State Estimation for Mobile Robotics

Michal Reinštein

Czech Technical University in Prague
Faculty of Electrical Engineering, Department of Cybernetics Center for Machine Perception http://cmp.felk.cvut.cz/~reinsmic, reinstein.michal@fel.cvut.cz

Acknowledgement: P. Newman, SLAM Summer School 2006, Oxford

Outline of the lecture:

- Probability rules \& Bayes Theorem
- MLE, MAP, MMSE, RBE, LSQ
- Linear Kalman Filter (LKF)
- Example: Linear navigation problem
- Extended Kalman Filter (EKF)
- Introduction to EKF-SLAM

References

1 Paul Newman, EKF Based Navigation and SLAM, SLAM Summer School 2006, http://www.robots.ox.ac.uk/ SSS06/Website/index.htm, University of Oxford

2 Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic robotics. MIT press, 2005.

3 Grewal, Mohinder S., and Angus P. Andrews. Kalman filtering: theory and practice using MATLAB. John Wiley \& Sons, 2011.

What is Estimation?

"Estimation is the process by which we infer the value of a quantity of interest, x, by processing data that is in some way dependent on x."

- Measured data corrupted by noise—uncertainty in input transformed into uncertainty in inference (e.g. Bayes rule)
- Quantity of interest not measured directly (e.g. odometry in skid-steer robots)
- Incorporating prior (expected) information (e.g. best guess or past experience)
- Open-loop prediction (e.g. knowing current heading and speed, infer future position)
- Uncertainty due to simplifications of analytical models (e.g. performance reasons-linearization)

Bayes Theorem \& Probability Rules

The Product rule: $P(A, B)=P(A \mid B) P(B)=P(B \mid A) P(A)$
The Sum rule: $P(B)=\sum_{A} P(A, B)=\sum_{A} P(B \mid A) P(A)$

- Random events A, B are independent $\Leftrightarrow P(A, B)=P(A) P(B)$, and the independence means: $P(A \mid B)=P(A), P(B \mid A)=P(B)$
A, B are conditionally independent $\Leftrightarrow P(A, B \mid C)=P(A \mid C) P(B \mid C)$
The Bayes theorem:

$$
P(A \mid B)=\frac{P(A, B)}{P(B)}=\frac{P(B \mid A) P(A)}{P(B)}=\frac{P(B \mid A) P(A)}{\sum_{A} P(B \mid A) P(A)}
$$

Bayes Theorem (1)

In Urban Search \& Rescue (USAR), the ability of robots to reliably detect presence of a victim is crucial. How do we implement and evaluate this ability?

Example - Victim detection (1)

Assume we have a sensor S (e.g. a camera) and a computer vision algorithm that detects victims. We evaluated the sensor on ground truth data statistically:

- There is 20% chance of false negative detection (missed target).
- There is 10% chance of false positive detection.
- A priori probability of the victim presence V is 60%.
- What is the probability that there is a victim if the sensor says no victim is detected?

Bayes Theorem (2)

We express the sensor S measurements as a conditional probability of V :

$P(S \mid V)$	$S=$ True	$S=$ False
$V=$ True	0.8	0.2
$V=$ False	0.1	0.9

Express the a priori knowledge as the probability:
$P(V=$ True $)=0.6$ and $P(V=$ False $)=1-0.6=0.4$

Express what-we-want: $P(V \mid S)=$? given $S=$ False (not detecting a victim) and $V=$ True (but there is one).

Bayes Theorem (3)

- Use the tools to express what-we-want in the terms of what-we-know:

$$
P(V \mid S)=\frac{P(V, S)}{P(S)}=\frac{P(S \mid V) P(V)}{\sum_{V} P(S, V)}=\frac{P(S \mid V) P(V)}{\sum_{V} P(S \mid V) P(V)}
$$

- Substitute $S=$ False and $V=$ True and sum over V to obtain:

$$
\begin{gathered}
P(V \mid S)=\frac{P(S=\text { False } \mid V=\text { True }) P(V=\text { True })}{\sum_{V} P(S=\text { False } \mid V=\text { True }) P(V=\text { True })}= \\
=\frac{0.2 \cdot 0.6}{0.2 \cdot 0.6+0.9 \cdot 0 \cdot 4}=0.25
\end{gathered}
$$

Conclusion: if our sensors says there is no victim, we have $\mathbf{2 5 \%}$ chance of missing out someone! We need an additional sensor ...

Bayes Theorem (4)

In Urban Search \& Rescue (USAR), the reliability is achieved through the sensor fusion: use the statistics to evaluate sensors and the probability theory to perform fusion.

Example - Victim detection (2)

Assume we have a sensor S as in the previous case and we add one more sensor T with the following properties:

- There is 5% chance of false negative detection (missed target).
- There is 5% chance of false positive detection.
- A priori probability of the victim presence is the same, V is 60%.
- What is the probability that there is a victim if both sensors confirm its presence?

Bayes Theorem (5)

We express the sensor T measurements as a conditional probability of V :

$P(T \mid V)$	$T=$ True	$T=$ False
$V=$ True	0.95	0.05
$V=$ False	0.05	0.95

The a priori probability is the same:
$P(V=$ True $)=0.6$ and $P(V=$ False $)=1-0.6=0.4$

Express what-we-want: $P(V \mid S, T)=$? given $S=$ True, $T=$ True (both sensors see a victim) and $V=$ True (and there is one). Furthermore, we know that both sensors provide independent measurements with respect to each other.

Bayes Theorem (6)

- Naive approach using joint probability: $P(S, T, V)=P(S, T \mid V) P(V)$
- Conditional independence: $P(S, T \mid V) P(V)=P(S \mid V) P(T \mid V) P(V)$
- Applying the tools:

$$
\begin{aligned}
P(V \mid S, T) & =\frac{P(V, S, T)}{P(S, T)}=\frac{P(S \mid V) P(T \mid V) P(V)}{\sum_{V} P(V, S, T)}= \\
& =\frac{P(S \mid V) P(T \mid V) P(V)}{\sum_{V} P(S \mid V) P(T \mid V) P(V)}
\end{aligned}
$$

- Substitute: $S=$ True, $T=$ True, $V=$ True and sum over V to obtain:

$$
=\frac{0.8 \cdot 0.95 \cdot 0.6}{0.8 \cdot 0.95 \cdot 0.6+0.1 \cdot 0.05 \cdot 0.4}=0.9956
$$

Conclusion: if both sensors confirm there is a victim, we have $\mathbf{9 9 . 5 6 \%}$ chance that there is a victim.

Mean \& Covariance

Expectation $=$ the average of a variable under the probability distribution.
Continuous definition: $E(x)=\int_{-\infty}^{\infty} x f(x) \mathrm{d} x$ vs. discrete: $E(x)=\sum_{x} x P(x)$
Mutual covariance $\sigma_{x y}$ of two random variables X, Y is

$$
\sigma_{x y}=E\left(\left(X-\mu_{x}\right)\left(Y-\mu_{y}\right)\right)
$$

Covariance matrix ${ }^{1} \Sigma$ of n variables X_{1}, \ldots, X_{n} is

$$
\Sigma=\left[\begin{array}{ccc}
\sigma_{1}^{2} & \ldots & \sigma_{1 n}^{2} \\
& \ldots & \\
\sigma_{n_{1}}^{2} & \ldots & \sigma_{n}^{2}
\end{array}\right]
$$

[^0]
Multivariate Normal distribution (1)

Multivariate Gaussian (Normal) distribution

Parameters μ, Σ

$$
p(x ; \mu, \Sigma)=\frac{1}{(2 \pi)^{\frac{n}{2}}|\Sigma|^{\frac{1}{2}}} \exp \left(-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)\right)
$$

Parameter fitting:
Given training set $\left\{x^{(1)}, x^{(2)}, \ldots, x^{(m)}\right\}$

$$
\mu=\frac{1}{m} \sum_{i=1}^{m} x^{(i)} \quad \Sigma=\frac{1}{m} \sum_{i=1}^{m}\left(x^{(i)}-\mu\right)\left(x^{(i)}-\mu\right)^{T}
$$

Multivariate Normal distribution (2)

Multivariate Gaussian (Normal) examples

$$
\mu=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \Sigma=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

$\mu=\left[\begin{array}{l}0 \\ 0\end{array}\right] \Sigma=\left[\begin{array}{cc}0.6 & 0 \\ 0 & 1\end{array}\right]$
$\mu=\left[\begin{array}{l}0 \\ 0\end{array}\right] \Sigma=\left[\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right]$

Multivariate Normal distribution (3)

