2 1 REINFORCEMENT

LEARNING

In which we examine how an agent can learn from success and failure, from re-
ward and punishment.

21.1 INTRODUCTION

Chapters 18 and 20 covered learning methods that learn functions and probability models
from example. In this chapter, we will study how agents can learn what to do, particularly
when there is no teacher telling the agent what action to take in each circumstance.

For example, we know an agent can learn to play chess by supervised learning—by
being given examples of game situations along with the best moves for those situations. But
if there is no friendly teacher providing examples, what can the agent do? By trying random
moves, the agent can eventually build a predictive model of its environment: what the board
will be like after it makes a given move and even how the opponent is likely to reply in a
given situation. The problem is this: without some feedback about what is good and what is
bad, the agent will have no grounds for deciding which move to make. The agent needs to
know that something good has happened when it wins and that something bad has happened
when it loses. This kind of feedback is called a reward, or reinforcement. In games like
chess, the reinforcement is received only at the end of the game. In other environments, the
rewards come more frequently. In ping-pong, each point scored can be considered a reward,;
when learning to crawl, any forward motion is an achievement. Our framework for agents
regards the reward as part of the input percept, but the agent must be “hardwired” to recognize
that part as a reward rather than as just another sensory input. Thus, animals seem to be
hardwired to recognize pain and hunger as negative rewards and pleasure and food intake as
positive rewards. Reinforcement has been carefully studied by animal psychologists for over
60 years.

Rewards were introduced in Chapter 17, where they served to define optimal policies
in Markov decision processes (MDPs). An optimal policy 1s a policy that maximizes the
expected total reward. The task of reinforcement learning is to use observed rewards to learn
an optimal (or nearly optimal) policy for the environment. Whereas in Chapter 17 the agent
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has a complete model of the environment and knows the reward function, here we assume no
prior knowledge of either. Imagine playing a new game whose rules you don’t know; after a
hundred or so moves, your opponent announces, “You lose.” This is reinforcement learning
in a nutshell.

In many complex domains, reinforcement learning is the only feasible way to train a
program to perform at high levels. For example, in game playing, it is very hard for a human
to provide accurate and consistent evaluations of large numbers of positions, which would be

naadad tn fra: 1 T
needed to train an evaluation function directly from examples. Instead, the program can be

told when it has won or lost, and it can use this information to learn an evaluation function
that gives reasonably accurate estimates of the probability of winning from any given position.
Similarly, it is extremely difficult to program an agent to fly a helicopter; yet given appropriate
negative rewards for crashing, wobbling, or deviating from a set course, an agent can learn to
fly by itself.

Reinforcement learning might be considered to encompass all of AL an agent is placed
in an environment and must learn to behave successfully therein. To keep the chapter man-
ageable, we will concentrate on simple settings and simple agent designs. For the most part,
we will assume a fully observable environment, so that the current state is supplied by each
percept. On the other hand, we will assume that the agent does not know how the environ-
ment works or what its actions do, and we will allow for probabilistic action outcomes. We
will consider three of the agent designs first introduced in Chapter 2:

o A utility-based agent learns a utility function on states and uses it to select actions that
maximize the expected outcome utility.

e A Q-learning agent learns an action-value function, or J-function, giving the expected
utility of taking a given action in a given state.

o A reflex agent learns a policy that maps directly from states to actions.

A utility-based agent must also have a model of the environment in order to make decisions,
because it must know the states to which its actions will lead. For example, in order to make
use of a backgammon evaluation function, a backgammon program must know what its legal
moves are and how they affect the board position. Only in this way can it apply the utility
function to the outcome states. A (J-learning agent, on the other hand, can compare the values

of its available choices without needing to know their outcomes. so it does not need a model
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of the environment. On the other hand, because they do not know where their actions lead,
(2-learning agents cannot look ahead; this can seriously restrict their ability to learn, as we
shall see.

