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Outline of the lecture:
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What is Estimation?

„Estimation is the process by which we infer the value of a quantity of interest,
x, by processing data that is in some way dependent on x.“

� Measured data corrupted by noise—uncertainty in input transformed into
uncertainty in inference (e.g. Bayes rule)

� Quantity of interest not measured directly (e.g. odometry in skid-steer
robots)

� Incorporating prior (expected) information (e.g. best guess or past
experience)

� Open-loop prediction (e.g. knowing current heading and speed, infer future
position)

� Uncertainty due to simplifications of analytical models (e.g. performance
reasons—linearization)

http://cmp.felk.cvut.cz
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Bayes Theorem & Probability Rules

� The Product rule: P (A,B) = P (A|B)P (B) = P (B|A)P (A)

� The Sum rule: P (B) =
∑
A

P (A,B) =
∑
A

P (B|A)P (A)

� Random events A,B are independent ⇔ P (A,B) = P (A) P (B),

� and the independence means: P (A|B) = P (A), P (B|A) = P (B)

� A,B are conditionally independent ⇔ P (A,B|C) = P (A|C)P (B|C)

� The Bayes theorem:

P (A|B) = P (A,B)
P (B) = P (B|A)P (A)

P (B) = P (B|A)P (A)∑
A
P (B|A)P (A)

http://cmp.felk.cvut.cz
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Bayes Theorem (1)

In Urban Search & Rescue (USAR), the ability of robots to reliably detect
presence of a victim is crucial. How do we implement and evaluate this ability?

Example - Victim detection (1)

Assume we have a sensor S (e.g. a camera) and a computer vision algorithm that
detects victims. We evaluated the sensor on ground truth data statistically:

� There is 20% chance of false negative detection (missed target).

� There is 10% chance of false positive detection.

� A priori probability of the victim presence V is 60%.

� What is the probability that there is a victim if the sensor says no victim is
detected?

http://cmp.felk.cvut.cz
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Bayes Theorem (2)

We express the sensor S measurements as a conditional probability of V :

P (S|V ) S = True S = False

V = True 0.8 0.2
V = False 0.1 0.9

Express the a priori knowledge as the probability:
P (V = True) = 0.6 and P (V = False) = 1− 0.6 = 0.4

Express what-we-want: P (V |S) =? given S = False (not detecting a victim)
and V = True (but there is one).

http://cmp.felk.cvut.cz
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Bayes Theorem (3)

� Use the tools to express what-we-want in the terms of what-we-know:

P (V |S) =
P (V, S)

P (S)
=
P (S|V )P (V )∑
V

P (S, V )
=

P (S|V )P (V )∑
V

P (S|V )P (V )

� Substitute S = False and V = True and sum over V to obtain:

P (V |S) =
P (S = False|V = True)P (V = True)∑
V

P (S = False|V = True)P (V = True)
=

= 0.2·0.6
0.2·0.6+0.9·0.4 = 0.25

� Conclusion: if our sensors says there is no victim, we have 25% chance of
missing out someone! We need an additional sensor . . .

http://cmp.felk.cvut.cz
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Bayes Theorem (4)

In Urban Search & Rescue (USAR), the reliability is achieved through the sensor
fusion: use the statistics to evaluate sensors and the probability theory to perform
fusion.

Example - Victim detection (2)

Assume we have a sensor S as in the previous case and we add one more sensor
T with the following properties:

� There is 5% chance of false negative detection (missed target).

� There is 5% chance of false positive detection.

� A priori probability of the victim presence is the same, V is 60%.

� What is the probability that there is a victim if both sensors confirm its
presence?

http://cmp.felk.cvut.cz
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Bayes Theorem (5)

We express the sensor T measurements as a conditional probability of V :

P (T |V ) T = True T = False

V = True 0.95 0.05
V = False 0.05 0.95

The a priori probability is the same:
P (V = True) = 0.6 and P (V = False) = 1− 0.6 = 0.4

Express what-we-want: P (V |S, T ) =? given S = True, T = True (both
sensors see a victim) and V = True (and there is one). Furthermore, we know
that both sensors provide independent measurements with respect to each other.

http://cmp.felk.cvut.cz
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Bayes Theorem (6)

� Naive approach using joint probability: P (S, T, V ) = P (S, T |V )P (V )

� Conditional independence: P (S, T |V )P (V ) = P (S|V )P (T |V )P (V )

� Applying the tools:

