
Overview of Probability and Statistics
Michal Reinštein, Václav Hlaváč

Czech Technical University in Prague
Faculty of Electrical Engineering, Department of Cybernetics

Center for Machine Perception
http://cmp.felk.cvut.cz/˜reinsmic,

reinstein.michal@fel.cvut.cz

Slides: V. Hlaváč, modified: M. Reinštein, courtesy: T. Brox, V. Franc, M. Navara, M. Urban.

Outline of the talk:
� Probability vs. statistics.

� Random events.

� Probability, joint, conditional.

� Bayes theorem.

� Distribution function, density.

� Characteristics of a random variable.
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Recommended reading

� A. Papoulis: Probability, Random Variables and Stochastic Processes,
McGraw Hill, Edition 4, 2002.

� http://mathworld.wolfram.com/

� http://www.statsoft.com/textbook/stathome.html

http://cmp.felk.cvut.cz
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Probability, statistics

� Probability: probabilistic model =⇒ future behavior.
• It is a theory (tool) for purposeful decisions when the outcome of future

events depends on circumstances we know only partially and the
randomness plays a role.
• An abstract model of uncertainty description and quantification of the

results.
� Statistics: behavior of the system =⇒ probabilistic representation.
• It is a tool for seeking a probabilistic description of real systems based

on observing them and testing them.
• It provides more: a tool for investigating the world, seeking and testing

dependencies which are not apparent.
• Two types: descriptive and inference statistics.
• Collection, organization and analysis of data.
• Generalization from restricted / finite samples.

http://cmp.felk.cvut.cz
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Random events, concepts

An experiment with random outcome – states of nature, possibilities,
experimental results, etc.

A sample space is an nonempty set Ω of all possible outcomes of the experiment.

An elementary event ω ∈ Ω are elements of the sample space (outcomes of the
experiment).

A space of events A is composed of the system of all subsets of the sample
space Ω.

A random event A ∈ A is an element of the space of events.

Note: The concept of a random event was introduced in order to be able to
define the probability, probability distribution, etc.

http://cmp.felk.cvut.cz
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Axiomatic definition of the probability

� Ω - the sample space.

� A - the space of events.

1. P (A) ≥ 0, A ∈ A.

2. P (Ω) = 1.

3. If A ∩B = ∅ then P (A ∪B) = P (A) + P (B), A ∈ A, B ∈ B.

� If A ⊂ B then P (B \A) = P (B)− P (A).
The symbol \ denotes the set difference.

� P (A ∪B) = P (A) + P (B)− P (A ∩B).

http://cmp.felk.cvut.cz
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Probability

is a function P , which assigns number from the interval 〈0, 1〉 to events and
fulfils the following two conditions:

� P (true) = 1,

� P

( ⋃
n∈N

An

)
=
∑
n∈N

P (An), if the events An, n ∈ N, are mutually

exclusive.

From these conditions, it follows:

P (false) = 0, P (¬A) = 1− P (A), if A⇒ B then P (A) ≤ P (B).

Note: Strictly speaking, the space of events have to fulfil some additional
conditions.

http://cmp.felk.cvut.cz
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Joint probability, marginalization

� The joint probability P (A,B), also sometimes denoted P (A ∩B), is the
probability that events A, B co-occur.

� The joint probability is symmetric: P (A,B) = P (B,A).

� Marginalization (the sum rule): P (A) =
∑
B

P (A,B) allows computing the
probability of a single event by summing the joint probabilities over all
possible events B. The probability P (A) is called the marginal probability.

http://cmp.felk.cvut.cz
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Joint probability
Contingency table, marginalization

http://cmp.felk.cvut.cz
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The conditional probability

� Let us have the probability representation of a system given by the joint
probability P (A,B).

� If an additional information is available that the event B occurred then our
knowledge about the probability of the event A changes to

P (A|B) =
P (A,B)

P (B)
,

which is the conditional probability of the event A under the condition B.

� The conditional probability is defined only for P (B) 6= 0.

� Product rule: P (A,B) = P (A|B)P (B) = P (B|A)P (A).

� From the symmetry of the joint probability and the product rule, the Bayes
theorem can be derived (to come in a more general formulation for more
than two events).

http://cmp.felk.cvut.cz
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Properties of the conditional probability

� P (true|B) = 1, P (false|B) = 0.

� If A =
⋃
n∈N

An and events A1, A2, . . . are mutually exclusive then

P (A|B) =
∑
n∈N

P (An|B).

� Events A,B are independent ⇔ P (A|B) = P (A).

� If B ⇒ A then P (A|B) = 1.

� If B ⇒ ¬A then P (A|B) = 0.