We begin in Section 21.2 with passive learning, where the agent’s policy is fixed and
the task is to learn the utilities of states (or state—action pairs); this could also involve learning
a model of the environment. Section 21.3 covers active learning, where the agent must also
learn what to do. The principal issue is exploration: an agent must experience as much as
possible of its environment in order to learn how to behave in it. Section 21.4 discusses how
an agent can use inductive wdlmllg to learn much faster from its Cchncn(,Cb Section 21.5
covers methods for learning direct policy representations in reflex agents. An understanding

of Markov decision processes (Chapter 17) is essential for this chapter.
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21.2 PASSIVE REINFORCEMENT LEARNING

To keep things simple, we start with the case of a passive learning agent using a state-based
representation in a fully observable environment. In passive learning, the agent’s policy 7
is fixed: in state s, it always executes the action 7(s). Its goal is simply to learn how good
the policy is—that is, to learn the utility function U™ (s). We will use as our example the
4 x 3 world introduced in Chapter 17. Figure 21.1 shows a policy for that world and the
corresponding utilities. Clearly, the passive learning task is similar to the policy evaluation
task, part of the policy iteration algorithm described in Section 17.3. The main difference
is that the passive learning agent does not know the tramsition model 7'(s, a, s’), which
specifies the probability of reaching state s’ from state s after doing action a; nor does it
know the reward function R(s), which specifies the reward for each state.

— 3 0.812 | 0.868 | 0.918

T =11 2 | 0.762 0.660 | [=1]

1 t ’ -— | - - 1 0.705 0.655 0.611 0.388
1 2 3

(a) (b)

Figure 21.1  (a) A policy 7 for the 4 x 3 world; this policy happens to be optimal with
rewards of B(s)= — 0.04 in the nonterminal states and no discounting. (b) The utilities of

the states in the 4 x 3 world, given policy 7.
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TRIAL The agent executes a set of trials in the environment using its policy 7. In each trial, the
agent starts in state (1,1) and experiences a sequence of state transitions until it reaches one
of the terminal states, (4,2) or (4,3). Its percepts supply both the current state and the reward
received in that state. Typical trials might look like this:

(1,1)-04—(1,2).04—(1, 3)-04— (1, 2).04— (1, 3)..04—(2, 3)-04—(3, 3)-04—(4,3) 1
(1,1).04—(1,2)-04—(1,3)-04—(2, 3)..04—(3,3)-04— (3, 2)-.04—(3,3)-04— (4, 3) 1
(1, D)e0a—(2,1)-04—(3, 1)-04—(3, 2)-.04—(4,2)1 .

Note that each state percept is subscripted with the reward received. The object is to use the
information about rewards to learn the expected utility U™ (s) associated with each nontermi-
nal state s. The utility is defined to be the expected sum of (discounted) rewards obtained if
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policy 7 is followed. As in Equation (17.3) on page 619, this is written as
oC
U'(s) = F Z Y'R(s) | 7,50=38] . (21.1)
t=0
We will include a discount factor ~ in all of our equations, but for the 4 x 3 world we will
set v=1.
Direct utility estimation
S A simple method for direct utility estimation was invented in the late 1950s in the area

ADADTIVE CONTROM
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THEORY

of adaptive control theory by Widrow and Hoff (1960). The idea is that the utility of a
state is the expected total reward from that state onward, and each trial provides a sample of
this value for each state visited. For example, the first trial in the set of three given earlier
provides a sample total reward of 0.72 for state (1,1), two samples of 0.76 and 0.84 for
(1,2), two samples of 0.80 and 0.88 for (1,3), and so on. Thus, at the end of each sequence,
the algorithm calculates the observed reward-to-go for each state and updates the estimated
utility for that state accordingly, just by keeping a running average for each state in a table.
In the limit of infinitely many trials, the sample average will converge to the true expectation
in Equation (21.1).

It is clear that direct utility estimation is just an instance of supervised learning where
each example has the state as input and the observed reward-to-go as output. This means
that we have reduced reinforcement learning to a standard inductive learning problem, as
discussed in Chapter 18. Section 21.4 discusses the use of more powerful kinds of repre-
sentations for the utility function, such as neural networks. Learning techniques for those
representations can be applied directly to the observed data.