P (V |S, T ) =
P (V, S, T )

P (S, T )
=
P (S|V )P (T |V )P (V )∑

V

P (V, S, T )
=

=
P (S|V )P (T |V )P (V )∑
V

P (S|V )P (T |V )P (V )

� Substitute: S = True, T = True, V = True and sum over V to obtain:

= 0.8·0.95·0.6
0.8·0.95·0.6+0.1·0.05·0.4 = 0.9956

� Conclusion: if both sensors confirm there is a victim, we have 99.56%
chance that there is a victim.

http://cmp.felk.cvut.cz
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Mean & Covariance

Expectation = the average of a variable under the probability distribution.
Continuous definition: E(x) =

∞∫
−∞

x f(x) dx vs. discrete: E(x) =
∑
x
x P (x)

Mutual covariance σxy of two random variables X,Y is

σxy = E ((X − µx)(Y − µy))

Covariance matrix1 Σ of n variables X1, . . . , Xn is

Σ =

 σ2
1 . . . σ2

1n
. . .

σ2
n1

. . . σ2
n



1Note: The covariance matrix is symmetric (i.e. Σ = Σ>) and positive-semidefinite (as the covariance
matrix is real valued, the positive-semidefinite means that x>Mx ≥ 0 for all x ∈ R).

http://cmp.felk.cvut.cz
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Multivariate Normal distribution (1)

Source: Andrew Ng, Stanford University, Machine Learning course 2012, Lecture 15

http://cmp.felk.cvut.cz
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Multivariate Normal distribution (2)

Source: Andrew Ng, Stanford University, Machine Learning course 2012, Lecture 15
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Multivariate Normal distribution (3)

Source: Andrew Ng, Stanford University, Machine Learning course 2012, Lecture 15
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Multivariate Normal distribution (4)

Source: Andrew Ng, Stanford University, Machine Learning course 2012, Lecture 15
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Multivariate Normal distribution (5)

Source: Andrew Ng, Stanford University, Machine Learning course 2012, Lecture 15
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Multivariate Normal distribution (6)

Source: Andrew Ng, Stanford University, Machine Learning course 2012, Lecture 15
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MLE - Maximum Likelihood Estimation (1)

� The likelihood L(x) is the conditional probability p(z|x) of the
measurements2 z given a particular true value of x.

� If the distribution is Gaussian and observations z are measured, the
likelihood L(x) is a function only of x.

� How do we obtain MLE? Knowing the distribution of L(x) and
measurements z, then x is varied until the maximum of the distribution is
found:

x̂MLE = argmax
x

p(z|x)

2Note: The likelihood is a function of x but it is not a probability distribution over x, it would be incorrect
to refer to it as the likelihood of the data.

http://cmp.felk.cvut.cz
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MLE - Maximum Likelihood Estimation (2)

Example - Sonar MLE (1)

Suppose we have two independent sonar measurements z1, z2 of a position x.
The sensors are modeled both in the same way as p(zi|x) = N (x, σ2).

� Since the two sensors are independent the likelihood is:

L(x) = p(z1, z2|x) = p(z1|x)p(z2|x)

� and since the sensors are Gaussian3:

L(x) ∼ e−
(z1−x)2

2σ2 × e−
(z2−x)2

2σ2 = e
−(z1−x)2+(z2−x)2

2σ2

3Note: we ignore the irrelevant normalization constant.

http://cmp.felk.cvut.cz
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MLE - Maximum Likelihood Estimation (3)

Example - Sonar MLE (2)

� We can express the negative log likelihood as follows:

− lnL(x) =
(z1 − x)2 + (z2 − x)2

2σ2
=

2x2 − 2x(z1 + z2) + z2
1 + z2

2

2σ2

� We redefine the MLE task to: x̂MLE = argmin
x

− lnL(x)

� We minimize by differentiating w.r.t. x and setting equal to 0,

� which leads to: x̂MLE = z1+z2
2 = x

http://cmp.felk.cvut.cz
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MLE - Maximum Likelihood Estimation (4)

Example - Sonar MLE (3)

http://cmp.felk.cvut.cz
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MLE - Maximum Likelihood Estimation (5)

Example - Sonar MLE (4)

Suppose we have two independent sonar measurements z1, z2 of a position x, but
each sensor has a different model: p(z1|x) = N (x, σ2

1) and p(z2|x) = N (x, σ2
2).

