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Where does SLAM fit? 
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SLAM – task formulation 

 Inputs: 
• Time sequence of proprioceptive and exteroceptive 

measurements made as robot through an initially 
unknown environment. 

• No external coordinate reference. 
 Outputs: 

• A map of the robot environment. 
• A robot pose estimate associated with each 

measurement in the coordinate system of the map. 
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SLAM is an incremental task 

 State/Output: 
• Map of the environment, which has been observed so 

far. 
• Robot pose estimate w.r.t. map. 

 Action/Input: 
• Move to a new position/orientation. 
• Acquire additional observations. 

 Update state: 
• Re-estimate robot’s pose. 
• Revise the map appropriately. 
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SLAM problem 1 

 Localization: inferring location given a map. 
 Mapping: inferring a map given a location. 
 SLAM: learning a map and locating the robot 

simultaneously. 
 
 SLAM is the process by which a robot builds a 

map of the environment and, at the same time, 
uses this map to compute its location. 
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SLAM Problem 2 

 SLAM is a chicken or egg 
problem. 
• A map is needed for localizing a 

robot. 
• A good robot position estimate 

is needed to create/update the 
map. 

 Consequently, SLAM is 
regarded as hard problem in 
robotics. 
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SLAM problem 3 

 SLAM is considered one of the most fundamental 
problems for (mobile) robots to be truly 
autonomous. 

 Variety of approaches have been tried to approach 
SLAM problem. 

 Probabilistic methods rule! 
 History of SLAM dates to mid-1980s. 
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Why is SLAM hard? 

 Chicken or egg problem. 
 Many ingredients: 

• Autonomous, persistent, collaborative robots. 
• Mapping is multi-scale in generic environments. 

 Map-making ∼ learning: 
• Difficult also for humans. 
• Humans make mapping mistakes. 

 Scaling issues: 
• Large spatial extent ⇒ combinatorial expansion. 
• Persistent autonomous operations. 

 Uncertainty at every level of the problem. 
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 Given: 
• The robot’s controls 
• Observations of nearby 

features 

 Estimate: 
• Map of features 
• Path of the robot 

The SLAM Problem 

A robot is exploring an unknown, 
static environment. 
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Structure of the Landmark-based 
SLAM-Problem  
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SLAM Applications 

Indoors 

Space 

Undersea 

Underground 
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Representations 

 Grid maps or scans 

 
 

  
 [Lu & Milios, 97; Gutmann, 98: Thrun 98; Burgard, 99; Konolige & Gutmann, 00; Thrun, 00; Arras, 99; Haehnel, 01;…] 

 

 Landmark-based 
 

 

 
[Leonard et al., 98; Castelanos et al., 99: Dissanayake et al., 2001; Montemerlo et al., 2002;… 
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Why is SLAM a hard problem? 

SLAM: robot path and map are both unknown  

Robot path error correlates errors in the map 
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Why is SLAM a hard problem? 

 In the real world, the mapping between 
observations and landmarks is unknown 

 Picking wrong data associations can have 
catastrophic consequences 

 Pose error correlates data associations 

Robot pose 
uncertainty 
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SLAM:  
Simultaneous Localization and Mapping 

 Full SLAM: 
 
 
 Online SLAM: 

 
 

Integrations typically done one at a time  

),|,( :1:1:1 ttt uzmxp

121:1:1:1:1:1 ...),|,(),|,( −∫ ∫ ∫= ttttttt dxdxdxuzmxpuzmxp 

Estimates most recent pose and map! 

Estimates entire path and map! 
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Graphical Model of Online SLAM:  

121:1:1:1:1:1 ...),|,(),|,( −∫ ∫ ∫= ttttttt dxdxdxuzmxpuzmxp 
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Graphical Model of Full SLAM:  

),|,( :1:1:1 ttt uzmxp
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Techniques for Generating 
Consistent Maps 

 Scan matching 

 EKF SLAM 

 Fast-SLAM 

 Probabilistic mapping with a single map and a 
posterior about poses  
Mapping + Localization  

 Graph-SLAM, SEIFs 
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Scan Matching 

Maximize the likelihood of the i-th pose and map 
relative to the (i-1)-th pose and map. 
 
 
 
 
 
 
Calculate the map       according to “mapping with 
known poses” based on the poses and 
observations. 
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Kalman Filter Algorithm  

1.  Algorithm Kalman_filter( µt-1, Σt-1, ut, zt): 
 

2.  Prediction: 
3.        
4.    

 
5.  Correction: 
6.        
7.   
8.   

9.  Return µt, Σt       

ttttt uBA += −1µµ

t
T
tttt RAA +Σ=Σ −1

1)( −+ΣΣ= t
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ttt
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 Map with N landmarks:(3+2N)-dimensional 
Gaussian 
 
 
 
 
 
 
 

 Can handle hundreds of dimensions 

(E)KF-SLAM 
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Classical Solution – The EKF 

 Approximate the SLAM posterior with a high-
dimensional Gaussian [Smith & Cheesman, 1986] … 

 Single hypothesis data association 
 

Blue path = true path   Red path = estimated path   Black path = odometry 
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EKF-SLAM 

Map              Correlation matrix 
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EKF-SLAM 

Map              Correlation matrix 
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EKF-SLAM 

Map              Correlation matrix 
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Properties of KF-SLAM  
(Linear Case) 

Theorem: 
The determinant of any sub-matrix of the map 
covariance matrix decreases monotonically as 
successive observations are made. 
 
Theorem: 
In the limit the landmark estimates become fully 
correlated 

[Dissanayake et al., 2001] 
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Victoria Park Data Set 

[courtesy by E. Nebot] 
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Victoria Park Data Set Vehicle 

[courtesy by E. Nebot] 
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Data Acquisition 

[courtesy by E. Nebot] 
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SLAM 

[courtesy by E. Nebot] 
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Map and Trajectory  

Landmarks 
Covariance 

[courtesy by E. Nebot] 
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Landmark Covariance 

[courtesy by E. Nebot] 
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Estimated Trajectory 

[courtesy by E. Nebot] 
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EKF SLAM Application 

[courtesy by John Leonard] 
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EKF SLAM Application 

odometry estimated trajectory 

[courtesy by John Leonard] 
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 Local submaps  
[Leonard et al.99, Bosse et al. 02, Newman et al. 03] 

 Sparse links (correlations)  
[Lu & Milios 97, Guivant & Nebot 01] 

 Sparse extended information filters  
[Frese et al. 01, Thrun et al. 02] 

 Thin junction tree filters  
[Paskin 03] 

 Rao-Blackwellisation (FastSLAM)  
[Murphy 99, Montemerlo et al. 02, Eliazar et al. 03, Haehnel et al. 03] 

Approximations for SLAM 
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Sub-maps for EKF SLAM 

[Leonard et al, 1998] 
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EKF-SLAM Summary 

 Quadratic in the number of landmarks: 
O(n2)  
 Convergence results for the linear 

case.  
 Can diverge if nonlinearities are large! 
 Have been applied successfully in 

large-scale environments. 
 Approximations reduce the 

computational complexity.  
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