Direct utility estimation succeeds in reducing the reinforcement learning problem to
an inductive learning problem, about which much is known. Unfortunately, it misses a very
important source of information, namely, the fact that the utilities of states are not indepen-
dent! The utility of each state equals its own reward plus the expected utility of its successor
states. That is, the utility values obey the Bellman equations for a fixed policy (see also
Equation (17.10)):

U™(s) = R(s) + 7 ZT(S,W(S), sYU™(s') . (21.2)

By ignoring the connections between states, direct utility estimation misses opportunities for
learning. For example, the second of the three trials given earlier reaches the state (3,2),
which has not previously been visited. The next transition reaches (3,3), which is known
from the first trial to have a high utility. The Bellman equation suggests immediately that
(3,2) is also likely to have a high utility, because it leads to (3,3), but direct utility estimation
learns nothing until the end of the trial. More broadly, we can view direct utility estimation
as searching in a hypothesis space for [/ that is much larger than it needs to be, in that it

includes many functions that violate the Bellman equations. For this reason, the algorithm
often converges very slowly.
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In order to take advantage of the constraints between states, an agent must learn how states
are connected. An adaptive dynamic programming (or ADP) agent works by learning the
transition model of the environment as it goes along and solving the corresponding Markov
decision process using a dynamic programming method. For a passive learning agent, this
means plugging the learned transition model 7'(s, 7(s), s’) and the observed rewards R(s)
into the Bellman equations (21.2) to calculate the utilities of the states. As we remarked in
our discussion of policy iteration in Chapter 17, these equations are linear (no maximization
involved) so they can be solved using any linear algebra package. Alternatively, we can adopt
the approach of modified policy iteration (see page 625), using a simplified value iteration
process to update the utility estimates after each change to the learned model. Because the
model usually changes only slightly with each observation, the value iteration process can
use the previous utility estimates as initial values and should converge quite quickly.

The process of learning the model itself is easy, because the environment is fully ob-
servable. This means that we have a supervised learning task where the input is a state—action
pair and the output is the resulting state. In the simplest case, we can represent the tran-
sition model as a table of probabilities. We keep track of how often each action outcome
occurs and estimate the transition probability T'(s, a, s') from the frequency with which s’ is
reached when executing a in s.! For example, in the three traces given on page 765, Right
is executed three times in (1,3) and two out of three times the resulting state is (2,3), so
T((1,3), Right, (2,3)) is estimated to be 2/3.

The full agent program for a passive ADP agent is shown in Figure 21.2. Its perfor-
mance on the 4 x 3 world is shown in Figure 21.3. In terms of how quickly its value estimates
improve, the ADP agent does as well as possible, subject to its ability to learn the transition
model. In this sense, it provides a standard against which to measure other reinforcement
learning algorithms. It is, however, somewhat intractable for large state spaces. In backgam-
mon, for example, it would involve solving roughly 10°? equations in 10°® unknowns.

Temporal difference learning

It is possible to have (almost) the best of both worlds; that is, one can approximate the con-
straint equations shown earlier without solving them for all possible states. The key is to
use the observed transitions to adjust the values of the observed states so that they agree
with the constraint equations. Consider, for example, the transition from (1,3) to (2,3) in the
second trial on page 765. Suppose that, as a result of the first trial, the utility estimates are
U™(1,3)=0.84 and U™(2, 3) =0.92. Now, if this transition occurred all the time, we would
expect the utilities to obey

U™(1,3) = —0.04 + U™(2,3) ,

so U™(1, 3) would be 0.88. Thus, its current estimate of 0.84 might be a little low and should
be increased. More generally, when a transition occurs from state s to state s’, we apply the

