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What is an actuator in robotics? 

 A mechanical device for actively moving or 
driving something. 
 Source of movement (drive), taxonomy: 

• Electric drive (motor). 
• Hydraulic drive. 
• Pneumatic drive. 
• Internal combustion, hybrids. 
• Miscellaneous: ion thruster, thermal shape 

memory effect, artificial muscles, etc. 
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Outline of the lecture 

 Servomechanism. 
 Electrical motor. 
 Hydraulic drive. 
 Pneumatic drive. 
 Miscellaneous: 

• Artificial muscles. 
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Servomechanism 

 Mechanism exploring feedback to deliver 
number of revolutions, position, etc. 
 The controlled quantity is mechanical. 
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Properties of a servo 

 High maximum torque/force allows high 
(de)acceleration. 
 Can be source of torque. 
 High zero speed torque/force. 
 High bandwidth provides accurate and 

fast control. 
 Works in all four quadrants 
 Robustness. 
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Rotary shaft encoder 

http://hades.mech.northwestern.edu/wiki/index.php/Image:Encoder_disk.jpg
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Classification of Electric Motors 

Electric Motors 

Alternating Current (AC) 
Motors 

Direct Current (DC) 
Motors 

Synchronous Induction 

Three-Phase Single-Phase 

Self Excited Separately 
Excited 

Series Shunt Compound 
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DC motors 

 Field pole 
• North pole and south pole 
• Receive electricity to form 

magnetic field 
 Armature 

• Cylinder between the poles 
• Electromagnet when current goes through 
• Linked to drive shaft to drive the load 

 Commutator 
 Overturns current direction in armature 

 

(Direct Industry, 1995) 
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How does a DC motor work ? 
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DC motors, cont. 

 Speed control without impact power 
supply quality 
• Changing armature voltage 
• Changing field current 

 Restricted use 
• Few low/medium speed applications 
• Clean, non-hazardous areas 

 Expensive compared to AC motors 
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DC motor, a view inside 

 Simple, cheap. 
 Easy to control.  
 1W - 1kW  
 Can be 

overloaded. 
 Brushes wear. 
 Limited overloading 

on high speeds. 
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DC motor control 
 Controller + H-bridge 

(allows motor to be 
driven in both 
directions). 

 Pulse Width 
Modulation (PWM)-
control.  

 Speed control by 
controlling motor 
current=torque. 

 Efficient small 
components. 

 PID control. 
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DC motor modeling 

PPin =

Voltage and 
Current In Torque and 

Speed Out 
Heat 
Out 

ωτ ,
Q

U
I

Power In = Power Out 
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τω+≅ RIUI 2
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DC motor, shunt 
 Separately excited DC motor: field current 

supplied from a separate force 

 Self-excited DC motor: shunt motor 

• Field winding parallel 
with armature winding 

• Current = field current 
+ armature current 

Speed constant 
independent of load 
up to certain torque 

Speed control: 
insert resistance 
in armature or 
field current (Rodwell Int. 

Corporation, 
1999) 
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DC motor: series motor 

Self-excited DC motor: series motor 

(Rodwell Int. 
Corporation, 
1999) 

• Field winding in series 
with armature winding 

• Field current = 
armature current 

• Speed restricted to 
5000 RPM 

• Avoid running with 
no load: speed 
uncontrolled 

Suited for high 
starting torque: 
cranes, hoists 
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DC compound motor 

Field winding in 
series and 
parallel with 
armature winding 

Good torque and 
stable speed 

Higher % 
compound in 
series = high 
starting torque 

Suited for high 
starting torque if high 
% compounding: 
cranes, hoists 
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Digital control of DC motors 
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AC motor 

 Electrical current reverses direction 
 Two parts: stator and rotor 

• Stator: stationary electrical component 
• Rotor: rotates the motor shaft 

 Speed difficult to control because it depends 
on current frequency 
 Two types 

• Synchronous motor 
• Induction motor 
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AC motor inventor 

Nikola Tesla 
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AC synchronous motors 

 Constant speed fixed by system frequency 
 DC for excitation and low starting torque: 

suited for low load applications 
 Can improve power factor: suited for high 

electricity use systems 
 Synchronous speed (Ns): 
 

Ns = 120 f / P f = supply frequency 
P = number of poles 
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AC induction motor, components 
 Rotor 

• Squirrel cage:  
conducting bars 
in parallel slots 

• Wound rotor: 3-phase, double-layer, 
distributed winding 

 Stator 
• Stampings with slots to carry 3-phase 

windings 
• Wound for definite number of poles 
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How induction motors work ? 

