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Perspective transformation, motivation

Parallel lines do not look like parallel lines under perspective projection.
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Basics of projective geometry

� Pinhole model - the simplest geometrical model of human eye, photographic
and TV camera.

� Perspective projection, also central projection.

� Parallel lines in the world do not remain parallel in the image (e.g., view
along the straight section of a railroad).
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Multiple view geometry

� 3D points in the scene (and, more generally, lines and other simple
geometric objects),

� their camera projections, and

� relations among multiple camera projections of a 3D scene.
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Projective space

� Consider (d+ 1)-dimensional vector space without its origin,
Rd+1 − {(0, . . . , 0)}.

� Define an equivalence relation

[x1, . . . , xd+1]> ≡ [x′1, . . . , x
′
d+1]>

iff ∃α 6= 0 : [x1, . . . , xd+1]> = α [x′1, . . . , x
′
d+1]>

� Projective space Pd is the quotient space of this equivalence relation.

� Points in the projective space are expressed in homogeneous co-ordinates
(called also projective coordinates) x = [x′1, . . . , x

′
d, 1]>.

http://cmp.felk.cvut.cz
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Relation between Euclidean and projective spaces

� Consider Euclidean space Rd.

� Non-homogeneous coordinates represent a point in Rd occupying the plane
with equation xd+1 = 1 in Rd+1.

� The one-to-one mapping from the Rd into Pd

[x1, . . . , xd]>→ [x1, . . . , xd, 1]>

� Projective points [x1, . . . , xd, 0]> do not have an Euclidean counterpart and
represent points at infinity in a particular direction.

� Consider [x1, . . . , xn, 0]> as a limiting case of [x1, . . . , xn, α]> that is
projectively equivalent to [x1/α, . . . , xn/α, 1]>, and assume that α→ 0.

� This corresponds to a point in Rd going to infinity in the direction of the
radius vector [x1/α, . . . , xd/α] ∈ Rd.

http://cmp.felk.cvut.cz


7/51
Homogeneous coordinates of hyperplanes in Pd

� A hyperplane in Pd is represented by the (d+ 1)-vector
a = [a1, . . . , ad+1]> such that all points x lying on the hyperplane satisfy
a>x = 0 (where a>x denotes the scalar product).

� Considering the points in the form x = [x1, . . . , xd, 1]> yields the familiar
formula a1x1 + · · ·+ adxd + ad+1 = 0.

� The hyperplane defined by d distinct points represented by vectors
x1, . . . ,xd lying on it is represented by a vector a orthogonal to vectors
x1, . . . ,xd. This vector a can be computed, e.g., by SVD.

� Symmetrically, the point of intersection of d distinct hyperplanes a1, . . . ,ad
is the vector x orthogonal to them.

http://cmp.felk.cvut.cz
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Two useful hyperplanes in computer vision

The projective plane P2.
� We will denote points in P2 by u = [u, v, w]>, lines (hyperplanes) in P2

by l.
� Line through 2 points: l = x× y.
� Point as intersection of 2 lines: x = l×m.

The projective 3-space P3.
� We will denote points in P3 by X = [X,Y, Z,W ]>.
� In P3, hyperplanes become planes and one more entity occurs that has no
counterpart in the projective plane: a 3D line. The elegant homogeneous
representation by 4-vectors, available for points and planes in P3, does
not exist for lines. A 3D line can be represented either by a pair of points
lying on it but this representation is not unique, or by a
(Grassmann-)Plücker matrix.
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Projective space P2, illustration
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Points and lines in P2 are represented by rays and planes, respectively, which pass
through the origin in the Euclidean space R3.
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Homography

� Also projective transformation or co-lineation.

� Co-lineation is any mapping Pd→ Pd linear in the embedding space Rd+1.

� Co-lineation is defined up to unknown scale as u′ ' H u, where H is a
(d+ 1)× (d+ 1) matrix.

� The transformation maps any triplet of collinear points to a triplet of
collinear points (hence one of its names—collineation).

� If H is regular then distinct points are mapped to distinct points.

� In P2, homography is the most general transformation which maps lines to
lines.

http://cmp.felk.cvut.cz
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Example of an image mapped by a 2D
homography
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Different form of homography for hyperplanes
and points

� It can be derived from the fact that if the original point u and a hyperplane
a are incident, a>u = 0.

� They have to remain incident after the transformation too, a′>u′ = 0.