� Again, the two sensors are independent and the likelihood is:

L(x) = p(z1, z2|x) = p(z1|x)p(z2|x)→ L(x) ∼ e
−(z1−x)2

2σ2
1 × e

−(z2−x)2

2σ2
2

� We express the negative log likelihood:

− lnL(x) = 0.5(σ−2
1 (z1 − x)2 + σ−2

2 (z2 − x)2) + const

� and we minimize it by differentiating w.r.t. to x and setting to 0:

x̂MLE =
σ−2

1 z1+σ−2
2 z2

σ−2
1 +σ−2

2

, σ̂−2
MLE = σ−2

1 + σ−2
2

http://cmp.felk.cvut.cz
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MLE - Maximum Likelihood Estimation (6)

Example - Sonar MLE (5)

Now, assume we tested the sensors and we identified their variances of the
measurements, such that: p(z1|x) ∼ N (x, 102) and p(z2|x) ∼ N (x, 202).
What will be the MLE for these sensor readings z1 = 130 and z2 = 170?

x̂MLE = 130/102+170/202

1/102+1/202 = 138

σ̂MLE = 1√
1/102+1/202

= 8.94

Conclusion: the ML estimate is closer to the more confident measurement.

http://cmp.felk.cvut.cz
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MAP - Maximum A-Posteriori Estimation (1)

� In many cases, we already have some prior (expected) knowledge about the
random variable x, i.e. the parameters of its probability distribution p(x).

� With the Bayes rule, we go from prior to a-posterior knowledge about x,
when given the observations z:

p(x|z) = p(z|x)p(x)
p(z) = likelihood×prior

normalizing constant ∼ C × p(z|x)p(x)

� Given an observation z, a likelihood function p(z|x) and prior distribution
p(x) on x, the maximum a posteriori estimator MAP finds the value of x
which maximizes the posterior distribution p(x|z):

x̂MAP = argmax
x

p(z|x)p(x)

http://cmp.felk.cvut.cz
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MAP - Maximum A-Posteriori Estimation (2)

Example - Application of MAP to a random variable of θ

http://cmp.felk.cvut.cz
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MAP - Maximum A-Posteriori Estimation (3)

Example - Sonar MAP (1)

Suppose we again have two independent sonar measurements z1, z2 of a
position x, and each sensor modeled as: p(z1|x) = N (x, σ2

1) and
p(z2|x) = N (x, σ2

2).
� The joint likelihood is defined as:

L(x) = p(z1, z2|x) = p(z1|x)p(z2|x).

� In addition, we also have a prior (expected) information about x:

p(x) ∼ N (xprior, σ
2
prior).

� The posterior probability density is given by a Gaussian distribution:

p(x|z1, z2) ∼ p(z1, z2|x)p(x) ∼ N (xpos, σ
2
post)

http://cmp.felk.cvut.cz
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MAP - Maximum A-Posteriori Estimation (4)

Example - Sonar MAP (2)

� Using the same approach as for deriving the MLE, the mean of the posteriori
distribution of MAP is obtained as:

xpost =
σ−2

1 z1 + σ−2
2 z2 + σ−2

priorxprior

σ−2
1 + σ−2

2 + σ−2
prior

= x̂MAP

� and the variance is:

σ−2
post = σ−2

1 + σ−2
2 + σ−2

prior = σ̂−2
MAP

http://cmp.felk.cvut.cz
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MAP - Maximum A-Posteriori Estimation (5)

Example - Sonar MAP (3)

We assume the same sensors as in the previous example p(z1|x) ∼ N (x, 102)

and p(z2|x) ∼ N (x, 202), but now consider a prior (expected) knowledge4
p(x) ∼ N (xprior = 150, σ2

prior = 302). What will be the MAP for these sensor
readings z1 = 130 and z2 = 170?

x̂MAP = 130/102+170/202+150/302

1/102+1/202+1/302 = 139.04

σ̂MAP = 1√
1/102+1/202+1/302

= 8.57

4Note: The prior knowledge is obtained for example statistically or from a datasheet.

http://cmp.felk.cvut.cz
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MAP - Maximum A-Posteriori Estimation (6)

Example - Sonar MAP (4)

http://cmp.felk.cvut.cz
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MAP - Maximum A-Posteriori Estimation (7)

Example - Sonar MAP (5)

http://cmp.felk.cvut.cz
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What is the relationship between MLE and MAP?