Events Bi, i ∈ I , constitute a complete system of events if they are mutually
exclusive and

⋃
i∈I

Bi = true.

http://cmp.felk.cvut.cz
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Example: Conditional probability

Example

Consider rolling a single dice. What is the probability that the number higher
than three comes up (event A) under the conditions that the odd number came
up (event B)?

Ω = {1, 2, 3, 4, 5, 6} , A = {4, 5, 6} , B = {1, 3, 5}

P (A) = P (B) =
1

2

P (A,B) = P ({5}) =
1

6

P (A|B) =
P (A,B)

P (B)
=

1
6
1
2

=
1

3

http://cmp.felk.cvut.cz
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Example: Independent events

Events A,B are independent ⇔ P (A,B) = P (A) P (B),
since independence means: P (A|B) = P (A), P (B|A) = P (B)

Example

Rolling the dice once, events are: A > 3, event B is odd. Are A,B independent?

Ω = {1, 2, 3, 4, 5, 6} , A = {4, 5, 6} , B = {1, 3, 5}

P (A) = P (B) =
1

2

P (A,B) = P ({5}) =
1

6

P (A) P (B) =
1

2
· 1
2

=
1

4

P (A,B) 6= P (A) P (B)⇔ The events are dependent.

http://cmp.felk.cvut.cz
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Conditional independence

Random events A,B are conditionally independent under the condition C, if

P (A,B|C) = P (A|C)P (B|C) .

Similarly, a conditional independence of more events, random variables, etc. is
defined.

http://cmp.felk.cvut.cz
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Total probability theorem

Let Bi, i ∈ I , be a complete system of events and ∀i ∈ I : P (Bi) 6= 0.

Then for every event A holds

P (A) =
∑
i∈I

P (Bi)P (A|Bi) .

Proof:

P (A) = P

((⋃
i∈I

Bi

)
∩A

)
= P

(⋃
i∈I

(Bi ∩A)

)

=
∑
i∈I

P (Bi ∩A) =
∑
i∈I

P (Bi)P (A|Bi) .

http://cmp.felk.cvut.cz
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Bayes theorem

Let Bi, i ∈ I , be a complete system of events and ∀i ∈ I : P (Bi) 6= 0.

Then for any j ∈ I and every event A given P (A) 6= 0 holds

P (Bj|A) =
P (Bj)P (A|Bj)∑
i∈I P (Bi)P (A|Bi)

.

Proof (exploring the total probability theorem):

P (Bj|A) =
P (Bj ∩A)

P (A)
=

P (Bj)P (A|Bj)∑
i∈I P (Bi)P (A|Bi)

.

http://cmp.felk.cvut.cz
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A special case: Bayes theorem for two events only

P(B|A) =
P(A|B) P (B)

P (A)
,

where P(B|A) is the posterior probability and P(A|B) is the likelihood.

� This is a fundamental rule for machine learning (pattern recognition) as it
allows to compute the probability of an output B given measurements A.

� The prior probability is P (B) without any evidence from measurements.

� The likelihood P(A|B) evaluates the measurements given an output B.
Seeking the output that maximizes the likelihood (the most likely output) is
known as the maximum likelihood estimation (ML).

� The posterior probability P(B|A) is the probability of B after taking the
measurement A into account. Its maximization leads to the maximum
a-posteriori estimation (MAP).

http://cmp.felk.cvut.cz
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The importance of Bayes theorem

� The probabilities P (A|Bi) are estimated from experiments or from a
statistical model.

� Having P (A|Bi), the probabilities P (Bi|A) can be computed and used to
estimate, which event from Bi occurred.

� A problem: To determine a posteriori probability P (Bi|A), it is needed to
know the a priori probability P (Bi).

� In a similar manner, we define the conditional probability distribution,
conditional density of the continuous random variable, etc.

http://cmp.felk.cvut.cz
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Example: Victim detections in USAR (1)

In Urban Search & Rescue (USAR) the ability of robots to reliably detect
presence of a victim is crucial. How do we implement and evaluate this ability?

Task 1

Assume we have a sensor S (e.g. camera) and computer vision algorithm that
detects victims. We evaluated the sensor on ground truth data statistically:

� There is 20% chance of not detecting a victim if there is one.

� There is 10% chance of false positive detection.

� A priori probability of victim presence V is 60%.