� Using equation u′ ' H u, we obtain that a′ ' H−>a, where H−> denotes
the transposed inverse of H .

http://cmp.felk.cvut.cz
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Two simple homographies useful in computer
vision

1. A projection of a planar scene by one pinhole camera are related by a 2D
homography. This can be used to rectify images of planar scenes (e.g.,
building facades) to frontoparallel view.

2. Two images of a 3D scene (planar or non-planar) by two pinhole cameras
sharing a single center of projection is a 2D homography. This can be used
for stitching panoramic images from photographs

http://cmp.felk.cvut.cz
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Homography vs. non-homography (1)

� Let us illustrate how the non-homogeneous 2D point [u, v]> (e.g., a point in
an image) is actually mapped to the non-homogeneous image point [u′, v′]>

by H using u′ ' H u.

� With the components and the scale written explicitly, the equation reads

α

u′v′
1

 =

h11 h12 h13

h21 h22 h23

h31 h32 h33


uv

1

 .
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Homography vs. non-homography (2)

Writing 1 in the third coordinate of u′, we tacitly assume that u′ is not a point
at infinity, that is, α 6= 0. To compute [u′, v′]>, we need to eliminate the scale
α. This yields the expression

u′ =
h11u+ h12v + h13

h31u+ h32v + h33
, v′ =

h21u+ h22v + h23

h31u+ h32v + h33
,

familiar to people who do not use homogeneous coordinates.

Note that compared to this, the expression u′ ' H u is simpler, linear, and can
handle the case when u′ is a point at infinity. These are the practical advantages
of homogeneous coordinates.

http://cmp.felk.cvut.cz
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Subgroups of homographies
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Decomposition of homographies

Any homography can be uniquely decomposed as H = HP HAHS, where

HP =
[
I 0
a> b

]
, HA =

[
K 0
0> 1

]
, HS =

[
R −Rt
0> 1

]
,

� Matrix K is upper triangular.

� Matrices of the form of HS represent Euclidean transformations.

� Matrices HAHS represent affine transformations; thus matrices HA
represent the ‘purely affine’ subgroup of affine transformations, i.e., what is
left of the affine group after removing from it (more exactly, factorizing it
by) the Euclidean group.

� Matrices HPHAHS represent the whole group of projective
transformations; thus matrices HP represent the ‘purely projective’ subgroup
of the projective transformation.

http://cmp.felk.cvut.cz
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Homography
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Homography maps a plane to a plane.

α

 u′

v′

1

 = H

 u

v
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H – [3× 3] homography matrix
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Example: Distance measurement in a plane
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� We know coordinates of four points u′i, i =
1, . . . , 4 in a plane in which we intend to
measure distances.

� We observe images of these four points in
image plane, ui, i = 1, . . . , 4 and get their
coordinates.

αu′i = α

 u′i
v′i
1

 = H ui = H

 ui
vi
1


� Courtesy T. Pajdla.
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Example (2) Distance between points 5 and 6 ?

C

u
6

u
5

� We observe u5, u6.

� Calculate u′5, u′6.

� Calculate d = ||u′5 − u′6||.
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Example (3) Calculation of x5, x6

Our plan

α u′i = H ui det(H) 6= 0

α H−1 u′i = ui

α 6= 0 , H−1 u′i = α ui Linear in α, H.

Elimination of αi αi u
′
i

αi v
′
i

αi

 = H ui =

 h>1
h>2
h>3

 ui =

 h>1 ui
h>2 ui
h>3 ui


αi = h>3 ui

http://cmp.felk.cvut.cz
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Example (4) Calculation of x5, x6, cont.

u′i h
>
3 ui = h>1 ui

v′i h
>
3 ui = h>2 ui

u′i h
>
3 ui − h>1 ui = 0

v′i h
>
3 ui − h>2 ui = 0

u′i (h31ui + h32vi + h33)− (h11ui + h12vi + h13) = 0

v′i (h31ui + h32vi + h33)− (h21ui + h22vi + h23) = 0

� We obtained two homogeneous linear equations for each point.
� Homography matrix H contains 9 unknowns. However, one of them remains
unresolved due to unknown scale.

� Thus 8 unknowns remain ⇒ 4 points are needed to calculate them at least.
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Example (5)
Calculation of u5, u6, system of equations

−u1h11 −y1h12 −h13 +u′1u1h31 +u′1v1h32 +u′1h33 = 0

−x1h21 −v1h22 −h23 +v′1u1h31 +v′1v1h32 +v′1h33 = 0

...

