samples by
E(x) ≈ 1

N

∑
i

xi. The approximation becomes exact for N →∞.

� Expectation over multiple variables: Ex(x, y) =
∞∫
−∞

∞∫
−∞

xy f(x, y) dxdy

� Conditional expectation: E(x|y) =
∞∫
−∞

x f(x|y) dx.
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Statistical Moments

Continuous distribution Discrete distribution

Expectation (mean)

E(x) =
∞∫
−∞

x f(x) dx E(x) =
∑
x
x P (x)

k-th (general) moment

E(xk) =
∞∫
−∞

xk f(x) dx E(x) =
∑
x
xk P (x)

k-th central moment

E(xk) =
∞∫
−∞

(x− E(x))k f(x) dx E(x) =
∑
x

(x− E(x))k P (x)

Dispersion (variance)

D(x) =
∞∫
−∞

(x− E(x))2 f(x) dx E(x) =
∑
x

(x− E(x))2 P (x)
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Covariance

Mutual covariance σxy of two random variables X,Y is

σxy = E ((X − µx)(Y − µy))

Covariance matrix1 Σ of n variables X1, . . . , Xn is

Σ =

 σ2
1 . . . σ2

1n
. . .

σ2
n1

. . . σ2
n



1Note: The covariance matrix is symmetric (i.e. Σ = Σ>) and positive-semidefinite (as the covariance
matrix is real valued, the positive-semidefinite means that x>Mx ≥ 0 for all x ∈ R).
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Multivariate Normal distribution

Source: Andrew Ng, Stanford University, Machine Learning course 2012, Lecture 15
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Multivariate Normal distribution

Source: Andrew Ng, Stanford University, Machine Learning course 2012, Lecture 15
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Multivariate Normal distribution

Source: Andrew Ng, Stanford University, Machine Learning course 2012, Lecture 15
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Multivariate Normal distribution

Source: Andrew Ng, Stanford University, Machine Learning course 2012, Lecture 15
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Multivariate Normal distribution

Source: Andrew Ng, Stanford University, Machine Learning course 2012, Lecture 15
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Multivariate Normal distribution

Source: Andrew Ng, Stanford University, Machine Learning course 2012, Lecture 15
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MLE - Maximum Likelihood Estimation

� The likelihood L(x) is the conditional probability p(z|x) of the
measurements2 z given a particular true value of x.

� If the distribution is Gaussian and observations z are measured, the
likelihood L(x) is a function only of x.

� How do we obtain MLE? Knowing the distribution of L(x) and
measurements z, then x is varied until the maximum of the distribution is
found:

x̂MLE = argmax
x

p(z|x)

2Note: The likelihood is a function of x but it is not a probability distribution over x, it would be incorrect
to refer to it as the likelihood of the data.
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MLE - Maximum Likelihood Estimation

Example - Sonar MLE (1)

Suppose we have two independent sonar measurements z1, z2 of a position x.
The sensors are modeled both in the same way as p(zi|x) = N (x, σ2).

� Since the two sensors are independent the likelihood is:

L(x) = p(z1, z2|x) = p(z1|x)p(z2|x)

� and since the sensors are Gaussian3:

L(x) ∼ e−
(z1−x)2

2σ2 × e−
(z2−x)2

2σ2 = e
−(z1−x)2+(z2−x)2

2σ2

3Note: we ignore the irrelevant normalization constant.
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MLE - Maximum Likelihood Estimation

Example - Sonar MLE (2)

� We can express the negative log likelihood as follows:

− lnL(x) =
(z1 − x)2 + (z2 − x)2

2σ2
=

2x2 − 2x(z1 + z2) + z2
1 + z2

2

2σ2

� We redefine the MLE task to: x̂MLE = argmin
x

− lnL(x)

� We minimize by differentiating w.r.t. x and setting equal to 0,

� which leads to: x̂MLE = z1+z2
2 = x

http://cmp.felk.cvut.cz


34/43
MLE - Maximum Likelihood Estimation

Example - Sonar MLE (3)
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MLE - Maximum Likelihood Estimation

Example - Sonar MLE (4)

Suppose we have two independent sonar measurements z1, z2 of a position x, but
each sensor has a different model: p(z1|x) = N (x, σ2

1) and p(z2|x) = N (x, σ2
2).

