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pEvolutionary Algorithms: Characteristics

EA are stochastic optimization algorithms

⌅ Stochastic – but not random search,

⌅ Use an analogy of natural evolution

� genetic inheritance (J.G. Mendel) – the basic principles of transference of hereditary fac-
tors from parent to o↵spring – genes, which present hereditary factors, are lined up on
chromosomes.

� strife for survival (Ch. Darwin) – the fundamental principle of natural selection – is the
process by which individual organisms with favorable traits are more likely to survive and
reproduce.

⌅ Not fast in some sense – population-based algorithm,

⌅ Robust – e�cient in finding good solutions in di�cult searches.
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pEA: Vocabulary

Vocabulary borrowed from natural genetics

⌅ Individual (chromosome + its quality measure ”fitness value”) – a solution to a problem.

⌅ Chromosome – entire representation of the solution.

⌅ Fitness – quality measure assigned to an individual, expresses how well it is adapted to the
environment.

⌅ Gene (also features, characters) – elementary units from which chromosomes are made.

� each gene is located at certain place of the chromosome called locus (pl. loci),

� a particular value for a locus is an allele.

example: the ”thickness” gene (which might be at locus 8) might be set to allele 2,
meaning its second-thinnest value.

⌅ Genotype – what’s on the chromosome.

⌅ Phenotype – what it means in the problem context (e.g., binary sequence may map to
integers or reals, or order of execution, etc.).

⌅ ⌅ ⌅ ⌅ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ GA & GP



pRepresentation

Problem can be represented as

⌅ binary string –

⌅ real-valued string –

⌅ string of chars –

⌅ or as a tree

⌅ or as a graph, and others.
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pEvaluation Function

Objective (Fitness) function

⌅ the only information about the sought solution the algorithm dispose of,

⌅ must be defined for every possible chromosome.

Fitness function may be

⌅ multimodal,

⌅ discrete,

⌅ multidimensional,

⌅ nonlinear,

⌅ noisy,

⌅ multiobjective.

Fitness does not have to be define analytically

⌅ simulation results,

⌅ classification success rate.

Fitness function should not be too costly!!!
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pExample: Coding & Evaluation

Function optimization

⌅ maximization of f (x, y) = x

2 + y

2,

⌅ parameters x and y take on values from interval < 0, 31 >,

⌅ and are code on 5 bits each.
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pEvolutionary Cycle
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pIdealized Illustration of Evolution

⌅ Uniformly sampled population. ⌅ Population converged to promising regions.
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pInitialization

Random

⌅ randomly generated solutions,

⌅ no prior information about the shape of the sought solution,

⌅ relies just on ”lucky” sampling of the whole search space by a finite set of samples.

Informed (pre-processing)

⌅ (meta)heuristic routines used for seeding the initial population,

⌅ biased random generator sampling regions of the search space that are likely to contain the
sought solutions,

+ may help to find better solutions,

+ may speed up the search process,

– may cause irreversible focusing of the search process on regions with local optima.
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pReproduction

Models nature’s survival-of-fittest principle

⌅ prefers better individuals to the worse ones,

⌅ still, every individual should have a chance to reproduce.

Roulette wheel

⌅ probability of choosing some solution is di-
rectly proportional to its fitness value

Other methods

⌅ Stochastic Universal Sampling,

⌅ Tournament selection,

⌅ Reminder Stochastic Sampling.

⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ GA & GP



pGenetic Operators: Crossover

Idea

⌅ given two well-fit solutions to the given problem, it is possible to get a new solution by properly
mixing the two that is even better than both its parents.

Role of crossover

⌅ sampling (exploration) of the search space

Example: 1-point crossover

⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ GA & GP



pGenetic Operators: Mutation

Role of mutation

⌅ preservation of a population diversity,

⌅ minimization of a possibility of loosing some important piece of genetic information.

Single bit-flipping mutation

Population
0 0 1 1 0 0 0 1 1 0

0 1 1 0 0 1 0 1 0 0

0 0 0 1 1 0 1 0 1 1

0 1 0 0 1 0 0 1 1 1

0 1 1 0 0 0 0 1 0 1

. . .

0 1 0 0 1 1 0 1 0 0

Example of missing genetic information
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pReplacement Strategy

Replacement strategy defines

⌅ how big portion of the current generation will be replaced in each generation, and

⌅ which solutions in the current population will be replaced by the newly generated ones.