1 This is the maximum likelihood estimate, as discussed in Chapter 20. A Bayesian update with a Dirichlet prior
might work better.
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function PASSIVE-ADP-AGENT (percept) returns an action
inputs: percept, a percept indicating the current state s’ and reward signal 7/
static: 7, a fixed policy
man an MDP wit modn] ’T” T

mdp, an MDP with m
U, atable of utilities, initially empty

N.., a table of frequencies for state-action pairs, initially zero

Nsqs, a table of frequencies for state-action-state triples, initially zero
s, a, the previous state and action, initially null

fer b 8L
wyYvY ol

if s’ isnew thendo U[s'] — r'; R[s'] — 7'
if s is not null then do
increment N ;. [s, a] and N[5, @, 5]
for each ¢ such that N .. [s, a, t] is nonzero do
T[S, a,t] Nsas’[sa a,t] / Nsa[sa al
U «— VALUE-DETERMINATION(m, U, mdp)
if TERMINAL?[s'] then s, a < null else s, @ «— s, w[s’]
return a

Figure 21.2 A passive reinforcement learning agent based on adaptive dynamic program-
ming. To simplify the code, we have assumed that each percept can be divided into a per-
ceived state and a reward signal.
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Figure 21.3  The passive ADP learning curves for the 4 x 3 world, given the optimal policy
shown in Figure 21.1. (a) The utility estimates for a selected subset of states, as a function of
the number of trials. Notice the large changes occurring around the 78th trial—this is the first
time that the agent falls into the —1 terminal state at (4,2). (b) The root-mean-square error in
the estimate for I/(1, 1), averaged over 20 runs of 100 trials each.
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TEMPORAL-
DIFFERENCE

function PASSIVE-TD-AGENT{percept) returns an action
inputs: percept, a percept indicating the current state s’ and reward signal r

gtatic: — a fixed nolicv
DL LAN,. ) . [ YL VIV l}Ull\.«J

U, atable of utilities, initially empty
N, a table of frequencies for states, initially zero
s, a, T, the previous state, action, and reward, initially null

/

if s’ is new then U[s'] « 7/
if s is not null then do
increment N ,[s]
Ulsl— Uls] + a(N.Js)(r +  Uls') — Uls])
if TERMINAL?[s'] then s, a, 7 < null else s, a, 7 «— s', w[s'], 7/
return a

Figure 21.4 A passive reinforcement learning agent that learns utility estimates using tem-
poral differences.

following update to U™ (s):
UT(s) — UT(s) + a(R(s) +~U"(s') —=U"(s)) . (21.3)

Here, « is the learning rate parameter. Because this update rule uses the difference in utilities
between successive states, it is often called the temporal-difference, or TD, equation.

The basic idea of all temporal-difference methods is, first to define the conditions that
hold locally when the utility estimates are correct, and then, to write an update equation that
moves the estimates toward this ideal “equilibrium” equation. In the case of passive learning,
the equilibrium is given by Equation (21.2). Now Equation (21.3) does in fact cause the agent
to reach the equilibrium given by Equation (21.2), but there is some subtlety involved. First,
notice that the nnrlaff- involves nnlv the observed successor s’ , whereas the actual e me Tium
conditions involve all possible next states. One might thmk that this causes an improperly
large change in U™ (s) when a very rare transition occurs; but, in fact, because rare transitions
occur only rarely, the average value of U™ (s) will converge to the correct value. Furthermore,
if we change o from a fixed parameter to a function that decreases as the number of times
a state has been visited increases, then U(s) itself will converge to the correct value.? This
gives us the agent program shown in Figure 21.4. Figure 21.5 illustrates the performance of
the passive TD agent on the 4 x 3 world. It does not learn quite as fast as the ADP agent and
shows much higher variability, but it is much simpler and requires much less computation per
observation. Notice that TD does not need a model to perform its updates. The environment
supplies the connection between neighboring states in the form of observed transitions.