Multivariate Gaussian (Normal) examples

$$
\mu=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \Sigma=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

$\mu=\left[\begin{array}{l}0 \\ 0\end{array}\right] \Sigma=\left[\begin{array}{cc}1 & 0 \\ 0 & 0.6\end{array}\right]$
$\mu=\left[\begin{array}{l}0 \\ 0\end{array}\right] \Sigma=\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$

Multivariate Normal distribution (4)

Multivariate Gaussian (Normal) examples

$$
\mu=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \Sigma=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

$\mu=\left[\begin{array}{l}0 \\ 0\end{array}\right] \Sigma=\left[\begin{array}{cc}1 & 0.5 \\ 0.5 & 1\end{array}\right]$
$\mu=\left[\begin{array}{l}0 \\ 0\end{array}\right] \Sigma=\left[\begin{array}{cc}1 & 0.8 \\ 0.8 & 1\end{array}\right]$

Multivariate Normal distribution (5)

Multivariate Gaussian (Normal) examples

$$
\mu=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \Sigma=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

$\mu=\left[\begin{array}{l}0 \\ 0\end{array}\right] \Sigma=\left[\begin{array}{cc}1 & -0.5 \\ -0.5 & 1\end{array}\right]$
$\mu=\left[\begin{array}{l}0 \\ 0\end{array}\right] \Sigma=\left[\begin{array}{cc}1 & -0.8 \\ -0.8 & 1\end{array}\right]$

Multivariate Normal distribution (6)

Multivariate Gaussian (Normal) examples

$$
\mu=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \Sigma=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

$$
\mu=\left[\begin{array}{c}
0 \\
0.5
\end{array}\right] \Sigma=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

$\mu=\left[\begin{array}{c}1.5 \\ -0.5\end{array}\right] \Sigma=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

MLE - Maximum Likelihood Estimation (1)

- The likelihood $\mathcal{L}(\mathbf{x})$ is the conditional probability $p(\mathbf{z} \mid \mathbf{x})$ of the measurements ${ }^{2} \mathrm{z}$ given a particular true value of x .
- If the distribution is Gaussian and observations z are measured, the likelihood $\mathcal{L}(x)$ is a function only of x.
- How do we obtain MLE? Knowing the distribution of $\mathcal{L}(\mathbf{x})$ and measurements z , then x is varied until the maximum of the distribution is found:

$$
\hat{\mathbf{x}}_{M L E}=\operatorname{argmax} p(\mathbf{z} \mid \mathbf{x})
$$

x

[^1]
MLE - Maximum Likelihood Estimation (2)

Example - Sonar MLE (1)

Suppose we have two independent sonar measurements z_{1}, z_{2} of a position x. The sensors are modeled both in the same way as $p\left(z_{i} \mid x\right)=\mathcal{N}\left(x, \sigma^{2}\right)$.

- Since the two sensors are independent the likelihood is:

$$
\mathcal{L}(x)=p\left(z_{1}, z_{2} \mid x\right)=p\left(z_{1} \mid x\right) p\left(z_{2} \mid x\right)
$$

- and since the sensors are Gaussian ${ }^{3}$:

$$
\mathcal{L}(x) \sim e^{-\frac{\left(z_{1}-x\right)^{2}}{2 \sigma^{2}}} \times e^{-\frac{\left(z_{2}-x\right)^{2}}{2 \sigma^{2}}}=e^{-\frac{\left(z_{1}-x\right)^{2}+\left(z_{2}-x\right)^{2}}{2 \sigma^{2}}}
$$

[^2]
MLE - Maximum Likelihood Estimation (3)

Example - Sonar MLE (2)

- We can express the negative log likelihood as follows:

$$
-\ln \mathcal{L}(x)=\frac{\left(z_{1}-x\right)^{2}+\left(z_{2}-x\right)^{2}}{2 \sigma^{2}}=\frac{2 x^{2}-2 x\left(z_{1}+z_{2}\right)+z_{1}^{2}+z_{2}^{2}}{2 \sigma^{2}}
$$

- We redefine the MLE task to: $\hat{\mathbf{x}}_{\text {MLE }}=\operatorname{argmin}-\ln \mathcal{L}(x)$
- We minimize by differentiating w.r.t. x and setting equal to 0 ,
- which leads to:

$$
\hat{\mathbf{x}}_{\mathrm{MLE}}=\frac{z_{1}+z_{2}}{2}=\bar{x}
$$

MLE - Maximum Likelihood Estimation (4)

Example - Sonar MLE (3)

MLE - Maximum Likelihood Estimation (5)

Example - Sonar MLE (4)

Suppose we have two independent sonar measurements z_{1}, z_{2} of a position x, but each sensor has a different model: $p\left(z_{1} \mid x\right)=\mathcal{N}\left(x, \sigma_{1}^{2}\right)$ and $p\left(z_{2} \mid x\right)=\mathcal{N}\left(x, \sigma_{2}^{2}\right)$.

- Again, the two sensors are independent and the likelihood is:

$$
\mathcal{L}(x)=p\left(z_{1}, z_{2} \mid x\right)=p\left(z_{1} \mid x\right) p\left(z_{2} \mid x\right) \rightarrow \mathcal{L}(x) \sim e^{-\frac{\left(z_{1}-x\right)^{2}}{2 \sigma_{1}^{2}}} \times e^{-\frac{\left(z_{2}-x\right)^{2}}{2 \sigma_{2}^{2}}}
$$

- We express the negative log likelihood:

$$
-\ln \mathcal{L}(x)=0.5\left(\sigma_{1}^{-2}\left(z_{1}-x\right)^{2}+\sigma_{2}^{-2}\left(z_{2}-x\right)^{2}\right)+\mathrm{const}
$$

- and we minimize it by differentiating w.r.t. to x and setting to 0 :

$$
\hat{\mathbf{x}}_{\mathrm{MLE}}=\frac{\sigma_{1}^{-2} z_{1}+\sigma_{2}^{-2} z_{2}}{\sigma_{1}^{-2}+\sigma_{2}^{-2}}, \hat{\sigma}_{\mathrm{MLE}}^{-2}=\sigma_{1}^{-2}+\sigma_{2}^{-2}
$$

MLE - Maximum Likelihood Estimation (6)

Example - Sonar MLE (5)

Now, assume we tested the sensors and we identified their variances of the measurements, such that: $p\left(z_{1} \mid x\right) \sim \mathcal{N}\left(x, 10^{2}\right)$ and $p\left(z_{2} \mid x\right) \sim \mathcal{N}\left(x, 20^{2}\right)$. What will be the MLE for these sensor readings $z_{1}=130$ and $z_{2}=170$?

$$
\begin{gathered}
\hat{\mathbf{x}}_{\mathrm{MLE}}=\frac{130 / 10^{2}+170 / 20^{2}}{1 / 10^{2}+1 / 20^{2}}=138 \\
\hat{\sigma}_{\mathrm{MLE}}=\frac{1}{\sqrt{1 / 10^{2}+1 / 20^{2}}}=8.94
\end{gathered}
$$

Conclusion: the ML estimate is closer to the more confident measurement.

MAP - Maximum A-Posteriori Estimation (1)

- In many cases, we already have some prior (expected) knowledge about the random variable \mathbf{x}, i.e. the parameters of its probability distribution $p(\mathbf{x})$.
- With the Bayes rule, we go from prior to a-posterior knowledge about \mathbf{x}, when given the observations z :

$$
p(\mathbf{x} \mid \mathbf{z})=\frac{p(\mathbf{z} \mid \mathbf{x}) p(\mathbf{x})}{p(\mathbf{z})}=\frac{\text { likelihood } \times \text { prior }}{\text { normalizing constant }} \sim C \times p(\mathbf{z} \mid \mathbf{x}) p(\mathbf{x})
$$

- Given an observation \mathbf{z}, a likelihood function $p(\mathbf{z} \mid \mathbf{x})$ and prior distribution $p(\mathbf{x})$ on \mathbf{x}, the maximum a posteriori estimator MAP finds the value of \mathbf{x} which maximizes the posterior distribution $p(\mathbf{x} \mid \mathbf{z})$:

$$
\hat{\mathbf{x}}_{\mathrm{MAP}}=\operatorname{argmax} p(\mathbf{z} \mid \mathbf{x}) p(\mathbf{x})
$$

MAP - Maximum A-Posteriori Estimation (2)

Example - Application of MAP to a random variable of θ

MAP - Maximum A-Posteriori Estimation (3)

Example - Sonar MAP (1)

Suppose we again have two independent sonar measurements z_{1}, z_{2} of a position x, and each sensor modeled as: $p\left(z_{1} \mid x\right)=\mathcal{N}\left(x, \sigma_{1}^{2}\right)$ and $p\left(z_{2} \mid x\right)=\mathcal{N}\left(x, \sigma_{2}^{2}\right)$.