−u4h11 −v4h12 −h13 +u′4xih31 +u′4v4h32 +u′4h33 = 0

−u4h21 −v4h22 −h23 +v′4u4h31 +v′4v4h32 +v′4h33 = 0

AH = 0

� Matrix A [8× 9] contains measured data.

� Vector H [9× 1] contains unknowns in the homography matrix.

http://cmp.felk.cvut.cz
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Example (6) Solution of underconstrained homogenous
system of linear equations

� Linear system AH = 0, has 9 unknowns and only 8 equations.

� There is always trivial solution H = 0 because A · 0 = 0.

� We are interested in H 6= 0. Thus H has to have rank < 9.

� Why?

[a1,a2, . . . ,a9][h1, h2, . . . , h9]> = 0

a1h1 + a2h2 + . . .+ a9h9 = 0

This is linear combination of vectors ai. If it is zero ⇒ it is linearly
dependent.

� We look for matrix A of rank 8.

http://cmp.felk.cvut.cz
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Example (7) Zero space

� AH = 0, i.e., A maps to zero ⇒ H is the right zero space.

� The zero space can be found by SVD.

� If noise is present and more points N available, N > 4 then

• A [2N × 9], H [9× 1].

• rank(A) = 8 ⇒ ∃ infinite 1D space satisfying the equation. We choose
solution with Euclidean norm ||H|| =0.

• Real data with noise provide the full rank Ã ∈ R[2n×9] . . . rank(Ã) = 9.

� Task formulation: We seek A, AH = 0, rank(A) = 8 with minimal
||Ã−A||F (Frobenius norm. i.e.,

∑
i

∑
j a

2
ij).

http://cmp.felk.cvut.cz
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SVD—Singular Value Decomposition

� SVD is a linear algebra technique for solving linear equations in the least
square sense. SVD works for general matrices (including singular matrices or
matrices numerically close to singular). SVD is contained, e.g., in MATLAB.

� Any m× n matrix A, m ≥ n can be factorized as A = UDV >.

� U has orthonormal columns, D is non-negative diagonal, and V > has
orthonormal rows.

� SVD locates the closest possible solution in a least square sense.

� Often ‘closest’ singular matrix to the original matrix A is needed. This
decreases the rank from n to n− 1. How? Replace the smallest diagonal
element of D by zero. This new matrix is the closest approximation to A
with respect to the Frobenius norm (which is calculated as a sum of the
squared values of all matrix elements).

http://cmp.felk.cvut.cz
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EXAMPLE (8) SVD applied to Ã

SVD(Ã) = UD̃V T = [u1, . . . , um]

 σ1
. . .

σn


 v>1

...
v>n


R1×n Rn×n Rn×1

� We zero the smallest singular value σn in matrix D̃. (Note: the eigenvalue is
a special case of the singular value for a square matrix).

� Observation: ||Ã−A||F = σ2
n which is minimal.
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Projective camera, notation

� Image points will be denoted by lower-case letters

• In Euclidean (non-homogeneous) coordinates u = [u, v]> or

• In homogeneous coordinates u = [u, v, w]>.

� 3D scene points will be denoted by upper-case letters

• In Euclidean coordinates X = [X,Y, Z]>

• In homogeneous coordinates X = [X,Y, Z,W ]>

Subscripts will be used to distinguish different coordinate systems if necessary.

http://cmp.felk.cvut.cz
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Perspective (pinhole) camera
in a canonical configuration
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axis v axis u
axis x

axis y

axis z

[u,v]
T

[X Y Z, , ]
T

C
camera center

f

f – focal length.

u = f
X

Z
,

v = f
Y

Z
.

Linear in f , X , Y .

Nonlinear in Z !!
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Points, lines in the image

POINTS

� An image point [u, v]> repre-
sents a spatial direction u =
[u1, u2, u3]>.

� u = f u1u3 , v = f u2u3.

� α 6= 0 , α x ∼ u.

� Ideal point u3 = 0.

LINES

� An image line [u, v, f ]> re-
presents a spatial plane n =
[n1, n2, n3]>.

� The equation of a plane:
n1 u+ n2 v + n3 f = 0.

� α 6= 0 , α n ∼ n.

� Ideal line n1 = n2 = 0.

http://cmp.felk.cvut.cz
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Camera projection matrix

In homogeneous coordinates.

 u1

u2

u3

 =

 f 0 0 0
0 f 0 0
0 0 1 0



X1

X2

X3

X4

 .

u = M X . Projection matrix M = [Q,q] =

 q>1 q14
q>2 q24
q>3 q34

 .