The relationship between MLE and MAP is the update rule:

x̂MAP =
σ−2
priorxprior + σ−2

lik x̂MLE

σ−2
prior + σ−2

lik

= xprior +
σ2
prior

σ2
prior+σ

2
lik

(x̂MLE − xprior)

� We can see that the prior acts as an additional sensor.

� If x̂MLE = xprior then x̂MAP is unchanged by prior but variance decreases.

� If σlik >> σprior then x̂MAP ≈ xprior (noisy sensor!).

� If σprior >> σlik then x̂MAP ≈ x̂MLE (weak prior knowledge!).

http://cmp.felk.cvut.cz
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MMSE - Minimum Mean Squared Error

Without proof5: We want to find such a x̂, an estimate of x, that given a set
of measurements Zk = {z1, z2, ..., zk} it minimizes the mean squared error
between the true value and this estimate.6

x̂MMSE = argmin
x̂

E{(x̂− x)>(x̂− x)|Zk} = E{x|Zk}

Why is this important? The MMSE estimate given a set of measurements is
the mean of that variable conditioned on the measurements! 7

5See reference [1] pages 11-12
6Note: We minimize a scalar quantity.
7Note: In LSQ the x is a unknown constant but in MMSE x is a random variable.

http://cmp.felk.cvut.cz
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RBE - Recursive Bayesian Estimation

RBE is extension of MAP to time-stamped sequence of observations.

Without proof8: We obtain RBE as the likelihood of current kth measurement
× prior which is our last best estimate of x at time k − 1 conditioned on
measurement at time k − 1 (denominator is just a normalizing constant).

p(x|Zk) = p(zk|x)p(x|Zk−1)

p(zk|Zk−1) = current likelihood×last best estimate
normalizing constant

8See reference [1] pages 12-14, note: if Gaussian pdf of both prior and likelihood then the RBE→ the LKF

http://cmp.felk.cvut.cz
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LSQ - Least Squares Estimation (1)

Given measurements z, we wish to solve for x, assuming linear relationship:

Hx = z

If H is a square matrix with detH 6= 0 then the solution is trivial:

x = H−1z,

otherwise (most commonly), we seek such solution x̂ that is closest (in Euclidean
distance sense) to the ideal:

x̂ = argmin
x

||Hx− z||2 = argmin
x

{
(Hx− z)

>
(Hx− z)

}

http://cmp.felk.cvut.cz
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LSQ - Least Squares Estimation (2)

Given the following matrix identities:

� (AB)> = B>A>

� ||x||2 = x>x

� ∇x b>x = b

� ∇x x>Ax = 2Ax

We can derive the closed form solution9:

||Hx− z||2 = x>H>Hx− x>H>z− z>Hx + z>z

∂||Hx− z||2

∂x
= 2H>Hx− 2H>z = 0

⇒ x = (H>H)−1H>z

9in MATLAB use the pseudo-inverse pinv()

http://cmp.felk.cvut.cz


36/73
LSQ - Least Squares Estimation (3)

The world is non-linear → nonlinear model function h(x) → non-linear LSQ10:

x̂ = argmin
x

||(h(x)− z)||2

� We seek such δ that for x1 = x0 + δ the ||h(x1)− z||2 is minimized.
� We use Taylor series expansion: h(x0 + δ) = h(x0) +∇Hx0δ

||h(x1)−z||2 = ||h(x0)+∇Hx0δ−z||2 = || ∇Hx0︸ ︷︷ ︸
A

δ− (z− h(x0)︸ ︷︷ ︸
b

)||2

where ∇Hx0 is Jacobian of h(x):

∇Hx0 =
∂h

∂x
=


∂h1
∂x1

. . . ∂h1
∂xm... ...

∂hn
∂x1

. . . ∂hn
∂xm


10Note: We still measure the Euclidean distance between two points that we want to optimize over.

http://cmp.felk.cvut.cz
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LSQ - Least Squares Estimation (4)

The extension of LSQ to the non-linear LSQ can be formulated as an algorithm:

1. Start with an initial guess x̂. 11

2. Evaluate the LSQ expression for δ (update the ∇Hx̂ and substitute). 12

δ := (∇Hx̂
>∇Hx̂)−1∇Hx̂

>[z− h(x̂)]

3. Apply the δ correction to our initial estimate: x̂ := x̂ + δ.13

4. Check for the stopping precision: if ||h(x̂)− z||2 > ε proceed with step (2)

or stop otherwise.14

11Note: We can usually set to zero.
12Note: This expression is obtained using the LSQ closed form and substitution from previous slide.
13Note: Due to these updates our initial guess should converge to such x̂ that minimizes the ||h(x̂)− z||2
14Note: ε is some small threshold, usually set according to the noise level in the sensors.

http://cmp.felk.cvut.cz
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LSQ - Least Squares Estimation (5)

Example - Long Base-line Navigation (1) SONARDYNE

http://cmp.felk.cvut.cz
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LSQ - Least Squares Estimation (6)

Example - Long Base-line Navigation (2)

Assume an underwater robot operating within the range of 4 beacons and
receiving time-of-flight measurements simultaneously and without delay.