� Again, the two sensors are independent and the likelihood is:

L(x) = p(z1, z2|x) = p(z1|x)p(z2|x)→ L(x) ∼ e
−(z1−x)2

2σ2
1 × e

−(z2−x)2

2σ2
2

� We express the negative log likelihood:

− lnL(x) = 0.5(σ−2
1 (z1 − x)2 + σ−2

2 (z2 − x)2) + const

� and we minimize it by differentiating w.r.t. to x and setting to 0:

x̂MLE =
σ−2

1 z1+σ−2
2 z2

σ−2
1 +σ−2

2

, σ̂−2
MLE = σ−2

1 + σ−2
2
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MLE - Maximum Likelihood Estimation

Example - Sonar MLE (5)

Now, assume we tested the sensors and we identified their variances of the
measurements, such that: p(z1|x) ∼ N (x, 102) and p(z2|x) ∼ N (x, 202).
What will be the MLE for these sensor readings z1 = 130 and z2 = 170?

x̂MLE = 130/102+170/202

1/102+1/202 = 138

σ̂MLE = 1√
1/102+1/202

= 8.94

Conclusion: the ML estimate is closer to the more confident measurement.
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MAP - Maximum A-Posteriori Estimation

� In many cases, we already have some prior (expected) knowledge about the
random variable x, i.e. the parameters of its probability distribution p(x).

� With the Bayes rule, we go from prior to a-posterior knowledge about x,
when given the observations z:

p(x|z) = p(z|x)p(x)
p(z) = likelihood×prior

normalizing constant ∼ C × p(z|x)p(x)

� Given an observation z, a likelihood function p(z|x) and prior distribution
p(x) on x, the maximum a posteriori estimator MAP finds the value of x
which maximizes the posterior distribution p(x|z):

x̂MAP = argmax
x

p(z|x)p(x)

http://cmp.felk.cvut.cz
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MAP - Maximum A-Posteriori Estimation

Example - Application of MAP to a random variable of θ
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MAP - Maximum A-Posteriori Estimation

Example - Sonar MAP (1)

Suppose we again have two independent sonar measurements z1, z2 of a
position x, and each sensor modeled as: p(z1|x) = N (x, σ2

1) and
p(z2|x) = N (x, σ2

2).
� The joint likelihood is defined as:

L(x) = p(z1, z2|x) = p(z1|x)p(z2|x).

� In addition, we also have a prior (expected) information about x:

p(x) ∼ N (xprior, σ
2
prior).

� The posterior probability density is given by a Gaussian distribution:

p(x|z1, z2) ∼ p(z1, z2|x)p(x) ∼ N (xpos, σ
2
post)

http://cmp.felk.cvut.cz
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MAP - Maximum A-Posteriori Estimation

Example - Sonar MAP (2)

� Using the same approach as for deriving the MLE, the mean of the posteriori
distribution of MAP is obtained as:

xpost =
σ−2

1 z1 + σ−2
2 z2 + σ−2

priorxprior

σ−2
1 + σ−2

2 + σ−2
prior

= x̂MAP

� and the variance is:

σ−2
post = σ−2

1 + σ−2
2 + σ−2

prior = σ̂−2
MAP
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MAP - Maximum A-Posteriori Estimation

Example - Sonar MAP (3)

We assume the same sensors as in the previous example p(z1|x) ∼ N (x, 102)

and p(z2|x) ∼ N (x, 202), but now consider a prior (expected) knowledge4
p(x) ∼ N (xprior = 150, σ2

prior = 302). What will be the MAP for these sensor
readings z1 = 130 and z2 = 170?

x̂MAP = 130/102+170/202+150/302

1/102+1/202+1/302 = 139.04

σ̂MAP = 1√
1/102+1/202+1/302

= 8.57

4Note: The prior knowledge is obtained for example statistically or from a datasheet.

http://cmp.felk.cvut.cz


42/43
MAP - Maximum A-Posteriori Estimation

Example - Sonar MAP (5)
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What is the relationship between MLE and MAP?

The relationship between MLE and MAP is the update rule:

x̂MAP =
σ−2
priorxprior + σ−2

lik x̂MLE

σ−2
prior + σ−2

lik

= xprior +
σ2
prior

σ2
prior+σ

2
lik

(x̂MLE − xprior)

� We can see that the prior acts as an additional sensor.

� If x̂MLE = xprior then x̂MAP is unchanged by prior but variance decreases.

� If σlik >> σprior then x̂MAP ≈ xprior (noisy sensor!).

� If σprior >> σlik then x̂MAP ≈ x̂MLE (weak prior knowledge!).
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