Optical center C = −Q−1 q.

Optical axis q3.

Optical ray (or direction) d = Q−1u.

Optical plane p = Q−1n.
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Single perspective camera, a pinhole model

Image plane p

Optical axis

Scene point X

uOi=Oa

w
v

X

World coordinate system

Image affine
coordinate system

Image Euclidean
coordinate system

O

Z

X

Y

u

vi

wi

ui

Principal point
u0c = [0,0, f]

T

u0a 0 0= [u ,v ]
T

Optical ray

Focal point C

Xc

Xc

Zc

Yc

OC

Camera coordinate system

t

R

Projected point

f

� World Euclidean
coordinate system.

� Camera Euclidean
coordinate system
(subscript c).

� Image Euclidean
coordinate system
(subscript i).

� Image affine coordinate
system (subscript a).

The camera performs a linear
transformation from P3 to P2.
Optical ray reflected from
a scene point X or originating
from a light source hits the
image plane at the projected
point u.
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Factorization of the projective transformation

The projective transformation in the general case can be factorized into three
simpler transformations which correspond to three transitions between above
mentioned four different coordinate systems.

World → camera centered coordinate system .

Projection of the 3D scene point expressed in the camera centered coordinate
system to the point in the image plane in the image coordinate system.

Affine mapping in the image plane from the image Euclidean coordinate
system → the image affine coordinate system.

http://cmp.felk.cvut.cz
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World to camera centered coordinates

The transformation constitutes transition from the (arbitrary) world coordinate
system (O; X,Y, Z) to the camera centered coordinate system (Oc;
Xc, Yc, Zc).

Xc = R (X− t) .

6 degrees of freedom, 3 rotations, 3 translations.

Parameters R and t are called extrinsic camera calibration parameters.
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. . . in homogeneous coordinates

We already know from that this can be done by a subgroup of homographies HS

Xc =
[
R −R t
0> 1

]
X .

http://cmp.felk.cvut.cz
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Projection

� The R3→ R2 projection in non-homogeneous coordinates gives two
equations non-linear in Zc

ui =
Xc f

Zc
, vi =

Yc f

Zc
,

where f is the focal length.

� Embedding in the projective space. Projection P3→ P2 writes as

ui '

f 0 0 0
0 f 0 0
0 0 1 0

Xc .

http://cmp.felk.cvut.cz
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Camera with normalized image plane
also camera in canonical configuration

Special case: a camera with the focal length f = 1.

ui '

1 0 0 0
0 1 0 0
0 0 1 0

Xc .
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Affine mapping in the image plane

� It is advantageous to gather all parameters intrinsic to a camera (the focal
length f is one of them) into a 3× 3 matrix K, called the intrinsic
calibration matrix.

� Matrix K is upper triangular and expresses the mapping P2→ P2 which is a
special case of the affine transformation.

u ' Kui =

f s −u0

0 g −v0
0 0 1

ui .

http://cmp.felk.cvut.cz
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Intrinsic calibration matrix parameters

� Parameter f (focal length) gives the scaling along the u axis.

� Parameter g gives scaling along the v axis.
Often, both values are equal to the focal length, f = g.

� Parameter s (shear) gives the degree of shear of the coordinate axes in the
image plane. It is assumed that the v axis of the image affine coordinate
system is co-incident with the vi axis of the image Euclidean coordinate
system. The value s shows how far the u axis is slanted in the direction of
axis v. The shear s is introduced in practice to cope with distortions caused
by, e.g., placing a photosensitive chip off-perpendicular to the optical axis
during camera assembly.

http://cmp.felk.cvut.cz
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Projection in its full generality

It is a product of the three factors derived above

u ' K

1 0 0 0
0 1 0 0
0 0 1 0

[R −R t
0> 1

]
X .

The product of the second and the third factor exhibits a useful internal structure;

u ' K

1 0 0 0
0 1 0 0
0 0 1 0

[R −R t
0> 1

]
X = K

[
R | −R t

]
X = M X .

http://cmp.felk.cvut.cz


41/51
Projection matrix

In homogeneous coordinates, the perspective projection can be expressed linearly
using a single 3× 4 matrix M , projection matrix(or camera matrix). The
leftmost 3× 3 submatrix of M describes a rotation and the rightmost column
gives the translation.