We wish to find the LSQ estimate of robot position xv = [x, y, z]> while each
beacon i is at known position xbi = [xbi, ybi, zbi]

>. The observation model is15:

z =


t1
t2
t3
t4

 = h(xv) =
2

c


||xb1 − xv||
||xb2 − xv||
||xb3 − xv||
||xb4 − xv||


where ti is the measured time-of-flight from beacon i.

15Note: We assume the transceiver operates at speed of sound c

http://cmp.felk.cvut.cz
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LSQ - Least Squares Estimation (7)

Example - Long Base-line Navigation (3)

We derive the ∇Hxv and plug it into the 4-step algorithm already introduced:

∇Hxv = −2

c


∆x1 ∆y1 ∆z1

∆x2 ∆y2 ∆z2

∆x3 ∆y3 ∆z3

∆x4 ∆y4 ∆z4


where:

∆xi = (xbi − x)/ri,∆yi = (ybi − y)/ri,∆zi = (zbi − z)/ri

ri =
√

(xbi − x)2 + (ybi − y)2 + (zbi − z)2

http://cmp.felk.cvut.cz
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LSQ - Least Squares Estimation (8)

Example - Long Base-line Navigation (4)

http://cmp.felk.cvut.cz
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LSQ - Least Squares Estimation (9)

Example - Long Base-line Navigation (5)

http://cmp.felk.cvut.cz
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LSQ - Least Squares Estimation (10)

Example - Long Base-line Navigation (6)

http://cmp.felk.cvut.cz
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Overview of Estimators

What have we learnt so far?

� MLE - we have the likelihood (conditional probability of measurements)

� MAP - we have the likelihood and some prior (expected) knowledge

� MMSE - we have a set of measurements of a random variable

� RBE - we have the MAP and incoming sequence of measurements

� LSQ - we have a set of measurements and some knowledge about the
underlying model (linear or non-linear)

What comes next?

The Kalman filter - we have sequence of measurements and a state-space model
providing the relationship between the states and the measurements (linear model
→ LKF, non-linear model → EKF)

http://cmp.felk.cvut.cz
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LKF - Assumptions

The likelihood p(z|x) and the prior p(x) on x are Gaussian, and the linear
measurement model z = Hx + w is corrupted by Gaussian noise w ∼ N (0,R):

p(w) =
1

(2π)n/2|R|1/2
exp{−1

2
w>R−1w}

The likelihood p(z|x) is now a multi-D Gaussian16:

p(z|x) =
1

(2π)nz/2|R|1/2
exp{−1

2
(z−Hx)>R−1(z−Hx)}

The prior belief in x with mean x	 and covariance P	 is a multi-D Gaussian:

p(x) =
1

(2π)nx/2|P	|1/2
exp{−1

2
(x− x	)>P−1

	 (x− x	)}

We want the a-posteriori estimate p(x|z) that is also a multi-D Gaussian, with
mean x⊕ and covariance P⊕ → the equations of the LKF.

16Note: nz is the dimension of the observation vector and nx is the dimension of the state vector.

http://cmp.felk.cvut.cz
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LKF - The proof?

Without proof17, here are the main ideas exploited while deriving the LKF:

� We use the Bayes rule to express the p(x|z) → the MAP18

� We know that Gaussian × Gaussian = Gaussian

� Considering the above, the new mean x⊕ will be the MMSE estimate,

� the new covariance P⊕ is derived using a crazy matrix identity

17See reference [1] pages 22-26
18Note: Recall the Bayes rule p(x|z) = p(z|x)p(x)

p(z) = p(z|x)p(x)
p(z) = p(z|x)p(x)∫+∞

−∞ p(z|x)p(x) dx
= p(z|x)p(x)

normalising const

http://cmp.felk.cvut.cz
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LKF - Update Equations

We defined a linear observation model mapping the measurements z with
uncertainty (covariance) R onto the states x using a prior mean estimate x	
with prior covariance P	.