Two extreme cases

⌅ Generational – the whole old population is completely rebuild in each generation (analogy
of short-lived species).

⌅ Steady-state – just a few individuals are replaced in each generation (analogy of longer-lived
species).

⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ GA & GP



pApplication Areas of Evolutionary Algorithms

EAs are popular for their

⌅ simplicity,

⌅ e↵ectiveness,

⌅ robustness.

Holland: ”It’s best used in areas where you don’t really have a good idea what the solution

might be. And it often surprises you with what you come up with.”

Applications

⌅ control,

⌅ engineering design,

⌅ image processing,

⌅ planning & scheduling,

⌅ VLSI circuit design,

⌅ network optimization & routing problems,

⌅ optimal resource allocation,

⌅ marketing,

⌅ credit scoring & risk assessment,

⌅ and many others.

⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ GA & GP



pMultiple Traveling Salesmen Problem

Rescue operations planning

⌅ Given N cities and K agents, find an opti-
mal tour for each agent so that every city is
visited exactly once.

⌅ A typical criterion to be optimized is the
overall time spent by the squad (i.e., the
slowest team member) during the task ex-
ecution.

⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ GA & GP



pArtificial Ant Problem

Santa Fe trail

⌅ 32⇥ 32 grid with 89 food pieces.

⌅ Obstacles

� 1⇥, 2⇥ strait,

� 1⇥, 2⇥, 3⇥ right/left.

Ant capabilities

⌅ detects the food right in front of
him in direction he faces.

⌅ actions observable from outside

� MOVE – makes a step and eats
a food piece if there is some,

� LEFT – turns left,

� RIGHT – turns right,

� NO-OP – no operation.

Goal is to find a strategy that would navigate an ant through the grid so that it finds all the food
pieces in the given time (600 time steps).

⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ GA & GP



pArtificial Ant Problem: GA Approach

Collins a Je↵erson 1991, standard GA using binary representation

Representation

⌅ strategy represented by finite state machine,

⌅ table of transitions coded as binary chromosomes of fixed length.

Example: 4-state FSM, 34-bit long chromosomes

⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ GA & GP



pArtificial Ant Problem: Example cont.

Ant behavior

⌅ What happens if the ant hits an obstacle?

⌅ What is strange with transition from state 10
to the initial state 00?

⌅ When does the ant succeed?

⌅ Is the number of states su�cient to solve the
problem?

⌅ Do all of the possible 32-bit chromosomes
represent a feasible solution?

⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ GA & GP



pArtificial Ant Problem: GA result

Representation

⌅ 32 states,

⌅ 453 = 64⇥ 7 + 5 bits !!!

Population size: 65.536 !!!

Number of generations: 200

Total number of samples tried: 13⇥ 106 !!!

⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ GA & GP



pGenetic Programming (GP)

GP shares with GA the philosophy of survival and reproduction of the fittest and the analogy
of naturally occurring genetic operators.

GP di↵ers from GA in a representation, genetic operators and a scope of applications.

GP is extension of the conventional GA in which the structures undergoing adaptation are
trees of dynamically varying size and shape representing hierarchical computer programs.

Applications

⌅ learning programs,

⌅ learning decision trees,

⌅ learning rules,

⌅ learning strategies,

⌅ . . .

⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ GA & GP



pGP: Representation

All possible trees are composed of functions (inner nodes) and terminals (leaf nodes) appro-
priate to the problem domain

⌅ Terminals – inputs to the programs (indepen-
dent variables), real, integer or logical constants,
actions.

⌅ Functions

� arithmetic operators (+, -, *, / ),

� algebraic functions (sin, cos, exp, log),

� logical functions (AND, OR, NOT),

� conditional operators (If-Then-Else,
cond?true:false),

� and others.

Example: Tree representation of a LISP
S-expression 0.23 ⇤ Z +X � 0.78

Closure – each of the functions should be able to accept, as its argument, any value that may
be returned by any function and any terminal.

⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ GA & GP



pGP Initialisation: Common Methods

GP needs a good tree-creation algorithm to create trees for the initial population and subtrees for
subtree mutation.

Required characteristics:

⌅ Light computationally complex; optimally linear in tree size.

⌅ User control over expected tree size.

⌅ User control over specific node appearance in trees.

GROW method (each branch has depth  D):
⌅ nodes at depth d < D

max

randomly chosen
from F [ T ,

⌅ nodes at depth d = D

max

randomly chosen
from T .