The ADP approach and the TD approach are actually closely related. Both try to make
local adjustments to the utility estimates in order to make each state “agree” with its succes-

sors. One difference is that TD adjusts a state to agree with its observed successor (Equa-

2 Technically, we require that 3~ a(n)=oc and 3.>°_ «®(n) < occ. The decay a(n)=1/n satisfies
these conditions. In Figure 21.5 we have used a(n) =60/(59 + n).
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Figure 21.5  The TD learning curves for the 4 x 3 world. (a) The utility estimates for a
selected subset of states, as a function of the number of trials. (b) The root-mean-square error
in the estimate for U/ (1, 1), averaged over 20 runs of 500 trials each. Only the first 100 trials

are shown to enable comparison with Figure 21.3.

tion (21.3)), whereas ADP adjusts the state to agree with all of the successors that might
occur, weighted by their probabilities (Equation (21.2)). This difference disappears when
the effects of TD adjustments are averaged over a large number of transitions, because the
frequency of each successor in the set of transitions is approximately proportional to its prob-
ability. A more important difference is that whereas TD makes a single adjustment per ob-
served transition, ADP makes as many as it needs to restore consistency between the utility
estimates U and the environment model 7. Although the observed transition makes only a
local change in T, its effects might need to be propagated throughout U. Thus, TD can be
viewed as a crude but efficient first approximation to ADP.

Each adjustment made by ADP could be seen, from the TD point of view, as a re-
sult of a “pseudo-experience” generated by simulating the current environment model. It
is possible to extend the TD approach to use an environment model to generate several
pseudo-experiences—transitions that the TD agent can imagine might happen, given its cur-
rent model. For each observed transition, the TD agent can generate a large number of imag-
inary transitions. In this way, the resulting utility estimates will approximate more and more
closely those of ADP—of course, at the expense of increased computation time.

In a similar vein, we can generate more efficient versions of ADP by directly approx-
imating the algorithms for value iteration or policy iteration. Recall that full value iteration
can be intractable when the number of states is large. Many of the adjustment steps, however,
are extremely tiny. One possible approach to generating reasonably good answers quickly is
to bound the number of adjustments made after each observed transition. One can also use
a heuristic to rank the possible adjustments so as to carry out only the most significant ones.
The prioritized sweeping heuristic prefers to make adjustments to states whose likely suc-
cessors have just undergone a large adjustment in their own utility estimates. Using heuristics
like this, approximate ADP algorithms usually can learn roughly as fast as full ADP, in terms
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of the number of training sequences, but can be several orders of magnitude more efficient
in terms of computation. (See Exercise 21.3.) This enables them to handle state spaces that
are far too large for full ADP. Approximate ADP algorithms have an additional advantage:
in the early stages of learning a new environment, the environment model T often will be far
from correct, so there 1s little point in calculating an exact utility function to match it. An ap-
proximation algorithm can use a minimum adjustment size that decreases as the environment
model becomes more accurate. This eliminates the very long value iterations that can occur
early in learning due to large changes in the model.

21.3 ACTIVE REINFORCEMENT LEARNING

GREEDY AGENT

A passive learning agent has a fixed policy that determines its behavior. An active agent must
decide what actions to take. Let us begin with the adaptive dynamic programming agent and
consider how it must be modified to handle this new freedom.

First, the agent will need to learn a complete model with outcome probabilities for all
actions, rather than just the model for the fixed policy. The simple learning mechanism used
by PASSIVE-ADP-AGENT will do just fine for this. Next, we need to take into account the
fact that the agent has a choice of actions. The utilities it needs to learn are those defined
by the optimal policy; they obey the Bellman equations given on page 619, which we repeat
T

nere:

U(s) = R(s) +~ maaXZT(s, a,sU(s') . (21.4)

These equations can be solved to obtain the utility function U using the value iteration or
policy iteration algorithms from Chapter 17. The final issue is what to do at each step. Having
obtained a utility function U that is optimal for the learned model, the agent can extract an
optimal action by one-step look-ahead to maximize the expected utility; alternatively, if it
uses policy iteration, the optimal policy is already available, so it should simply execute the
action the optimal policy recommends. Or should it?