 Electricity supplied to the 
stator. 

 Magnetic field generated 
that moves around rotor. 

 Current induced in rotor. 
 Rotor produces second 

magnetic field that 
opposes stator magnetic 
field. 

 Rotor begins to rotate. 

Electromagnetics 

Stator 

Rotor 
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AC induction motor,  
a view inside 
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AC induction motors, properties 

Disadvantages: 
 About 7x overload 

current at start. 
 Needs a frequency 

changer for control. 
Advantages: 
 Simple design, cheap 
 Easy to maintain 
 Direct connection to 

AC power source 
 
 
 
 

Advantages (cont): 
 Self-starting. 
 0,5kW ‒ 500kW. 
 High power to weight 

ratio 
 High efficiency: 50 – 

95 % 
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Induction motor, speed and slip 

 Motor never runs at synchronous speed but 
lower “base speed” 
 Difference is “slip” 
 Install slip ring to avoid this 
 Calculate % slip: 

% Slip = Ns – Nb  x 100 
  Ns 

Ns = synchronous speed in RPM 
Nb = base speed in RPM 
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AC Induction motor  
load, speed, torque relationship 

At start: high 
current and 
low “pull-up” 
torque 

At 80% of full 
speed: 
highest “pull-
out” torque 
and current 
drops 

At full speed: 
torque and 
stator current 
are zero 
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Delta ∆ – star Y  
 Inter-phase (L-L) 

voltage 400 V. 
 The inrush current can 

be too large (∼7 times 
the nominal current). 

 Phase-ground (L-N) 
voltage 230 V. 

 Y∆ starting reduces the 
inrush current. 

Courtesy: Ivo Novák, images 
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Single phase induction motor 
 One stator winding. 
 Single-phase power supply. 
 Squirrel cage rotor. 
 Use several tricks to start, then transition to an 

induction motor behavior. 
 Up to 3 kW applications. 
 Household appliances: fans, washing 

machines, dryers, airconditioners. 
 Lower efficiency: 25 – 60 % 
 Often low starting torque. 
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Single-phase induction motor 

 Three-phase motors produce a rotating 
magnetic field. 
 When only single-phase power is available, 

the rotating magnetic field must be produced 
using other means.  
 Two methods to create the rotating magnetic 

field are usually used: 
1. Shaded-pole motor. 
2. Split-phase motor. 
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Ad 1. Shaded-pole motor 

 A small squirrel-cage 
motor with an auxiliary 
winding composed of a 
copper ring or bar. 

 Current induced in this 
coil induce a 2nd phase 
of magnetic flux. 

 Phase angle is small 
⇒ only a small starting 
torque compared to 
torque at full speed.   

 Used in small 
appliances as electric 
fans, drain pumps of a 
washing machine, 
dishwashers. 

Aux 
winding 

Main 
winding 
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Ad 2. Split-phase motor (1) 

 Has a startup winding 
separate from the main 
winding. Fewer turns of 
smaller wire than the 
main winding, so it has 
a lower inductance (L) 
and higher resistance 
(R).  

 The lower L/R ratio 
creates a small phase 
shift, not more than 
about 30 degrees. 

 At start, the startup 
winding is connected 
to the power source via 
a centrifugal switch, 
which is closed at low 
speed. 

 The starting direction 
of rotation is given by 
the order of the 
connections of the 
startup winding relative 
to the running winding. 
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Ad 2. Split-phase motor (2) 

 Once the motor 
reaches near operating 
speed, the centrifugal 
switch opens, 
disconnecting the 
startup winding from 
the power source.  