- The joint likelihood is defined as:

$$
\mathcal{L}(x)=p\left(z_{1}, z_{2} \mid x\right)=p\left(z_{1} \mid x\right) p\left(z_{2} \mid x\right) .
$$

- In addition, we also have a prior (expected) information about x :

$$
p(x) \sim \mathcal{N}\left(x_{\text {prior }}, \sigma_{\text {prior }}^{2}\right)
$$

- The posterior probability density is given by a Gaussian distribution:

$$
p\left(x \mid z_{1}, z_{2}\right) \sim p\left(z_{1}, z_{2} \mid x\right) p(x) \sim \mathcal{N}\left(x_{\text {pos }}, \sigma_{\text {post }}^{2}\right)
$$

MAP - Maximum A-Posteriori Estimation (4)

Example - Sonar MAP (2)

- Using the same approach as for deriving the MLE, the mean of the posteriori distribution of MAP is obtained as:

$$
x_{p o s t}=\frac{\sigma_{1}^{-2} z_{1}+\sigma_{2}^{-2} z_{2}+\sigma_{\text {prior }}^{-2} x_{\text {prior }}}{\sigma_{1}^{-2}+\sigma_{2}^{-2}+\sigma_{\text {prior }}^{-2}}=\hat{\mathbf{x}}_{\mathrm{MAP}}
$$

- and the variance is:

$$
\sigma_{\text {post }}^{-2}=\sigma_{1}^{-2}+\sigma_{2}^{-2}+\sigma_{\text {prior }}^{-2}=\hat{\sigma}_{\mathrm{MAP}}^{-2}
$$

MAP - Maximum A-Posteriori Estimation (5)

Example - Sonar MAP (3)

We assume the same sensors as in the previous example $p\left(z_{1} \mid x\right) \sim \mathcal{N}\left(x, 10^{2}\right)$ and $p\left(z_{2} \mid x\right) \sim \mathcal{N}\left(x, 20^{2}\right)$, but now consider a prior (expected) knowledge ${ }^{4}$ $p(x) \sim \mathcal{N}\left(x_{\text {prior }}=150, \sigma_{\text {prior }}^{2}=30^{2}\right)$. What will be the MAP for these sensor readings $z_{1}=130$ and $z_{2}=170$?

$$
\hat{\mathbf{x}}_{\mathrm{MAP}}=\frac{130 / 10^{2}+170 / 20^{2}+150 / 30^{2}}{1 / 10^{2}+1 / 20^{2}+1 / 30^{2}}=139.04
$$

$$
\hat{\sigma}_{\mathrm{MAP}}=\frac{1}{\sqrt{1 / 10^{2}+1 / 20^{2}+1 / 30^{2}}}=8.57
$$

[^3]
MAP - Maximum A-Posteriori Estimation (6)

Example - Sonar MAP (4)

```
1- step =0.1;
x = [50:step:250];
p_z1 = normpdf(x, 130,10);
p_z2 = normpdf(x, 170,20);
p_prior = normpdf(x, 150,30);
p_posterior = p_z1 .* p_z2 .* p_prior / (step*(sum(p_z1 .* p_z2 .* p_prior)));
plot(x,p_z1,'r', x,p_z2,'g', x,p_prior,'k:', x, p_posterior, 'b');
grid on
legend('p(z1|x)', 'p(z2|x)', 'p(x)', 'p(x|z1,z2)')
[val ind] = max(p_posterior);
fprintf('MAP estimate| of x = %2.2f',x(ind))
```


MAP - Maximum A-Posteriori Estimation (7)

Example - Sonar MAP (5)

What is the relationship between MLE and MAP?

The relationship between MLE and MAP is the update rule:

$$
\hat{\mathbf{x}}_{\mathrm{MAP}}=\frac{\sigma_{\text {prior }}^{-2} x_{\text {prior }}+\sigma_{l i k}^{-2} \hat{\mathbf{x}}_{\mathrm{MLE}}}{\sigma_{\text {prior }}^{-2}+\sigma_{l i k}^{-2}}=x_{\text {prior }}+\frac{\sigma_{\text {prior }}^{2}}{\sigma_{\text {prior }}^{2}+\sigma_{l i k}^{2}}\left(\hat{\mathbf{x}}_{\mathrm{MLE}}-x_{\text {prior }}\right)
$$

- We can see that the prior acts as an additional sensor.
- If $\hat{\mathbf{x}}_{\text {MLE }}=x_{\text {prior }}$ then $\hat{\mathbf{x}}_{\text {MAP }}$ is unchanged by prior but variance decreases.
- If $\sigma_{l i k} \gg \sigma_{\text {prior }}$ then $\hat{\mathbf{x}}_{\text {MAP }} \approx x_{\text {prior }}$ (noisy sensor!).
- If $\sigma_{\text {prior }} \gg \sigma_{\text {lik }}$ then $\hat{\mathbf{x}}_{\text {MAP }} \approx \hat{\mathbf{x}}_{\text {MLE }}$ (weak prior knowledge!).

MMSE - Minimum Mean Squared Error

Without proof ${ }^{5}$: We want to find such a $\hat{\mathbf{x}}$, an estimate of x , that given a set of measurements $\mathbf{Z}^{k}=\left\{\mathbf{z}_{1}, \mathbf{z}_{2}, \ldots, \mathbf{z}_{\mathbf{k}}\right\}$ it minimizes the mean squared error between the true value and this estimate. ${ }^{6}$

$$
\hat{\mathbf{x}}_{\mathrm{MMSE}}=\underset{\hat{\mathbf{x}}}{\operatorname{argmin}} \mathcal{E}\left\{(\hat{\mathbf{x}}-\mathbf{x})^{\top}(\hat{\mathbf{x}}-\mathbf{x}) \mid \mathbf{Z}^{\mathrm{k}}\right\}=\mathcal{E}\left\{\mathbf{x} \mid \mathbf{Z}^{\mathrm{k}}\right\}
$$

Why is this important? The MMSE estimate given a set of measurements is the mean of that variable conditioned on the measurements! ${ }^{7}$

[^4]
RBE - Recursive Bayesian Estimation

RBE is extension of MAP to time-stamped sequence of observations.

Without proof ${ }^{8}$: We obtain RBE as the likelihood of current $k^{t h}$ measurement \times prior which is our last best estimate of x at time $k-1$ conditioned on measurement at time $k-1$ (denominator is just a normalizing constant).

$$
p\left(\mathbf{x} \mid \mathbf{Z}^{\mathbf{k}}\right)=\frac{p\left(\mathbf{z}_{k} \mid \mathbf{x}\right) p\left(\mathbf{x} \mid \mathbf{Z}^{k-1}\right)}{p\left(\mathbf{z}_{k} \mid \mathbf{Z}^{k-1)}\right.}=\frac{\text { current likelihood } \times \text { last best estimate }}{\text { normalizing constant }}
$$

[^5]
LSQ - Least Squares Estimation (1)

Given measurements z , we wish to solve for x , assuming linear relationship:

$$
\mathbf{H x}=\mathbf{z}
$$

If \mathbf{H} is a square matrix with $\operatorname{det} \mathbf{H} \neq 0$ then the solution is trivial:

$$
\mathbf{x}=\mathbf{H}^{-1} \mathbf{z}
$$

otherwise (most commonly), we seek such solution $\hat{\mathrm{x}}$ that is closest (in Euclidean distance sense) to the ideal:

$$
\hat{\mathbf{x}}=\underset{x}{\operatorname{argmin}}\|\mathbf{H} \mathbf{x}-\mathbf{z}\|^{2}=\underset{x}{\operatorname{argmin}}\left\{(\mathbf{H} \mathbf{x}-\mathbf{z})^{\top}(\mathbf{H} \mathbf{x}-\mathbf{z})\right\}
$$

LSQ - Least Squares Estimation (2)

Given the following matrix identities:

- $(\mathbf{A B})^{\top}=\mathbf{B}^{\top} \mathbf{A}^{\top}$
- $\|\mathrm{x}\|^{2}=\mathrm{x}^{\top} \mathbf{x}$
- $\nabla_{x} \mathbf{b}^{\top} \mathbf{x}=\mathbf{b}$
$-\nabla_{x} \mathbf{x}^{\top} \mathbf{A} \mathbf{x}=2 \mathbf{A x}$
We can derive the closed form solution ${ }^{9}$:

$$
\begin{gathered}
\|\mathbf{H} \mathbf{x}-\mathbf{z}\|^{2}=\mathbf{x}^{\top} \mathbf{H}^{\top} \mathbf{H} \mathbf{x}-\mathbf{x}^{\top} \mathbf{H}^{\top} \mathbf{z}-\mathbf{z}^{\top} \mathbf{H} \mathbf{x}+\mathbf{z}^{\top} \mathbf{z} \\
\frac{\partial\|\mathbf{H} \mathbf{x}-\mathbf{z}\|^{2}}{\partial \mathbf{x}}=2 \mathbf{H}^{\top} \mathbf{H} \mathbf{x}-2 \mathbf{H}^{\top} \mathbf{z}=0 \\
\Rightarrow \mathbf{x}=\left(\mathbf{H}^{\top} \mathbf{H}\right)^{-1} \mathbf{H}^{\top} \mathbf{z}
\end{gathered}
$$

${ }^{9}$ in MATLAB use the pseudo-inverse $\operatorname{\operatorname {pin}} \mathrm{v}()$

LSQ - Least Squares Estimation (3)

The world is non-linear \rightarrow nonlinear model function $\mathbf{h}(\mathbf{x}) \rightarrow$ non-linear LSQ^{10} :

$$
\hat{\mathbf{x}}=\underset{x}{\operatorname{argmin}}\|(\mathbf{h}(\mathbf{x})-\mathbf{z})\|^{2}
$$

- We seek such δ that for $\mathbf{x}_{1}=\mathbf{x}_{0}+\delta$ the $\left\|\mathbf{h}\left(\mathbf{x}_{1}\right)-\mathbf{z}\right\|^{2}$ is minimized.
- We use Taylor series expansion: $\mathbf{h}\left(\mathbf{x}_{0}+\delta\right)=\mathbf{h}\left(\mathbf{x}_{0}\right)+\nabla \mathbf{H}_{\mathbf{x} 0} \delta$

$$
\left\|\mathbf{h}\left(\mathbf{x}_{1}\right)-\mathbf{z}\right\|^{2}=\left\|\mathbf{h}\left(\mathbf{x}_{0}\right)+\nabla \mathbf{H}_{\mathbf{x} 0} \delta-\mathbf{z}\right\|^{2}=\| \underbrace{\nabla \mathbf{H}_{\mathbf{x} 0}}_{\mathbf{A}} \delta-\underbrace{\left(\mathbf{z}-\mathbf{h}\left(\mathbf{x}_{0}\right)\right.}_{\mathbf{b}}) \|^{2}
$$

where $\nabla \mathrm{H}_{\mathrm{x} 0}$ is Jacobian of $\mathrm{h}(\mathrm{x})$:

$$
\nabla \mathbf{H}_{\mathbf{x} 0}=\frac{\partial \mathbf{h}}{\partial \mathbf{x}}=\left[\begin{array}{ccc}
\frac{\partial \mathbf{h}_{1}}{\partial \mathbf{x}_{1}} & \cdots & \frac{\partial \mathbf{h}_{1}}{\partial \mathbf{x}_{m}} \\
\vdots & & \vdots \\
\frac{\partial \mathbf{h}_{n}}{\partial \mathbf{x}_{1}} & \cdots & \frac{\partial \mathbf{h}_{n}}{\partial \mathbf{x}_{m}}
\end{array}\right]
$$

[^6]
LSQ - Least Squares Estimation (4)

The extension of LSQ to the non-linear LSQ can be formulated as an algorithm:

1. Start with an initial guess $\hat{\mathbf{x}}$. ${ }^{11}$
2. Evaluate the LSQ expression for δ (update the $\nabla \mathbf{H}_{\hat{\mathrm{x}}}$ and substitute). ${ }^{12}$

$$
\delta:=\left(\nabla \mathbf{H}_{\hat{\mathbf{x}}}^{\top} \nabla \mathbf{H}_{\hat{\mathbf{x}}}\right)^{-1} \nabla \mathbf{H}_{\hat{\mathbf{x}}}^{\top}[\mathbf{z}-\mathbf{h}(\hat{\mathbf{x}})]
$$

3. Apply the δ correction to our initial estimate: $\hat{\mathbf{x}}:=\hat{\mathbf{x}}+\delta .{ }^{13}$
4. Check for the stopping precision: if $\|\mathbf{h}(\hat{\mathbf{x}})-\mathbf{z}\|^{2}>\epsilon$ proceed with step (2) or stop otherwise. ${ }^{14}$
[^7]
LSQ - Least Squares Estimation (5)

Example - Long Base-line Navigation (1) SONARDYNE

LSQ - Least Squares Estimation (6)

Example - Long Base-line Navigation (2)

Assume an underwater robot operating within the range of 4 beacons and receiving time-of-flight measurements simultaneously and without delay.

We wish to find the LSQ estimate of robot position $\mathbf{x}_{v}=[x, y, z]^{\top}$ while each beacon i is at known position $\mathbf{x}_{b i}=\left[x_{b i}, y_{b i}, z_{b i}\right]^{\top}$. The observation model is ${ }^{15}$:

$$
\mathbf{z}=\left[\begin{array}{l}
t_{1} \\
t_{2} \\
t_{3} \\
t_{4}
\end{array}\right]=h\left(\mathbf{x}_{v}\right)=\frac{2}{c}\left[\begin{array}{l}
\left\|\mathbf{x}_{b 1}-\mathbf{x}_{v}\right\| \\
\left\|\mathbf{x}_{b 2}-\mathbf{x}_{v}\right\| \\
\left\|\mathbf{x}_{b 3}-\mathbf{x}_{v}\right\| \\
\left\|\mathbf{x}_{b 4}-\mathbf{x}_{v}\right\|
\end{array}\right]
$$

where t_{i} is the measured time-of-flight from beacon i.

[^8]
LSQ - Least Squares Estimation (7)

Example - Long Base-line Navigation (3)

We derive the $\nabla \mathbf{H}_{\mathbf{x} v}$ and plug it into the 4-step algorithm already introduced:

$$
\nabla \mathbf{H}_{\mathbf{x} v}=-\frac{2}{c}\left[\begin{array}{ccc}
\Delta_{x 1} & \Delta_{y 1} & \Delta_{z 1} \\
\Delta_{x 2} & \Delta_{y 2} & \Delta_{z 2} \\
\Delta_{x 3} & \Delta_{y 3} & \Delta_{z 3} \\
\Delta_{x 4} & \Delta_{y 4} & \Delta_{z 4}
\end{array}\right]
$$

where:

$$
\begin{gathered}
\Delta_{x i}=\left(x_{b i}-x\right) / r_{i}, \Delta_{y i}=\left(y_{b i}-y\right) / r_{i}, \Delta_{z i}=\left(z_{b i}-z\right) / r_{i} \\
r_{i}=\sqrt{\left(x_{b i}-x\right)^{2}+\left(y_{b i}-y\right)^{2}+\left(z_{b i}-z\right)^{2}}
\end{gathered}
$$

LSQ - Least Squares Estimation (8)

Example - Long Base-line Navigation (4)

```
788 Non-linear least squares solution to the Long Base-line Navigation
```

```
precision_history = [];
```

precision_history = [];
% initialization precision history [m]
% initialization precision history [m]
desired_precision = 0.001; % desired precision of the estimated position [m]
desired_precision = 0.001; % desired precision of the estimated position [m]
c = 343;
c = 343;
% speed fo sound [mps]
% speed fo sound [mps]
dH}=z\operatorname{zeros}(4,3)

```
dH}=z\operatorname{zeros}(4,3)
```



```
Xv_est = [0; 0; 0]; & initial estimate of vehicle position 
```