Exploration

Figure 21.6 shows the results of one sequence of trials for an ADP agent that follows the
recommendation of the optimal policy for the learned model at each step. The agent does not
learn the true utilities or the true optimal policy! What happens instead is that, in the 39th
trial, it finds a policy that reaches the +1 reward along the lower route via (2,1), (3,1), (3,2),
and (3,3). (See Figure 21.6.) After experimenting with minor variations, from the 276th trial
onward it sticks to that policy, never learning the utilities of the other states and never finding
the optimal route via (1,2), (1,3), and (2,3). We call this agent the greedy agent. Repeated
experiments show that the greedy agent very seldom converges to the optimal policy for this
environment and sometimes converges to really horrendous policies.

How can it be that choosing the optimal action leads to suboptimal results? The answer
is that the learned model is not the same as the true environment; what is optimal in the



772

Chapter 21. Reinforcement Learning

EXPLOITATION
EXPLORATION

BANDIT PROBLEMS

GLIE

-3
l
l
l
g

1

RMS error
151 Policy loss -=------

N
et
-

RMS error, policy loss
=]
)

-Lw-u_ ----------------- e m oo 1 — —- t ‘

0

0 50 100 150 200 250 300 350 400 450 500
Number of trials 1 2 3 4

(2) (b)

Figure 21.6  Performance of a greedy ADP agent that executes the action recommended
by the optimal policy for the learned model. (a) RMS error in the utility estimates averaged
over the nine nonterminal squares. (b) The suboptimal policy to which the greedy agent

converges in this particular sequence of trials.

learned model can therefore be suboptimal in the true environment. Unfortunately, the agent
does not know what the true environment is, so it cannot compute the optimal action for the
true environment. What, then, is to be done?

What the greedy agent has overlooked is that actions do more than provide rewards
according to the current learned model; they also contribute to learning the true model by af-
fecting the percepts that are received. By improving the model, the agent will receive greater
rewards in the future.> An agent therefore must make a trade-off between exploitation to
maximize its reward—as reflected in its current utility estimates—and exploration to maxi-
mize its long-term well-being. Pure exploitation risks getting stuck in a rut. Pure exploration
to improve one’s knowledge is of no use if one never puts that knowledge into practice. In the
real world, one constantly has to decide between continuing in
striking out into the unknown in the hopes of discovering a new
understanding, less exploration is necessary.

Can we be a little more precise than this? Is there an optimal exploration policy? It
turns out that this question has been studied in depth in the subfield of statistical decision
theory that deals with so-called bandit problems. (See sidebar.)

Although bandit problems are extremely difficult to solve exactly to obtain an optimal
exploration method, it is nonetheless possible to come up with a reasonable scheme that
will eventually lead to optimal behavior by the agent. Technically, any such scheme needs
to be greedy in the limit of infinite exploration, or GLIE. A GLIE scheme must try each
action in each state an unbounded number of times to avoid having a finite probability that
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3 Notice the direct analogy to the theory of information value in Chapter 16.
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EXPLORATION AND BANDITS

In Las Vegas, a one-armed bandit is a slot machine. A gambler can insert a coin,
pull the lever, and collect the winnings (if any). An n-armed bandit has n levers.
The gambler must choose which lever to play on each successive coin—the one
that has paid off best, or maybe one that has not been tried?

The n-armed bandit problem is a formal model for real problems in many vi-
tally important areas, such as deciding on the annual budget for Al research and
development. Each arm corresponds to an action (such as allocating $20 million
for the development of new Al textbooks), and the payoff from pulling the arm cor-
responds to the benefits obtained from taking the action (immense). Exploration,
whether it is exploration of a new research field or exploration of a new shopping
mall, is risky, is expensive, and has uncertain payoffs; on the other hand, failure to
explore at all means that one never discovers any actions that are worthwhile.

To formulate a bandit problem properly, one must define exactly what is meant
by optimal behavior. Most definitions in the literature assume that the aim is to
maximize the expected total reward obtained over the agent’s lifetime. These defi-
nitions require that the expectation be taken over the possible worlds that the agent
could be in, as well as over the possible results of each action sequence in any given
world. Here, a “world” is defined by the transition model T'(s, a, s'). Thus, in order
to act optimally, the agent needs a prior distribution over the possible models. The
resulting optimization problems are usually wildly intractable.