 The motor then 
operates solely on the 
main winding.  

 The purpose of 
disconnecting the 
startup winding is to 
eliminate the energy 
loss due to its high 
resistance. 

 Commonly used in 
major appliances such 
as air conditioners and 
clothes dryers. 
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Ad 2. Split-phase motor (3) 

 A capacitor start motor 
is a split-phase 
induction motor with a 
starting capacitor 
inserted in series with 
the startup winding. 

 An LC circuit produces 
a greater phase shift 
(and so, a much 
greater starting torque) 
than a split-phase 
motor. 
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Stepper Motors 

 A sequence of (3 or more) 
poles is activated in turn, 
moving the stator in small 
“steps”. 

 Very low speed / high 
angular precision is 
possible without reduction 
gearing by using many rotor 
teeth.  

 Can also perform a 
“microstep” by activating 
both coils at once. 
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Driving stepper motors 

 Signals to the stepper motor are binary, on-off 
values (not PWM). 

 In principle easy: activate poles as A B C D A … or 
A D C B A …Steps are fixed size, so no need to 
sense the angle! (open loop control). 

 In practice, acceleration and possibly jerk must be 
bounded, otherwise motor will not keep up and will 
start missing steps (causing position errors). 

 Driver electronics must simulate inertia of the 
motor.  
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http://upload.wikimedia.org/wikipedia/commons/f/f8/Stepper_motor_1.png
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http://upload.wikimedia.org/wikipedia/commons/1/10/Stepper_motor_2.png
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http://upload.wikimedia.org/wikipedia/commons/2/25/Stepper_motor_3.png
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http://upload.wikimedia.org/wikipedia/commons/2/2a/Stepper_motor_4.png
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Stepper Motor Selection 

 Permanent Magnet / Variable Reluctance 
 Unipolar vs. Bipolar 
 Number of Stacks 
 Number of Phases 
 Degrees Per Step 
 Microstepping 
 Pull-In/Pull-Out Torque 
 Detent Torque 
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Voice coil motor 

 The name comes form the 
original use in loudspeakers. 

 Either moving coil or moving 
magnet. 

 Used for proportional or tight 
servomechanisms, where 
the speed is of importance. 

 E.g. in a computer disc drive, 
gimbal or other oscillatory 
applications. 
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Linear electric motors 

 There are some true linear magnetic drives.  
• BEI-Kimco voice coils: 
• Up to 30 cm travel 
• 100 lbf 
• > 10 g acceleration 
• 2.5 kg weight 
• 500 Hz corner  

frequency. 
 Used for precision vibration control. 
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Tubular linear motor 
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Courtesy Jussi Suomela 

 Linear movement. 
 Big forces without gears. 
 Actuators are simple. 
 Used often in mobile machines. 
 Bad efficiency. 
 Motor, pump, actuator combination is lighter 

than motor, generator, battery, motor & gear 
combination.  

Hydraulic actuators 
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Hydraulic actuators, examples 
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Hydraulic pump (1) 

 Gear pump 
Lowest efficiency ∼ 90 % 

 

 Rotary vane pump 
Mid-pressure ∼ 180 bars 
 

External 
teeth 

Internal 
teeth 
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Hydraulic pump (2) 

 Archimedes screw 
pump 

 

 Bent axis pump 
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Hydraulic pump (3) 

 Axial piston pumps, 
swashplate principle 

 Radial piston pump 
High pressure (∼ 650 bar) 
Small flows. 
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Hydraulic cylinder 
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Vane motor 
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Gear motor 
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Semi-rotary piston motor 

300 degrees 
   Large torque at low speed. 

180 degrees 
     Doubles the torque. 
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Radial piston motor 

High starting torque 
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Real hydraulic motor 
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Pneumatic actuators 

 Like hydraulic except power from 
compressed air. 
 Advantages: 

• Fast on/off type tasks. 
• Big forces with elasticity. 
• No hydraulic oil leak problems. 