Xv_est = [0; 0; 0]; \& initial estimate of vehicle position
Xv_true = [5.123; 15.456; 25.789]; 多 unknown true vehicle position [m]
Xv_true = [5.123; 15.456; 25.789]; 多 unknown true vehicle position [m]
% generating time-of-flight measurements (no sensor noise assumed):
% generating time-of-flight measurements (no sensor noise assumed):
Xdiff_true = Xb - repmat(Xv_true, 1, size(Xb, 2));
Xdiff_true = Xb - repmat(Xv_true, 1, size(Xb, 2));
Ztof = 2*([norm(Xdiff_true (:,1)); norm(Xdiff_true(:,2)); norm(Xdiff_true(:,3)); norm(Xdiff_true(:,4))])/c;
Ztof = 2*([norm(Xdiff_true (:,1)); norm(Xdiff_true(:,2)); norm(Xdiff_true(:,3)); norm(Xdiff_true(:,4))])/c;
Xdiff_est = Xb - repmat (Xv_est, 1, size(Xb, 2));
Xdiff_est = Xb - repmat (Xv_est, 1, size(Xb, 2));
Hest = 2*([norm(Xdiff_est(:,1)); norm(Xdiff_est(:,2)); norm(Xdiff_est(:,3)); norm(Xdiff_est(:,4))])/c;
Hest = 2*([norm(Xdiff_est(:,1)); norm(Xdiff_est(:,2)); norm(Xdiff_est(:,3)); norm(Xdiff_est(:,4))])/c;
precision = 0.5*C*norm(Ztof - Hest);
precision = 0.5*C*norm(Ztof - Hest);
while precision > desired_precision
while precision > desired_precision
% updating the Jacobian
% updating the Jacobian
for i=1:size(Xb, 2)
for i=1:size(Xb, 2)
dH(i,:) = -2/c*transpose(Xdiff_est(:,i)./norm(Xdiff_est(:,i)));
dH(i,:) = -2/c*transpose(Xdiff_est(:,i)./norm(Xdiff_est(:,i)));
end
end
% updating the position estimate
% updating the position estimate
Xv_est = Xv_est + pinv (dH'*dH)*dH'*(Ztof - Hest);
Xv_est = Xv_est + pinv (dH'*dH)*dH'*(Ztof - Hest);
% propagating new estimate thrgough the observation model
% propagating new estimate thrgough the observation model
Xdiff_est = Xb - repmat (Xv_est, 1, size (Xb, 2));
Xdiff_est = Xb - repmat (Xv_est, 1, size (Xb, 2));
Hest = 2*([norm(Xdiff_est(:,1)); norm(Xdiff_est(:,2)); norm(Xdiff_est(:,3)); norm(Xdiff_est(:,4))])/c;
Hest = 2*([norm(Xdiff_est(:,1)); norm(Xdiff_est(:,2)); norm(Xdiff_est(:,3)); norm(Xdiff_est(:,4))])/c;
% updating the precision of the current estimate
% updating the precision of the current estimate
precision = 0.5*c*norm(Ztof - Hest); % [m]
precision = 0.5*c*norm(Ztof - Hest); % [m]

- end

```
- end
```


LSQ - Least Squares Estimation (9)

Example - Long Base-line Navigation (5)

LSQ - Least Squares Estimation (10)

Example - Long Base-line Navigation (6)

Overview of Estimators

What have we learnt so far?

- MLE - we have the likelihood (conditional probability of measurements)
- MAP - we have the likelihood and some prior (expected) knowledge
- MMSE - we have a set of measurements of a random variable
- RBE - we have the MAP and incoming sequence of measurements
- LSQ - we have a set of measurements and some knowledge about the underlying model (linear or non-linear)

What comes next?

The Kalman filter - we have sequence of measurements and a state-space model providing the relationship between the states and the measurements (linear model \rightarrow LKF, non-linear model \rightarrow EKF)

LKF - Assumptions

The likelihood $p(\mathbf{z} \mid \mathbf{x})$ and the prior $p(\mathbf{x})$ on \mathbf{x} are Gaussian, and the linear measurement model $\mathbf{z}=\mathbf{H x}+\mathbf{w}$ is corrupted by Gaussian noise $\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \mathbf{R})$:

$$
p(\mathbf{w})=\frac{1}{(2 \pi)^{n / 2}|\mathbf{R}|^{1 / 2}} \exp \left\{-\frac{1}{2} \mathbf{w}^{\top} \mathbf{R}^{-1} \mathbf{w}\right\}
$$

The likelihood $p(\mathbf{z} \mid \mathbf{x})$ is now a multi-D Gaussian ${ }^{16}$:

$$
p(\mathbf{z} \mid \mathbf{x})=\frac{1}{(2 \pi)^{n_{z} / 2}|\mathbf{R}|^{1 / 2}} \exp \left\{-\frac{1}{2}(\mathbf{z}-\mathbf{H} \mathbf{x})^{\top} \mathbf{R}^{-1}(\mathbf{z}-\mathbf{H} \mathbf{x})\right\}
$$

The prior belief in x with mean x_{\ominus} and covariance \mathbf{P}_{\ominus} is a multi-D Gaussian:

$$
p(\mathbf{x})=\frac{1}{(2 \pi)^{n_{x} / 2}\left|\mathbf{P}_{\ominus}\right|^{1 / 2}} \exp \left\{-\frac{1}{2}\left(\mathbf{x}-\mathbf{x}_{\ominus}\right)^{\top} \mathbf{P}_{\ominus}^{-1}\left(\mathbf{x}-\mathbf{x}_{\ominus}\right)\right\}
$$

We want the a-posteriori estimate $p(\mathbf{x} \mid \mathbf{z})$ that is also a multi-D Gaussian, with mean \mathbf{x}_{\oplus} and covariance $\mathbf{P}_{\oplus} \rightarrow$ the equations of the LKF.

[^9]
LKF - The proof?

Without proof ${ }^{17}$, here are the main ideas exploited while deriving the LKF:

- We use the Bayes rule to express the $p(\mathbf{x} \mid \mathbf{z}) \rightarrow$ the MAP ${ }^{18}$
- We know that Gaussian \times Gaussian $=$ Gaussian
- Considering the above, the new mean x_{\oplus} will be the MMSE estimate,
the new covariance \mathbf{P}_{\oplus} is derived using a crazy matrix identity

[^10]
LKF - Update Equations

We defined a linear observation model mapping the measurements \mathbf{z} with uncertainty (covariance) \mathbf{R} onto the states \mathbf{x} using a prior mean estimate \mathbf{x}_{\ominus} with prior covariance \mathbf{P}_{\ominus}.

The LKF update: the new mean estimate \mathbf{x}_{\oplus} and its covariance \mathbf{P}_{\oplus} :

$$
\begin{gathered}
\mathbf{x}_{\oplus}=\mathbf{x}_{\ominus}+\mathbf{W} \nu \\
\mathbf{P}_{\oplus}=\mathbf{P}_{\ominus}-\mathbf{W S} \mathbf{W}^{\top}
\end{gathered}
$$

- where ν is the innovation given by: $\nu=\mathbf{z}-\mathbf{H x}_{\ominus}$,
- where S is the innovation covariance given by: $\mathbf{S}=\mathbf{H} \mathbf{P}_{\ominus} \mathbf{H}^{\top}+\mathbf{R},{ }^{19}$
- where W is the Kalman gain (\sim the weights!) given by: $\mathbf{W}=\mathbf{P}_{\ominus} \mathbf{H}^{\top} \mathbf{S}^{-1}$.

What if we want to estimate states we don't measure? \rightarrow model

[^11]
LKF - System Model Definition

Standard state-space description of a discrete-time system:

$$
\mathbf{x}_{(k)}=\mathbf{F} \mathbf{x}_{(k-1)}+\mathbf{B} \mathbf{u}_{(k)}+\mathbf{G} \mathbf{v}_{(k)}
$$

- where \mathbf{v} is a zero mean Gaussian noise $\mathbf{v} \sim \mathcal{N}(\mathbf{0}, \mathbf{Q})$ capturing the uncertainty (imprecisions) of our transition model (mapped by G onto the states), - where u is the control vector ${ }^{20}$ (mapped by B onto the states),
- where \mathbf{F} is the state transition matrix ${ }^{21}$.