In some cases—for example, when the payoff of each machine is independent
and discounted rewards are used—it is possible to calculate a Gittins index for
each slot machine (Gittins, 1989). The index is a function only of the number of
times the slot machine has been played and how much it has paid off. The index for
each machine indicates how worthwhile it is to invest more, based on a combination
of expected return and expected value of information. Choosing the machine with
the highest index value gives an optimal exploration policy. Unfortunately, no way
has been found to extend Gittins indices to sequential decision problems.

One can use the theory of n-armed bandits to argue for the reasonableness
of the selection strategy in genetic algorithms. (See Chapter 4.) If you consider
each arm in an n-armed bandit problem to be a possible string of genes, and the
investment of a coin in one arm to be the reproduction of those genes, then ge-
netic algorithms allocate coins optimally, given an appropriate set of independence
assumptions.
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EXPLORATION
FUNCTION

using such a scheme will eventually learn the true environment model. A GLIE scheme must
also eventually become greedy, so that the agent’s actions become optimal with respect to the
learned (and hence the true) model.

There are several GLIE schemes; one of the simplest is to have the agent choose a ran-
dom action a fraction 1/t of the time and to follow the greedy policy otherwise. While this
does eventually converge to an optimal policy, it can be extremely slow. A more sensible
approach would give some weight to actions that the agent has not tried very often, while
tending to avoid actions that are believed to be of low utility. This can be implemented by
altering the constraint equation (21.4) so that it assigns a higher utility estimate to relatively
unexplored state—action pairs. Essentially, this amounts to an optimistic prior over the possi-
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scattered all over the place. Let us use U™ (s) to denote the optimistic estimate of the utility
(i.e., the expected reward-to-go) of the state s, and let N {a, s) be the number of times action a
has been tried in state s. Suppose we are using value iteration in an ADP learning agent; then
we need to rewrite the update equation (i.e., Equation (17.6)) to incorporate the optimistic
estimate. The following equation does this:

Ut (s) — R(s)+~ max f (ZT(s,a,s’)U+(s’), N(a,s)) . (21.5)

Here, f(u,n) is called the exploration function. It determines how greed (preference for
high values of u) is traded off against curiosity (preference for low values of n—actions that
have not been tried often). The function f(u, n) should be increasing in « and decreasing in
n. Obviously, there are many possible functions that fit these conditions. One particularly
simple definition is

| Rt ifn< N,
flu,n) = { u otherwise

where R is an optimistic estimate of the best possible reward obtainable in any state and N,
is a fixed parameter. This will have the effect of making the agent try each action—state pair
at least N, times.

The fact that U rather than U/ appears on the right-hand side of Equation (21.5) is
very important. As exploration proceeds, the states and actions near the start state might well
be tried a large number of times. If we used U, the more pessimistic utility estimate, then
the agent would soon become disinclined to explore further afield. The use of U means
that the benefits of exploration are propagated back from the edges of unexplored regions,
so that actions that lead foward unexplored regions are weighted more highly, rather than
just actions that are themselves unfamiliar. The effect of this exploration policy can be seen
clearly in Figure 21.7, which shows a rapid convergence toward optimal performance, unlike
that of the greedy approach. A very nearly optimal policy is found after just 18 trials. Notice
that the utility estimates themselves do not converge as quickly. This is because the agent
stops exploring the unrewarding parts of the state space fairly soon, visiting them only “by
accident” thereafter. However, it makes perfect sense for the agent not to care about the exact
utilities of states that it knows are undesirable and can be avoided.
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Figure 21.7  Performance of the exploratory ADP agent. using Rt = 2 and N, = 5. (a)
Utility estimates for selected states over time. (b) The RMS error in utility values and the
associated policy loss.