The LKF update: the new mean estimate x⊕ and its covariance P⊕:

x⊕ = x	 + Wν

P⊕ = P	 −WSW>

– where ν is the innovation given by: ν = z−Hx	,
– where S is the innovation covariance given by: S = HP	H

> + R,19
– where W is the Kalman gain (∼ the weights!) given by: W = P	H

>S−1.

What if we want to estimate states we don’t measure? → model

19Note: Recall that if x ∼ N (µ,Σ) and y = Mx then y ∼ N (µ,MΣM>)

http://cmp.felk.cvut.cz
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LKF - System Model Definition

Standard state-space description of a discrete-time system:

x(k) = Fx(k−1) + Bu(k) + Gv(k)

– where v is a zero mean Gaussian noise v ∼ N (0,Q) capturing the uncertainty
(imprecisions) of our transition model (mapped by G onto the states),
– where u is the control vector20 (mapped by B onto the states),
– where F is the state transition matrix21.

20For example the steering angle on a car as input by the driver.
21For example the differential equations of motion relating the position, velocity and acceleration.
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LKF - Temporal-Conditional Notation

The temporal-conditional22 notation, noted as (i|j), defines x̂(i|j) as the MMSE
estimate of x at time i given measurements up until and including the time j,
leading to two cases:

� x̂(k|k) estimate at k given all available measurements → the estimate

� x̂(k|k−1) estimate at k given the first k − 1 measurements → the prediction

22This notation is necessary to introduce when incorporating the state-space model into the LKF equations.
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LKF - Incorporating System Model

The LKF prediction: using (i|j) notation

x̂(k|k−1) = Fx̂(k−1|k−1) + Bu(k)

P(k|k−1) = FP(k−1|k−1)F
> + GQG>

The LKF update: using (i|j) notation

x̂(k|k) = x̂(k|k−1) + W(k)ν(k)

P(k|k) = P(k|k−1) −W(k)SW(k)
>

– where ν is the innovation: ν(k) = z(k) −Hx̂(k|k−1)

– where S is the innovation covariance: S = HP(k|k−1)H
> + R

– where W is the Kalman gain(∼ the weights!): W(k) = P(k|k−1)H
>S−1
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LKF - Discussion (1)

� Recursion: the LKF is recursive, the output of one iteration is the input to
next iteration.

� Initialization: the P(0|0) and x̂(0|0) have to be provided. 23

� Predictor-corrector structure:
the prediction is corrected by fusion of measurements via innovation, which
is the difference between the actual observation z(k) and the predicted
observation Hx̂(k|k−1).

23Note: It can be some initial good guess or even zero for mean, one for covariance.
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LKF - Discussion (2)

� Asynchrosity: The update step only proceeds when the measurements
come, not necessarily at every iteration. 24

� Prediction covariance increases: since the model is inaccurate the
uncertainty in predicted states increases with each prediction by adding the
GQG> term → the Pk|k−1 prediction covariance increases.

� Update covariance decreases: due to observations the uncertainty in
predicted states decreases / not increases by subtracting the positive
semi-definite WSW>25 → the Pk|k update covariance decreases / not
increases.

24Note: If at time-step k there is no observation then the best estimate is simply the prediction x̂(k|k−1)

usually implemented as setting the Kalman gain to 0 for that iteration.
25Each observation, even the not accurate one, contains some additional information that is added to the

state estimate at each update.
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LKF - Discussion (3)

� Observability: the measurements z need not to fully determine the state
vector x, the LKF can perform26 updates using only partial measurements
thanks to:
– prior info about unobserved states and
– correlations.27

� Correlations:
– the diagonal elements of P are the principal uncertainties (variance) of
each of the state vector elements.
– the off-diagonal terms of P capture the correlations between different
elements of x.

Conclusion: The KF exploits the correlations to update states that are not
observed directly by the measurement model.