 Disadvantage: 
• Speed control is not possible because the air 

pressure depends on many variables that are 
out of control. 
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Other Actuators 

 Piezoelectric. 
 Magnetic. 
 Ultrasound. 
 Shape Memory Alloys (SMA). 
 Inertial. 
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Examples 
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Muscles 
 Muscles contract when 

activated. 
 Muscles are also attached to 

bones on two sides of a 
joint. The longitudinal  
shortening produces joint 
rotation. 
 Bilateral motion requires 

pairs of muscles attached on 
opposite sides of a joint are 
required. 
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Muscles inside 
 Muscles consist of long 

slender cells (fibres), each 
of which is a bundle of 
finer fibrils. 

 Within each fibril are 
relatively thick filaments of 
the protein myosin and thin 
ones of actin and other 
proteins. 

 Tension in active muscles 
is produced by cross 
bridges 
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Artificial muscles, properties 

 Mechanical properties: elastic 
modulus, tensile strength, stress-
strain, fatigue life, thermal and 
electrical conductivity. 

 Thermodynamic issues: 
efficiency, power and force 
density, power limits. 

 Packaging: power 
supply/delivery, device 
construction, manufacturing, 
control, integration. 
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Artificial muscles, technology 1 
1. Traditional mechatronic muscles, e.g. pneumatic. 
2. Shape memory alloys, e.g. NiTi. 
3. Chemical polymers - gels (Jello, vitreous humor) 

 1000-fold volume change ~ temp, pH, electric 
fields. Force up to 100 N/cm2. 

 25 μm fiber → 1 Hz, 1 cm fiber → 1 cycle/2.5 
days. 

4. Electro active polymers 
 Store electrons in large molecules. Deformation 

~ (voltage)2. 

 Change length of chemical bonds. 
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Artificial muscles, technology 2 
5. Biological Muscle Proteins 

 Actin and myosin. 
 0.001 mm/sec in a petri dish. 

6. Fullerenes and Nanotubes 
 Graphitic carbon. 
 High elastic modulus → large displacements, 

large forces. 
 Macro-, micro-, and nano-scale 
 Potentially superior to biological muscle. 
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Pneumatic artificial muscle 

 Called also McKibben 
muscle. 

 In development since 1950s. 
 Contractile or extensional 

devices operated by 
pressurized air filling a 
pneumatic bladder. 

 Very lightweight, based on a 
thin membrane. 

 Current top implementation: 
Shadow hand. 
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Artificial Muscles:  
McKibben Type 
 (Brooks, 1977) 

developed an artificial 
muscle for control of the 
arms of the humanoid 
torso Cog. 

 (Pratt and Williamson 
1995) developed artificial 
muscles for control of leg 
movements in a biped 
walking robot. 
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Shape memory alloys 1 

 Nickel Titanium – Nitinol. 
 Crystalographic phase transformation from 

Martesite to Austenite. 
 Contract 5-7% of length when heated - 100 times 

greater effect than thermal expansion. 
 Relatively high forces. 
 About 1 Hz. 
 Structural fatigue – a failure mode caused by 

which cyclic loading which results in catastrophic 
fraction. 
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Robot Lobster, an exampleb 

 A robot lobster developed  
at Northeastern University  
used SMAs very cleverly 

 The force levels required  
for the lobster’s legs are  
not excessive for SMAs 

 Because the robot is used 
underwater cooling is 
supplied naturally by 
seawater 

More on the robot lobster is available at: http://www.neurotechnology.neu.edu 

http://www.neurotechnology.neu.edu/
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Artificial Muscles:  
Electroactive Polymers 
Like SMAs, Electroactive Polymers (EAPs) also 
change their shape when electrically stimulated 
The advantages of EAPs for robotics are that 
they are able to emulate biological muscles with a 
high degree of toughness, large actuation strain, 
and inherent vibration damping 
Unfortunately, the force actuation and 
mechanical energy density of EAPs are relatively 
low 
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Electroactive Polymer Example 

Robotic face developed by a 
group led by David Hanson. 
More information is available 

at: 
www.hansonrobotics.com 

http://www.hansonrobotics.com/
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