The delimiter | denotes that the matrix is composed of two submatrices. M
contains all intrinsic and extrinsic parameters because

M = K
[
R | −R t

]
. (1)

These parameters can be obtained by decomposing M to K, R, and t—this
decomposition is unique. Denoting M = [A | b], we have A = KR and
b = −At. Clearly, t = −A−1b. Decomposing A = KR where K is upper
triangular and R is rotation can be done by RQ-decomposition, similar to the
better known QR-decomposition.
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Single camera calibration, an overview

Intrinsic parameters only - seeking matrix K.

Intrinsic + extrinsic parameters - seeking matrix M .

1. Known scene: A set of n non-degenerate (not co-planar) points in the 3D
world (e.g., a calibration object), and the corresponding 2D image points are
known.
Each correspondence between a 3D scene and 2D image point provides one
equation

αjũj = M

[
Xj
1

]
.

2. Unknown scene: More views are needed to calibrate the camera. The
intrinsic camera parameters will not change for different views, and the
correspondence between image points in different views must be established.
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Calibration from unknown scene (cont.)

21

X

tK R, K

1. Known camera motion: Three cases according to the known motion
constraint:

(a) Both rotation and translation, general case.

(b) Pure rotation

(c) Pure translation, a linear solution proposed by [Pajdla, Hlaváč 1995].

2. Unknown camera motion: The most general case, sometimes called camera
self-calibration. At least three views are needed and the solution is nonlinear.
Numerically hard.
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Camera calibration from a known scene (1)

Typically a two stage process.

1. Estimate the projection matrix M is estimated from the co-ordinates of
points with known scene positions.

2. The extrinsic and intrinsic parameters are estimated from M .

Note: The second step is not always needed – the case of stereo vision is an
example.
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Camera calibration from a known scene (2)

Each correspondence between scene point X = [x, y, z]> and 2D image point
[u, v]> gives one equation

 αu

αv

α

 =

 m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34



x

y

z

1


 αu

αv

α

 =

 m11x + m12y + m13z + m14

m21x + m22y + m23z + m24

m31x + m32y + m33z + m34



http://cmp.felk.cvut.cz


46/51
Camera calibration from a known scene (3)

u(m31x+m32y +m33z +m34) = m11x+m12y +m13z +m14

v(m31x+m32y +m33z +m34) = m21x+m22y +m23z +m24

Two linear equations, each in 12 unknowns m11, . . . ,m34, for each known
corresponding scene and image point (actually only 11 unknowns due to unknown
scaling). 6 corresponding points needed, at least.

If n such points are available, we can write it as a 2n× 12 matrix.

 x y z 1 0 0 0 0 −ux −uy −uz −u
0 0 0 0 x y z 1 −vx −vy −vz −v

...



m11

m12
...

m34

 = 0

Overconstraint linear system. Robust least squares. Result = M .
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Separation of extrinsic parameters from M

Given: projection matrix M

Output: rotation matrix R and translation vector t).

M = [KR | −KR t] = [A |b]

The 3× 3 submatrix is denoted as A, and the rightmost column as b.

Translation vector t is easy; A = KR, t = −A−1b.

Rotation matrix R. Recall that the calibration matrix K is upper triangular and
the rotation matrix is orthogonal.

The QR factorization method or SVD will decompose A into a product and
hence recover K and R.

http://cmp.felk.cvut.cz
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Radial distortion, a practical view

barrel no distortion pincushion

Q: How to recognize that a significant radial distortion is present?

A: Straight lines are not mapped to straight lines any more.
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Is the distortion radial or perspective? (1)
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Is the distortion radial or perspective? (2)
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Undoing radial distortion

� A dominant geometric distortion. It is more
pronounced with wide-angle lenses.

� (x′, y′) are coordinates measured in the
image (uncorrected); (x, y) are corrected
coordinates; (x0, y0) are coordinates of the
principal point; (∆x,∆y) are elements of
the correction and r is a radius,
r =

√
(x′ − x0)2 + (y′ − y0)2.

� The distortion is approximated by an
even-order polynomial (why?), often only of
the second order,

∆x = (x′ − x0) (κ1r
2 + κ2r

4 + κ3r
6) ,

∆y = (y′ − y0) (κ1r
2 + κ2r

4 + κ3r
6) .

pincushion barrel

(x ,y )0 0

(x’,y’)

(x,y)

D x

D y

x

y

r
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