26Note: In contrary to LSQ that needs enough measurements to solve for the state values.
27Note: Over the time for unobservable states the covariance will grow without bound.
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LKF - Linear Navigation Problem (1)

Example - Planet Lander: State-space model

A lander observes its altitude x above planet using time-of-flight radar. Onboard
controller needs estimates of height and velocity to actuate the rockets →
discrete time 1D model:

x(k) =

[
1 δT

0 1

]
︸ ︷︷ ︸

F

x(k−1) +

[
δT 2

δT

]
︸ ︷︷ ︸

G

v(k)

z(k) =
[

2
c 0

]︸ ︷︷ ︸
H

x(k) + w(k)

where δT is sampling time, the state vector x = [h ḣ]> is composed of height h
and velocity ḣ; the process noise v is a scalar gaussian process with covariance
Q28, the measurement noise w is given by the covariance matrix R.29

28Modelled as noise in acceleration—hence the quadratics time dependence when adding to position-state.
29Note: We can find R either statistically or use values from a datasheet.
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LKF - Linear Navigation Problem (2)

Example - Planet Lander: Simulation model

A non-linear simulation model in MATLAB was created to generate the true
state values and corresponding noisy observation:

1. First, we simulate motion in a thin atmosphere (small drag) and vehicle
accelerates.

2. Second, as the density increases the vehicle decelerates to reach quasi-steady
terminal velocity fall.

� The true σ2
Q of the process noise and the σ2

R of the measurement noise are
set to different numbers than those used in our linear model.30

� Simple Euler integration for the true motion is used (velocity → height).

30Note: we can try to change these settings and observe what happens if the model and the real world are
too different.
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LKF - Linear Navigation Problem (3)

Example - Planet Lander: Controller model

The vehicle controller has two features implemented:

1. When the vehicle descends below a first given altitude threshold, it deploys a
parachute (to increase the aerodynamic drag).

2. When the vehicle descends below a second given altitude threshold, it fires
rocket burners to slow the descend and land safely.

� The controller operates only on the estimated quantities.

� Firing the rockets also destroys the parachute.
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LKF - Linear Navigation Problem (4)

Example - Results for: σmodel
R = 1.1σtrue

R , σmodel
Q = 1.1σtrue

Q

We did good modeling, errors are due to the non-linear world!
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LKF - Linear Navigation Problem (5)

Example - Results for: σmodel
R = 10σtrue

R , σmodel
Q = 1.1σtrue

Q

We do not trust the measurements, the good linear model alone is not enough!
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LKF - Linear Navigation Problem (6)

Example - Results for: σmodel
R = 1.1σtrue

R , σmodel
Q = 10σtrue

Q

We do not trust our model, the estimates have good mean but are too noisy!
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LKF - Linear Navigation Problem (7)

Example - Results for: σmodel
R = 0.1σtrue

R , σmodel
Q = 1.1σtrue

Q

We are overconfident measurements—fortunately, the sensor is not more noisy!
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LKF - Linear Navigation Problem (8)

Example - Results for: σmodel
R = 1.1σtrue

R , σmodel
Q = 0.1σtrue

Q

We are overconfident in our model, but the world is really not linear ...
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LKF - Linear Navigation Problem (9)

Example - Results for: σmodel
R = 10σtrue

R , σmodel
Q = 10σtrue

Q

We do neither trust the model nor measurements, we cope with the nonlinearities.
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From LKF to EKF

� Linear models in the non-linear environment → BAD.

� Non-linear models in the non-linear environment → BETTER.

� Assume the following the non-linear system model function f(x) and the
non-linear measurement function h(x), we can reformulate:

x(k) = f(x(k−1),u(k),k) + v(k)

z(k) = h(x(k),u(k),k) + w(k)
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EKF - Non-linear Prediction

Without proof31: The main idea behind EKF is to linearize the non-linear
model around the „best“ current estimate32.

This is realized using a Taylor series expansion33.

Assume an estimate x̂(k−1|k−1) then

x(k) ≈ f(x̂(k−1|k−1),u(k),k) +∇Fx[x(k−1) − x̂(k−1|k−1)] + · · ·+ v(k)

where the term ∇Fx is a Jacobian of f(x) w.r.t. x evaluated at x̂(k−1|k−1):

∇Fx =
∂f

∂x
=


∂f1
∂x1

. . . ∂f1
∂xm... ...

∂fn
∂x1

. . . ∂fn
∂xm


31See reference [1] pages 39-41
32Note: the „best“ meaning the prediction at (k|k − 1) or the last estimate at (k − 1|k − 1)
33Note: recall the non-linear LSQ problem of LBL navigation
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EKF - Non-linear Observation

Without proof34: The same holds for the observation model, i.e. the predicted
observation z(k|k−1) is the projection of x̂(k|k−1) through the non-linear
measurement model35.