[^12]
LKF - Temporal-Conditional Notation

The temporal-conditional ${ }^{22}$ notation, noted as $(i \mid j)$, defines $\hat{\mathbf{x}}_{(i \mid j)}$ as the MMSE estimate of \mathbf{x} at time i given measurements up until and including the time j, leading to two cases:

- $\hat{\mathbf{x}}_{(k \mid k)}$ estimate at k given all available measurements \rightarrow the estimate
- $\hat{\mathbf{x}}_{(k \mid k-1)}$ estimate at k given the first $k-1$ measurements \rightarrow the prediction

LKF - Incorporating System Model

The LKF prediction: using $(i \mid j)$ notation

$$
\hat{\mathbf{x}}_{(k \mid k-1)}=\mathbf{F} \hat{\mathbf{x}}_{(k-1 \mid k-1)}+\mathbf{B} \mathbf{u}_{(k)}
$$

$$
\mathbf{P}_{(k \mid k-1)}=\mathbf{F P}_{(k-1 \mid k-1)} \mathbf{F}^{\top}+\mathbf{G Q G}^{\top}
$$

The LKF update: using $(i \mid j)$ notation

$$
\begin{gathered}
\hat{\mathbf{x}}_{(k \mid k)}=\hat{\mathbf{x}}_{(k \mid k-1)}+\mathbf{W}_{(k)} \nu_{(k)} \\
\mathbf{P}_{(k \mid k)}=\mathbf{P}_{(k \mid k-1)}-\mathbf{W}_{(\mathbf{k})} \mathbf{S} \mathbf{W}_{(\mathbf{k})}^{\top}
\end{gathered}
$$

- where ν is the innovation: $\nu_{(k)}=\mathbf{z}_{(\mathrm{k})}-\mathbf{H} \hat{\mathbf{x}}_{(k \mid k-1)}$
- where S is the innovation covariance: $\mathbf{S}=\mathbf{H} \mathbf{P}_{(k \mid k-1)} \mathbf{H}^{\top}+\mathbf{R}$
- where W is the Kalman gain (\sim the weights!): $\mathbf{W}_{(k)}=\mathbf{P}_{(k \mid k-1)} \mathbf{H}^{\top} \mathbf{S}^{-1}$

LKF - Discussion (1)

- Recursion: the LKF is recursive, the output of one iteration is the input to next iteration.
- Initialization: the $\mathbf{P}_{(0 \mid 0)}$ and $\hat{\mathbf{x}}_{(0 \mid 0)}$ have to be provided. ${ }^{23}$
- Predictor-corrector structure:
the prediction is corrected by fusion of measurements via innovation, which is the difference between the actual observation $\mathbf{z}_{(k)}$ and the predicted observation $\mathbf{H} \hat{\mathbf{x}}_{(k \mid k-1)}$.

[^13]
LKF - Discussion (2)

- Asynchrosity: The update step only proceeds when the measurements come, not necessarily at every iteration. ${ }^{24}$
- Prediction covariance increases: since the model is inaccurate the uncertainty in predicted states increases with each prediction by adding the GQG^{\top} term \rightarrow the $\mathbf{P}_{k \mid k-1}$ prediction covariance increases.
- Update covariance decreases: due to observations the uncertainty in predicted states decreases / not increases by subtracting the positive semi-definite $\mathbf{W S W}{ }^{\top} 25 \rightarrow$ the $\mathbf{P}_{k \mid k}$ update covariance decreases / not increases.

[^14]
LKF - Discussion (3)

- Observability: the measurements z need not to fully determine the state vector x , the LKF can perform ${ }^{26}$ updates using only partial measurements thanks to:
- prior info about unobserved states and
- correlations. ${ }^{27}$
- Correlations:
- the diagonal elements of P are the principal uncertainties (variance) of each of the state vector elements.
- the off-diagonal terms of \mathbf{P} capture the correlations between different elements of x .

Conclusion: The KF exploits the correlations to update states that are not observed directly by the measurement model.

[^15]
LKF - Linear Navigation Problem (1)

Example - Planet Lander: State-space model

A lander observes its altitude \mathbf{x} above planet using time-of-flight radar. Onboard controller needs estimates of height and velocity to actuate the rockets \rightarrow discrete time 1D model:

$$
\begin{gathered}
\mathbf{x}_{(k)}=\underbrace{\left[\begin{array}{cc}
1 & \delta T \\
0 & 1
\end{array}\right]}_{\mathbf{F}} \mathbf{x}_{(k-1)}+\underbrace{\left[\begin{array}{c}
\delta T^{2} \\
\delta T
\end{array}\right]}_{\mathbf{G}} \mathbf{v}_{(k)} \\
\mathbf{z}_{(k)}=\underbrace{\left[\begin{array}{ll}
\frac{2}{c} & 0
\end{array}\right]}_{\mathbf{H}} \mathbf{x}_{(k)}+\mathbf{w}_{(k)}
\end{gathered}
$$

where δT is sampling time, the state vector $\mathbf{x}=[h \dot{h}]^{\top}$ is composed of height h and velocity \dot{h}; the process noise \mathbf{v} is a scalar gaussian process with covariance Q^{28}, the measurement noise w is given by the covariance matrix \mathbf{R}. ${ }^{29}$

[^16]
LKF - Linear Navigation Problem (2)

Example - Planet Lander: Simulation model

A non-linear simulation model in MATLAB was created to generate the true state values and corresponding noisy observation:

1. First, we simulate motion in a thin atmosphere (small drag) and vehicle accelerates.
2. Second, as the density increases the vehicle decelerates to reach quasi-steady terminal velocity fall.

- The true σ_{Q}^{2} of the process noise and the σ_{R}^{2} of the measurement noise are set to different numbers than those used in our linear model. ${ }^{30}$
- Simple Euler integration for the true motion is used (velocity \rightarrow height).

[^17]
LKF - Linear Navigation Problem (3)

Example - Planet Lander: Controller model

The vehicle controller has two features implemented:

1. When the vehicle descends below a first given altitude threshold, it deploys a parachute (to increase the aerodynamic drag).
2. When the vehicle descends below a second given altitude threshold, it fires rocket burners to slow the descend and land safely.

- The controller operates only on the estimated quantities.
- Firing the rockets also destroys the parachute.

LKF - Linear Navigation Problem (4)

Example - Results for: $\sigma_{R}^{\text {model }}=1.1 \sigma_{R}^{\text {true }}, \sigma_{Q}^{\text {model }}=1.1 \sigma_{Q}^{\text {true }}$
We did good modeling, errors are due to the non-linear world!

Trajectories Error (XEst-XTrue)

Chute @ 178.4, Rockets@ 402.0, Lands @ 574.8

LKF - Linear Navigation Problem (5)

Example - Results for: $\sigma_{R}^{\text {model }}=10 \sigma_{R}^{\text {true }}, \sigma_{Q}^{\text {model }}=1.1 \sigma_{Q}^{\text {true }}$
We do not trust the measurements, the good linear model alone is not enough!

Chute @ 178.6, Rockets @403.7, Lands @NaN

LKF - Linear Navigation Problem (6)

Example - Results for: $\sigma_{R}^{\text {model }}=1.1 \sigma_{R}^{\text {true }}, \sigma_{Q}^{\text {model }}=10 \sigma_{Q}^{\text {true }}$
We do not trust our model, the estimates have good mean but are too noisy!

Chute @ 178.8,Rockets @402.8, Lands @NaN

LKF - Linear Navigation Problem (7)

Example - Results for: $\sigma_{R}^{\text {model }}=0.1 \sigma_{R}^{\text {true }}, \sigma_{Q}^{\text {model }}=1.1 \sigma_{Q}^{\text {true }}$
We are overconfident measurements-fortunately, the sensor is not more noisy!

Chute @ 178.7,Rockets @ 402.6, Lands @ 543.9

LKF - Linear Navigation Problem (8)

Example - Results for: $\sigma_{R}^{\text {model }}=1.1 \sigma_{R}^{\text {true }}, \sigma_{Q}^{\text {model }}=0.1 \sigma_{Q}^{\text {true }}$
We are overconfident in our model, but the world is really not linear ...

LKF - Linear Navigation Problem (9)

Example - Results for: $\sigma_{R}^{\text {model }}=10 \sigma_{R}^{\text {true }}, \sigma_{Q}^{\text {model }}=10 \sigma_{Q}^{\text {true }}$
We do neither trust the model nor measurements, we cope with the nonlinearities.

From LKF to EKF

- Linear models in the non-linear environment \rightarrow BAD.
- Non-linear models in the non-linear environment \rightarrow BETTER.
- Assume the following the non-linear system model function $\mathbf{f}(\mathbf{x})$ and the non-linear measurement function $\mathbf{h}(\mathbf{x})$, we can reformulate:

$$
\begin{aligned}
\mathbf{x}_{(k)} & =\mathbf{f}\left(\mathbf{x}_{(k-1)}, \mathbf{u}_{(k), k}\right)+\mathbf{v}_{(k)} \\
\mathbf{z}_{(k)} & =\mathbf{h}\left(\mathbf{x}_{(k)}, \mathbf{u}_{(k), k}\right)+\mathbf{w}_{(k)}
\end{aligned}
$$

EKF - Non-linear Prediction

Without proof ${ }^{31}$: The main idea behind EKF is to linearize the non-linear model around the „best" current estimate ${ }^{32}$.