� What is the probability that there is a victim if the sensor says no victim is
detected?

http://cmp.felk.cvut.cz
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Example: Victim detections in USAR (2)

Tools

What tools are we going to use?
� The Product rule: P (A,B) = P (A|B)P (B) = P (B|A)P (A)

� The Sum rule: P (B) =
∑
A

P (A,B) =
∑
A

P (B|A)P (A)

� The Bayes theorem:

P (A|B) =
P (A,B)

P (B)
=
P (B|A)P (A)

P (B)
=

P (B|A)P (A)∑
A

P (B|A)P (A)

� General inference:

P (V |S) =
P (V, S)

P (S)
=

∑
A,B,C

P (S,A,B,C, V )∑
S,A,B,C

P (S,A,B,C, V )

http://cmp.felk.cvut.cz
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Example: Victim detections in USAR (3)

Solution

Express the sensor S measurements as conditional probability of V :

P (S|V ) S = True S = False

V = True 0.8 0.2
V = False 0.1 0.9

Express the a priori knowledge as probability:
P (V = True) = 0.6 and P (V = False) = 1− 0.6 = 0.4

Express what we want: P (V |S) =? given S = False (not detecting a victim)
and V = True (but there is one).

http://cmp.felk.cvut.cz
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Example: Victim detections in USAR (4)

� Use the tools to express what-we-want in the terms of what-we-know:

P (V |S) =
P (V, S)

P (S)
=
P (S|V )P (V )∑
V

P (S, V )
=

P (S|V )P (V )∑
V

P (S|V )P (V )

� Substitute S = False and V = True and sum over V to obtain:

P (V |S) =
P (S = False|V = True)P (V = True)∑
V

P (S = False|V = True)P (V = True)
=

=
0.2 · 0.6

0.2 · 0.6 + 0.9 · 0.4
= 0.25

� Conclusion: if our sensors says there is no victim, we have 25% chance of
missing out someone! We need to add one more sensor ...

http://cmp.felk.cvut.cz
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Example: Victim detections in USAR (5)

In Urban Search & Rescue (USAR) the reliability is achieved through sensor
fusion: use statistics to evaluate the sensors and probability to perform the fusion.

Task 2

Assume we have a sensor S as in previous case and we add one more sensor T
with the following properties:

� There is 5% chance of not detecting a victim if there is one.

� There is 5% chance of false positive detection.

� A priori probability of victim presence is the same, V is 60%.

� What is the probability that there is a victim if both sensors confirm its
presence?

http://cmp.felk.cvut.cz
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Example: Victim detections in USAR (6)

Solution

Express the sensor T measurements as conditional probability of V :

P (T |V ) T = True T = False

V = True 0.95 0.05
V = False 0.05 0.95

The a priori probability is the same:
P (V = True) = 0.6 and P (V = False) = 1− 0.6 = 0.4

Express what we want: P (V |S, T ) =? given S = True, T = True (both
sensors see a victim) and V = True (and there is one). Furthermore, we know
that both sensors provide independent measurements with respect to each other.

http://cmp.felk.cvut.cz
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Example: Victim detections in USAR (7)

� Naive approach using joint probability: P (S, T, V ) = P (S, T |V )P (V )

� Conditional independence: P (S, T |V )P (V ) = P (S|V )P (T |V )P (V )

� Applying the tools:

P (V |S, T ) =
P (V, S, T )

P (S, T )
=
P (S|V )P (T |V )P (V )∑

V

P (V, S, T )
=

=
P (S|V )P (T |V )P (V )∑
V

P (S|V )P (T |V )P (V )

� Substitute: S = True, T = True, V = True and sum over V to obtain:

=
0.8 · 0.95 · 0.6

0.8 · 0.95 · 0.6 + 0.1 · 0.05 · 0.4
= 0.9956

� Conclusion: if both sensors confirm there is a victim, we have 99.56%
chance that there is a victim.

http://cmp.felk.cvut.cz
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The random variable

� The random variable is an arbitrary function X : Ω→ R, where Ω is a
sample space.

� Why is the concept of the random variable introduced? It allows to work
with concepts as the distribution function, probability density, expectation
(mean value), etc.

� There are two basic types of random variables:

• Discrete – a countable number of values. Examples: rolling a dice, the
count of number of cars passing through a street in a hour.
The discrete probability is given as P (X = ai) = p(ai), i = 1, . . .,∑
i p(ai) = 1.

• Continuous – values from some interval, i.e. infinite number of values.
Example: the height persons.
The continuous probability is given by the distribution function or the
probability density function.

http://cmp.felk.cvut.cz
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Distribution function of a random variable

Distribution function of the random variable X is a function F : X → [0, 1]

defined as F (x) = P (X ≤ x), where P is a probability.

Properties:

1. F (x) is a non-decreasing function, i.e. ∀ pair x1 < x2 it holds
F (x1) ≤ F (x2).

2. F (X) is continuous from the right, i.e. it holds lim
h→0+

F (x+ h) = F (x).