Hence, assume an estimate x̂(k|k−1) then

z(k) ≈ h(x̂(k|k−1),u(k),k) +∇Hx[x̂(k|k−1) − x(k)] + · · ·+ w(k)

where the term ∇Hx is a Jacobian of h(x) w.r.t. x evaluated at x̂(k|k−1):

∇Hx =
∂h

∂x
=


∂h1
∂x1

. . . ∂h1
∂xm... ...

∂hn
∂x1

. . . ∂hn
∂xm



34See reference [1] pages 41-43
35Note: for the LKF it was given by Hx̂(k|k−1)
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EKF - Algorithm (1)
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EKF - Algorithm (2)

Source: [1] P. Newman, EKF Based Navigation and SLAM, SLAM Summer School 2006
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EKF - Features & Maps

Assumption: The world is represented by a set of discrete landmarks (features)
whose location / orientation and geometry can by described by a set of discrete
parameters → concatenated into a feature vector called Map:

M =


xf ,1

xf ,2

xf ,3
...

xf ,n


Examples of features in 2D world:

� absolute observation: given by the position coordinates of the landmarks in
the global reference frame: xf ,i = [xi yi]

> (e.g., measured by GPS)
� relative observation: given by the radius and bearing to landmark:
xf ,i = [ri θi]

> (e.g., measured by visual odometry, laser mapping, sonar)
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EKF - Localization

Assumption: we are given a map M and a sequence of vehicle-relative36
observations Zk described by likelihood p(Zk|M,xv).

Task: to estimate the pdf for the vehicle pose p(xv|M,Zk).

p(xv|M,Zk) =
p(xv,M,Zk)

p(M,Zk)
=
p(Zk|M,xv)× p(M,xv)

p(Zk|M)× p(M)
=

=
p(Zk|M,xv)× p(xv|M)× p(M)∫ +∞

−∞ p(Zk|M,xv)p(xv|M) dxv × p(M)
= p(Zk|M,xv)×p(xv|M)

normalising constant

Solution: p(xv|M) is just another sensor → the pdf of locating the robot when
observing a given map.

36Note: Vehicle-relative observations are such kind of measurements that involve sensing the relationship
between the vehicle and its surroundings—the map, e.g. measuring the angle and distance to a feature.
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EKF - Mapping

Assumption: we are given a vehicle location xv, 37 and a sequence of
vehicle-relative observations Zk described by likelihood p(Zk|M,xv).

Task: to estimate the pdf of the map p(M|Zk,xv).

p(M|Zk,xv) =
p(xv,M,Zk)

p(Zk,xv)
=
p(Zk|M,xv)× p(M,xv)

p(Zk|xv)× p(xv)
=

=
p(Zk|M,xv)× p(M|xv)× p(xv)∫ +∞

−∞ p(Zk|M,xv)p(M|xv) dM × p(xv)
= p(Zk|M,xv)×p(M|xv)

normalising constant

Solution: p(xv|M) is just another sensor → the pdf of observing the map at
given robot location.

37Note: Ideally derived from absolute position measurements since position derived from relative measu-
rements (e.g. odometry, integration of inertial measurements) is always subjected to a drift—so called dead
reckoning
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EKF - Simultaneous Localization and Mapping

If we parametrize the random vectors xv and M with mean and variance then
the (E)KF will compute the MMSE estimate of the posterior.

What is the SLAM and how can we achieve it?

� With no prior information about the map (and about the vehicle—no GPS),

� the SLAM is a navigation problem of building consistent estimate of both

� the environment (represented by the map—the mapping)

� and vehicle trajectory (6 DOF position and orientation—the localization),

� using only proprioceptive sensors (e.g., inertial, odometry),

� and vehicle-centric sensors (e.g., radar, camera, laser, sonar etc.).
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EKF - Simultaneous Localization and Mapping

Example - EKF-SLAM

The naive EKF-SLAM—the map is taken as additional sensor and ALL the
features are included in the state vector (information captured in P).

What are the EKF-SLAM characteristics?
� The naive version does not work, especially in 3D and for large areas!
� Large computational load (the update of the covariance matrix P

proportional at best to the square of the number of features)!

How can we make the EKF-SLAM work?
� Feature management—ideally decoupled solution or more solutions together
(laser-based mapping, vision-based mapping)

� Loop closures—save the history of observations and if the same place visited
again, re-compute both map and trajectory (estimators called „smoothers“).
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Example - Real-world EKF architecture
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