This is realized using a Taylor series expansion ${ }^{33}$.
Assume an estimate $\hat{\mathbf{x}}_{(k-1 \mid k-1)}$ then

$$
\mathbf{x}_{(k)} \approx \mathbf{f}\left(\hat{\mathbf{x}}_{(k-1 \mid k-1)}, \mathbf{u}_{(k), k}\right)+\nabla \mathbf{F}_{\mathbf{x}}\left[\mathbf{x}_{(k-1)}-\hat{\mathbf{x}}_{(k-1 \mid k-1)}\right]+\cdots+\mathbf{v}_{(k)}
$$

where the term $\nabla \mathbf{F}_{\mathbf{x}}$ is a Jacobian of $\mathbf{f}(\mathbf{x})$ w.r.t. \mathbf{x} evaluated at $\hat{\mathbf{x}}_{(k-1 \mid k-1)}$:

$$
\nabla \mathbf{F}_{\mathbf{x}}=\frac{\partial \mathbf{f}}{\partial \mathbf{x}}=\left[\begin{array}{ccc}
\frac{\partial \mathbf{f}_{1}}{\partial \mathbf{x}_{1}} & \cdots & \frac{\partial \mathbf{f}_{1}}{\partial \mathbf{x}_{m}} \\
\vdots & & \vdots \\
\frac{\partial \mathbf{f}_{n}}{\partial \mathbf{x}_{1}} & \cdots & \frac{\partial \mathbf{f}_{n}}{\partial \mathbf{x}_{m}}
\end{array}\right]
$$

[^18]
EKF - Non-linear Observation

Without proof ${ }^{34}$: The same holds for the observation model, i.e. the predicted observation $\mathbf{z}_{(k \mid k-1)}$ is the projection of $\hat{\mathbf{x}}_{(k \mid k-1)}$ through the non-linear measurement model ${ }^{35}$.

Hence, assume an estimate $\hat{\mathbf{x}}_{(k \mid k-1)}$ then

$$
\mathbf{z}_{(k)} \approx \mathbf{h}\left(\hat{\mathbf{x}}_{(k \mid k-1)}, \mathbf{u}_{(k), k}\right)+\nabla \mathbf{H}_{\mathbf{x}}\left[\hat{\mathbf{x}}_{(k \mid k-1)}-\mathbf{x}_{(k)}\right]+\cdots+\mathbf{w}_{(k)}
$$

where the term $\nabla \mathbf{H}_{\mathbf{x}}$ is a Jacobian of $\mathbf{h}(\mathbf{x})$ w.r.t. \mathbf{x} evaluated at $\hat{\mathbf{x}}_{(k \mid k-1)}$:

$$
\nabla \mathbf{H}_{\mathbf{x}}=\frac{\partial \mathbf{h}}{\partial \mathbf{x}}=\left[\begin{array}{ccc}
\frac{\partial \mathbf{h}_{1}}{\partial \mathbf{x}_{1}} & \cdots & \frac{\partial \mathbf{h}_{1}}{\partial \mathbf{x}_{m}} \\
\vdots & & \vdots \\
\frac{\partial \mathbf{h}_{n}}{\partial \mathbf{x}_{1}} & \cdots & \frac{\partial \mathbf{h}_{n}}{\partial \mathbf{x}_{m}}
\end{array}\right]
$$

[^19]
EKF - Algorithm (1)

Prediction:

EKF - Algorithm (2)

Update:

where

$$
\begin{aligned}
& \nu(k)=\overbrace{\mathbf{Z}(k)}^{\overbrace{\mathbf{z}}}-\mathbf{z}(k \mid k-1) \\
& \mathbf{W}=\underbrace{\mathbf{P}(k \mid k-1) \nabla \mathbf{H}_{\mathbf{x}}^{T} \mathbf{S}^{-1}}_{\text {kalman gain }} \\
& \nabla \mathbf{F}_{\mathbf{x}}=\frac{\partial \mathbf{f}}{\partial \mathbf{x}}=\underbrace{\left[\begin{array}{ccc}
\frac{\partial \mathbf{f}_{1}}{\partial \mathbf{x}_{1}} & \cdots & \frac{\partial \mathbf{f}_{1}}{\partial \mathbf{x}_{m}} \\
\vdots & & \vdots \\
\frac{\partial \mathbf{f}_{n}}{\partial \mathbf{x}_{1}} & \cdots & \frac{\partial \mathbf{f}_{n}}{\partial \mathbf{x}_{m}}
\end{array}\right]}_{\text {Innovation Covariance }} \nabla \mathbf{H}_{\mathbf{x}}=\frac{\partial \mathbf{h}}{\partial \mathbf{x}}=\underbrace{\left[\begin{array}{ccc}
\frac{\partial \mathbf{f}_{1}}{\partial \mathbf{x}_{1}} & \cdots & \frac{\partial \mathbf{h}_{1}}{\partial \mathbf{x}_{m}} \\
\vdots & & \vdots \\
\frac{\partial \mathbf{h}_{n}}{\partial \mathbf{x}_{1}} & \cdots & \frac{\partial \mathbf{h}_{n}}{\partial \mathbf{x}_{m}}
\end{array}\right]}_{\text {evaluated at } \hat{\mathbf{x}}(k-1 \mid k-1)}
\end{aligned}
$$

Source: [1] P. Newman, EKF Based Navigation and SLAM, SLAM Summer School 2006

EKF - Features \& Maps

Assumption: The world is represented by a set of discrete landmarks (features) whose location / orientation and geometry can by described by a set of discrete parameters \rightarrow concatenated into a feature vector called Map:

$$
\mathbf{M}=\left[\begin{array}{c}
\mathbf{x}_{\mathbf{f}, 1} \\
\mathbf{x}_{\mathbf{f}, 2} \\
\mathbf{x}_{\mathbf{f}, 3} \\
\vdots \\
\mathbf{x}_{\mathbf{f}, n}
\end{array}\right]
$$

Examples of features in 2D world:

- absolute observation: given by the position coordinates of the landmarks in the global reference frame: $\mathbf{x}_{\mathbf{f}, i}=\left[x_{i} y_{i}\right]^{\top}$ (e.g., measured by GPS)
- relative observation: given by the radius and bearing to landmark: $\mathbf{x}_{\mathbf{f}, i}=\left[r_{i} \theta_{i}\right]^{\top}$ (e.g., measured by visual odometry, laser mapping, sonar)

EKF - Localization

Assumption: we are given a map \mathbf{M} and a sequence of vehicle-relative ${ }^{36}$ observations \mathbf{Z}^{k} described by likelihood $p\left(\mathbf{Z}^{\mathrm{k}} \mid \mathbf{M}, \mathbf{x}_{v}\right)$.

Task: to estimate the $p d f$ for the vehicle pose $p\left(\mathbf{x}_{v} \mid \mathbf{M}, \mathbf{Z}^{\mathrm{k}}\right)$.

$$
\begin{aligned}
& p\left(\mathbf{x}_{v} \mid \mathbf{M}, \mathbf{Z}^{\mathbf{k}}\right)=\frac{p\left(\mathbf{x}_{v}, \mathbf{M}, \mathbf{Z}^{\mathbf{k}}\right)}{p\left(\mathbf{M}, \mathbf{Z}^{\mathbf{k}}\right)}=\frac{p\left(\mathbf{Z}^{\mathrm{k}} \mid \mathbf{M}, \mathbf{x}_{v}\right) \times p\left(\mathbf{M}, \mathbf{x}_{v}\right)}{p\left(\mathbf{Z}^{\mathrm{k}} \mid \mathbf{M}\right) \times p(\mathbf{M})}= \\
= & \frac{p\left(\mathbf{Z}^{\mathrm{k}} \mid \mathbf{M}, \mathbf{x}_{v}\right) \times p\left(\mathbf{x}_{v} \mid \mathbf{M}\right) \times p(\mathbf{M})}{\int_{-\infty}^{+\infty} p\left(\mathbf{Z}^{\mathbf{k}} \mid \mathbf{M}, \mathbf{x}_{v}\right) p\left(\mathbf{x}_{v} \mid \mathbf{M}\right) d x_{v} \times p(\mathbf{M})}=\frac{p\left(\mathbf{Z}^{\mathrm{k}} \mid \mathbf{M}, \mathbf{x}_{v}\right) \times p\left(\mathbf{x}_{v} \mid \mathbf{M}\right)}{\text { normalising constant }}
\end{aligned}
$$

Solution: $p\left(\mathbf{x}_{v} \mid \mathbf{M}\right)$ is just another sensor \rightarrow the $p d f$ of locating the robot when observing a given map.