Learning an Action-Value Function

Now that we have an active ADP agent, let us consider how to construct an active temporal-
difference learning agent. The most obvious change from the passive case 1s that the agent
is no longer equipped with a fixed policy, so, if it learns a utility function U, it will need to
learn a model in order to be able to choose an action based on U via one-step look-ahead.
The model acquisition problem for the TD agent is identical to that for the ADP agent. What
of the TD update rule itself? Perhaps surprisingly, the update rule (21.3) remains unchanged.
This might seem odd, for the following reason: Suppose the agent takes a step that normally
leads to a good destination, but because of nondeterminism in the environment the agent ends
up in a catastrophic state. The TD update rule will take this as seriously as if the outcome had
been the normal result of the action, whereas one might suppose that, because the outcome
was a fluke, the agent should not worry about it too much. In fact, of course, the unlikely
outcome will occur only infrequently in a large set of training sequences; hence in the long
run its effects will be weighted proportionally to its probability, as we would hope. Once
again, it can be shown that the TD algorithm will converge to the same values as ADP as the
number of training sequences tends to infinity.

There is an alternative TD method called ()-learning that learns an action-value repre-
sentation instead of learning utilities. We will use the notation )(a, s) to denote the value of
doing action a in state s. Q-values are directly related to utility values as follows:

U(s) = max Qa,s) . (21.6)

(2-functions may seem like just another way of storing utility information, but they have
7

a very important property: a 7D agent

either learning or action selection. For this reason, ()-learning is called a model-free method.
As with utilities, we can write a constraint equation that must hold at equilibrium when the
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function Q-LEARNING-AGENT(percept) returns an action
inputs: percept, a percept indicating the current state s’ and reward signal r’
static: (7, a table of action values index by state and action
N, atable of frequencies for state-action pairs
s, a, r, the previous state, action, and reward, initially null

if 5 is not null then do
increment N,,[s, a]
Qla, s}« Qla, s] + a(Nsa[s, a])(r + v maxe Qd',s'] — Q[a, s])
if TERMINAL?[s’] then s, a, r < null
else s, a,r «— s’ argmax,. f(Q[a’,s'], Nsula', s']), 7’
return a

Figure 21.8  An exploratory Q-learning agent. It is an active learner that learns the value
QQ(a, s) of each action in each situation. It uses the same exploration function f as the ex-
ploratory ADP agent, but avoids having to learn the transition model because the (J-value of
a state can be related directly to those of its neighbors.

(2-values are correct:

Qa,s) = R(s) + ZT(S, a, sy max Q{a’,s") . (21.7)

s’/ o

As in the ADP learning agent, we can use this equation directly as an update equation for
an iteration process that calculates exact {)-values, given an estimated model. This does,
however, require that a model also be learned because the equation uses T'(s,a,s’). The
temporal-difference approach, on the other hand, requires no model. The update equation for
TD Q-learning is

Qla,5) = Qa,5) + a(R(s) +7 max Q&) - Q(a,9)) , 2138)

which is calculated whenever action a is executed in state s leading to state s’.

The complete agent design for an exploratory (J-learning agent using TD is shown in
Figure 21.8. Notice that it uses exactly the same exploration function f as that used by the
exploratory ADP agent—hence the need to keep statistics on actions taken (the table N). If
a simpler exploration policy is used—say, acting randomly on some fraction of steps, where
the fraction decreases over time—then we can dispense with the statistics.

The ()-learning agent learns the optimal policy for the 4 x 3 world, but does so at a
much slower rate than the ADP agent. This is because TD does not enforce consistency
among values via the model. The comparison raises a general question: is it better to learn
a model and a utility function or to learn an action-value function with no model? In other
words, what is the best way to represent the agent function? This is an issue at the foundations
of artificial intelligence. As we stated in Chapter 1, one of the key historical characteristics
of much of Al research is its (often unstated) adherence to the knowledge-based approach.
This amounts to an assumption that the best way to represent the agent function is to build a
representation of some aspects of the environment in which the agent is situated.