3. � It holds for every distribution function lim
x→−∞

F (x) = 0 a
lim
x→∞

F (x) = 1. Written more concisely: F (−∞) = 0, F (∞) = 1.

� If the possible values of F (x) are from the interval (a, b) then
F (a) = 0, F (b) = 1.

Any function fulfilling the above three properties can be understood as a
distribution function.

http://cmp.felk.cvut.cz
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Continuous distribution function

� The distribution function F is called (absolutely) continuous if a
nonnegative function f (probability density) exists and it holds

F (x) =

∫ x

−∞
f(u) du for every x ∈ X.

� The probability density fulfills∫ ∞
−∞

f(x) dx = 1 .

� If the derivative of F (x) exists in the point x then F ′(x) = f(x).

� For a, b ∈ R, a < b, it holds

P (a < X < b) =

∫ b

a

f(x) dx = F (b)− F (a) .

http://cmp.felk.cvut.cz
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Example: Normal distribution

F (x) f(x) = 1√
2πσ2

e
−−x

2

2σ2

Distribution function Probability density

http://cmp.felk.cvut.cz
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The law of large numbers

The law of large numbers says that if very many independent experiments can be
made then it is almost certain that the relative frequency will converge to the
theoretical value of the probability density.

Jakob Bernoulli, Ars Conjectandi: Usum & Applicationem Praecedentis Doctrinae
in Civilibus, Moralibus & Oeconomicis, 1713, Chapter 4.

http://cmp.felk.cvut.cz
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Expectation

� (Mathematical) expectation = the average of a variable under the
probability distribution.

� Continuous definition: E(x) =
∞∫
−∞

x f(x) dx.

� Discrete definition: E(x) =
∑
x
x P (x).

� The expectation can be estimated from a N number of samples by
E(x) ≈ 1

N

∑
i

xi. The approximation becomes exact for N →∞.

� Expectation over multiple variables: Ex(x, y) =
∞∫
−∞

(x, y) f(x) dx

� Conditional expectation: E(x|y) =
∞∫
−∞

x f(x|y) dx.

http://cmp.felk.cvut.cz
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Basic characteristics of a random variable

Continuous distribution Discrete distribution

Expectation

E(x) =
∞∫
−∞

x f(x) dx E(x) =
∑
x
x P (x)

k-th (general) moment

E(xk) =
∞∫
−∞

xk f(x) dx E(x) =
∑
x
xk P (x)

k-th central moment

E(xk) =
∞∫
−∞

(x− E(x))k f(x) dx E(x) =
∑
x

(x− E(x))k P (x)

Dispersion

D(x) =
∞∫
−∞

(x− E(x))2 f(x) dx E(x) =
∑
x

(x− E(x))2 P (x)

http://cmp.felk.cvut.cz
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Covariance

The mutual covariance σxy of two random variables X,Y is

σxy = E ((X − µx)(Y − µy)) .

The covariance matrix Σ of n variables X1, . . . , Xn is

Σ =

 σ2
1 . . . σ1n

. . .
σn1 . . . σ2

n

 .

The covariance matrix is symmetric (i.e. Σ = Σ>) and positive-semidefinite (as
the covariance matrix is real valued, the positive-semidefinite means that
xTMx ≥ 0 for all x ∈ R).

http://cmp.felk.cvut.cz
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Quantiles, median

� The p-quantile Qp: P (X < Qp) = p.

� The median is the p-quantile for p = 1
2, i.e. P (X < Qp) = 1

2.

Note: Median is often used as a replacement for the mean value in robust
statistics.

http://cmp.felk.cvut.cz
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Multivariate Normal distribution (1)

Source: Andrew Ng, Stanford University, Machine Learning course 2012, Lecture 15

http://cmp.felk.cvut.cz
http://openclassroom.stanford.edu/MainFolder/CoursePage.php?course=MachineLearning
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Multivariate Normal distribution (2)

Source: Andrew Ng, Stanford University, Machine Learning course 2012, Lecture 15

http://cmp.felk.cvut.cz
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Multivariate Normal distribution (3)

Source: Andrew Ng, Stanford University, Machine Learning course 2012, Lecture 15

http://cmp.felk.cvut.cz
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Multivariate Normal distribution (4)

Source: Andrew Ng, Stanford University, Machine Learning course 2012, Lecture 15

http://cmp.felk.cvut.cz
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Multivariate Normal distribution (5)

Source: Andrew Ng, Stanford University, Machine Learning course 2012, Lecture 15

http://cmp.felk.cvut.cz
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Multivariate Normal distribution (6)

Source: Andrew Ng, Stanford University, Machine Learning course 2012, Lecture 15

http://cmp.felk.cvut.cz
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