[^20]
EKF - Mapping

Assumption: we are given a vehicle location $\mathbf{x}_{v},{ }^{37}$ and a sequence of vehicle-relative observations \mathbf{Z}^{k} described by likelihood $p\left(\mathbf{Z}^{\mathrm{k}} \mid \mathbf{M}, \mathbf{x}_{v}\right)$.

Task: to estimate the $p d f$ of the map $p\left(\mathbf{M} \mid \mathbf{Z}^{\mathbf{k}}, \mathbf{x}_{v}\right)$.

$$
\begin{aligned}
& p\left(\mathbf{M} \mid \mathbf{Z}^{\mathbf{k}}, \mathbf{x}_{v}\right)=\frac{p\left(\mathbf{x}_{v}, \mathbf{M}, \mathbf{Z}^{\mathbf{k}}\right)}{p\left(\mathbf{Z}^{\mathrm{k}}, \mathbf{x}_{v}\right)}=\frac{p\left(\mathbf{Z}^{\mathrm{k}} \mid \mathbf{M}, \mathbf{x}_{v}\right) \times p\left(\mathbf{M}, \mathbf{x}_{v}\right)}{p\left(\mathbf{Z}^{\mathrm{k}} \mid \mathbf{x}_{v}\right) \times p\left(\mathbf{x}_{v}\right)}= \\
= & \frac{p\left(\mathbf{Z}^{\mathrm{k}} \mid \mathbf{M}, \mathbf{x}_{v}\right) \times p\left(\mathbf{M} \mid \mathbf{x}_{v}\right) \times p\left(\mathbf{x}_{v}\right)}{\int_{-\infty}^{+\infty} p\left(\mathbf{Z}^{\mathrm{k}} \mid \mathbf{M}, \mathbf{x}_{v}\right) p\left(\mathbf{M} \mid \mathbf{x}_{\mathbf{v}}\right) d M \times p\left(\mathbf{x}_{v}\right)}=\frac{p\left(\mathbf{Z}^{\mathrm{k}} \mid \mathbf{M}, \mathbf{x}_{v}\right) \times p\left(\mathbf{M} \mid \mathbf{x}_{v}\right)}{\text { normalising constant }}
\end{aligned}
$$

Solution: $p\left(\mathbf{x}_{v} \mid \mathbf{M}\right)$ is just another sensor \rightarrow the $p d f$ of observing the map at given robot location.

[^21]
EKF - Simultaneous Localization and Mapping

If we parametrize the random vectors \mathbf{x}_{v} and M with mean and variance then the (E$) \mathrm{KF}$ will compute the MMSE estimate of the posterior.

What is the SLAM and how can we achieve it?

- With no prior information about the map (and about the vehicle-no GPS),
- the SLAM is a navigation problem of building consistent estimate of both
- the environment (represented by the map-the mapping)
- and vehicle trajectory (6 DOF position and orientation-the localization),
- using only proprioceptive sensors (e.g., inertial, odometry),
- and vehicle-centric sensors (e.g., radar, camera, laser, sonar etc.).

EKF - Simultaneous Localization and Mapping

Example - EKF-SLAM

The naive EKF-SLAM -the map is taken as additional sensor and ALL the features are included in the state vector (information captured in P).

What are the EKF-SLAM characteristics?

- The naive version does not work, especially in 3D and for large areas!
- Large computational load (the update of the covariance matrix \mathbf{P} proportional at best to the square of the number of features)!

How can we make the EKF-SLAM work?

- Feature management—ideally decoupled solution or more solutions together (laser-based mapping, vision-based mapping)
- Loop closures-save the history of observations and if the same place visited again, re-compute both map and trajectory (estimators called "smoothers").

Example - Real-world EKF architecture

[^0]: ${ }^{1}$ Note: The covariance matrix is symmetric (i.e. $\Sigma=\Sigma^{\top}$) and positive-semidefinite (as the covariance matrix is real valued, the positive-semidefinite means that $x^{\top} M x \geq 0$ for all $x \in \mathbb{R}$).

[^1]: ${ }^{2}$ Note: The likelihood is a function of \mathbf{x} but it is not a probability distribution over \mathbf{x}, it would be incorrect to refer to it as the likelihood of the data.

[^2]: ${ }^{3}$ Note: we ignore the irrelevant normalization constant.

[^3]: ${ }^{4}$ Note: The prior knowledge is obtained for example statistically or from a datasheet.

[^4]: ${ }^{5}$ See reference [1] pages 11-12
 ${ }^{6}$ Note: We minimize a scalar quantity.
 ${ }^{7}$ Note: In LSQ the \mathbf{x} is a unknown constant but in MMSE \mathbf{x} is a random variable.

[^5]: ${ }^{8}$ See reference [1] pages 12-14, note: if Gaussian pdf of both prior and likelihood then the RBE \rightarrow the LKF

[^6]: ${ }^{10}$ Note: We still measure the Euclidean distance between two points that we want to optimize over.

[^7]: ${ }^{11}$ Note: We can usually set to zero.
 ${ }^{12}$ Note: This expression is obtained using the LSQ closed form and substitution from previous slide.
 ${ }^{13}$ Note: Due to these updates our initial guess should converge to such $\hat{\mathbf{x}}$ that minimizes the $\|\mathbf{h}(\hat{\mathbf{x}})-\mathbf{z}\|^{2}$
 ${ }^{14}$ Note: ϵ is some small threshold, usually set according to the noise level in the sensors.

[^8]: ${ }^{15}$ Note: We assume the transceiver operates at speed of sound c

[^9]: ${ }^{16}$ Note: n_{z} is the dimension of the observation vector and n_{x} is the dimension of the state vector.

[^10]: ${ }^{17}$ See reference [1] pages 22-26
 ${ }^{18}$ Note: Recall the Bayes rule $p(\mathbf{x} \mid \mathbf{z})=\frac{p(\mathbf{z} \mid \mathbf{x}) p(\mathbf{x})}{p(\mathbf{z})}=\frac{p(\mathbf{z} \mid \mathbf{x}) p(\mathbf{x})}{p(\mathbf{z})}=\frac{p(\mathbf{z} \mid \mathbf{x}) p(\mathbf{x})}{\int_{-\infty}^{+\infty} p(\mathbf{z} \mid \mathbf{x}) p(\mathbf{x}) d x}=\frac{p(\mathbf{z} \mid \mathbf{x}) p(\mathbf{x})}{\text { normalising const }}$

[^11]: ${ }^{19}$ Note: Recall that if $x \sim \mathcal{N}(\mu, \Sigma)$ and $y=M x$ then $y \sim \mathcal{N}\left(\mu, M \Sigma M^{\top}\right)$

[^12]: ${ }^{20}$ For example the steering angle on a car as input by the driver.
 ${ }^{21}$ For example the differential equations of motion relating the position, velocity and acceleration.

[^13]: ${ }^{23}$ Note: It can be some initial good guess or even zero for mean, one for covariance.

[^14]: ${ }^{24}$ Note: If at time-step k there is no observation then the best estimate is simply the prediction $\hat{\mathbf{x}}_{(k \mid k-1)}$ usually implemented as setting the Kalman gain to 0 for that iteration.
 ${ }^{25}$ Each observation, even the not accurate one, contains some additional information that is added to the state estimate at each update.

[^15]: ${ }^{26}$ Note: In contrary to LSQ that needs enough measurements to solve for the state values.
 ${ }^{27}$ Note: Over the time for unobservable states the covariance will grow without bound.

[^16]: ${ }^{28}$ Modelled as noise in acceleration—hence the quadratics time dependence when adding to position-state.
 ${ }^{29}$ Note: We can find \mathbf{R} either statistically or use values from a datasheet.

[^17]: ${ }^{30}$ Note: we can try to change these settings and observe what happens if the model and the real world are too different.

[^18]: ${ }^{31}$ See reference [1] pages 39-41
 ${ }^{32}$ Note: the ",best" meaning the prediction at $(k \mid k-1)$ or the last estimate at $(k-1 \mid k-1)$
 ${ }^{33}$ Note: recall the non-linear LSQ problem of LBL navigation

[^19]: ${ }^{34}$ See reference [1] pages 41-43
 ${ }^{35}$ Note: for the LKF it was given by $\mathbf{H} \hat{\mathbf{x}}_{(k \mid k-1)}$

[^20]: ${ }^{36}$ Note: Vehicle-relative observations are such kind of measurements that involve sensing the relationship between the vehicle and its surroundings-the map, e.g. measuring the angle and distance to a feature.

[^21]: ${ }^{37}$ Note: Ideally derived from absolute position measurements since position derived from relative measurements (e.g. odometry, integration of inertial measurements) is always subjected to a drift-so called dead reckoning