FULL method (each branch has depth = D):
⌅ nodes at depth d < D randomly chosen from
function set F ,

⌅ nodes at depth d = D randomly chosen from
terminal set T .

GROW(depth d, max depth D)
Returns: a tree of depth  D � d

1 if (d = D) return a random terminal
2 else
3 choose a random func or term f

4 if (f is terminal) return f

5 else
6 for each argument a of f
7 fill a with GROW(d + 1, D)
8 return f

⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ GA & GP



pGP Initialisation

Characteristics of GROW:

⌅ does not have a size parameter – does not allow the user to create a desired size distribution,

⌅ does not allow the user to define the expected probabilities of certain nodes appearing in trees,

⌅ does not give the user much control over the tree structures generated.

⌅ there is no appropriate way to create trees with either a fixed or average tree size or depth.

RAMPED HALF-AND-HALF – GROW & FULL method each deliver half of the initial population.
D is chosen between 2 to 6,

⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ GA & GP



pGP Initialisation

Characteristics of GROW:

⌅ does not have a size parameter – does not allow the user to create a desired size distribution,

⌅ does not allow the user to define the expected probabilities of certain nodes appearing in trees,

⌅ does not give the user much control over the tree structures generated.

⌅ there is no appropriate way to create trees with either a fixed or average tree size or depth.

RAMPED HALF-AND-HALF – GROW & FULL method each deliver half of the initial population.
D is chosen between 2 to 6,

PTC1 is a modification of GROW that

⌅ allows the user to define probabilities of appearance of functions within the tree,

⌅ gives user a control over desired expected tree size, and guarantees that, on average, trees
will be of that size.

⌅ does not give the user any control over the variance in tree sizes,

⌅ is fast, running in time near-linear in tree size.

⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ GA & GP



pGP: Standard Crossover

⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ GA & GP



pGP: Subtree-Replacing Mutation

Mutation replaces selected subtree with a randomly generated new one.

⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ GA & GP



pGP: Selection

Commonly used are the fitness proportionate roulette wheel selection or the tournament selection.

Greedy over-selection is recommended for complex problems that require large populations
(> 1000) – the motivation is to increase e�ciency by increasing the chance of being selected to
the fitter individuals in the population

⌅ rank population by fitness and divide it into two groups:

� group I: the fittest individuals that together accounting for c = x% of the sum of fitness
values in the population,

� group II: remaining less fit individuals.

⌅ 80% of the time an individual is selected from group I in proportion to its fitness; 20% of the
time, an individual is selected from group II.

⌅ For population size = 1000, 2000, 4000, 8000, x = 32%, 16%, 8%, 4%.

%’s come from rule of thumb.

⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ GA & GP



pGP: Selection

Commonly used are the fitness proportionate roulette wheel selection or the tournament selection.

Greedy over-selection is recommended for complex problems that require large populations
(> 1000) – the motivation is to increase e�ciency by increasing the chance of being selected to
the fitter individuals in the population

⌅ rank population by fitness and divide it into two groups:

� group I: the fittest individuals that together accounting for c = x% of the sum of fitness
values in the population,

� group II: remaining less fit individuals.

⌅ 80% of the time an individual is selected from group I in proportion to its fitness; 20% of the
time, an individual is selected from group II.

⌅ For population size = 1000, 2000, 4000, 8000, x = 32%, 16%, 8%, 4%.

%’s come from rule of thumb.

Example: E↵ect of greedy over-selection for the 6-multiplexer problem

Population size I(M,i,z) without over-selection I(M,i,z) with over-selection
1,000 343,000 33,000
2,000 294,000 18,000
4,000 160,000 24,000

⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ GA & GP



pArtificial Ant Problem

Santa Fe trail

⌅ 32⇥ 32 grid with 89 food pieces.

⌅ Obstacles

� 1⇥, 2⇥ strait,

� 1⇥, 2⇥, 3⇥ right/left.

Ant capabilities

⌅ detects the food right in front of
him in direction he faces.

⌅ actions observable from outside

� MOVE – makes a step and eats
a food piece if there is some,

� LEFT – turns left,

� RIGHT – turns right,

� NO-OP – no operation.

Goal is to find a strategy that would navigate an ant through the grid so that it finds all the food
pieces in the given time (600 time steps).

⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ GA & GP



pArtificial Ant Problem: GP Approach

Terminals
⌅ motorial section,

⌅ T = MOVE, LEFT, RIGHT.

Functions
⌅ conditional IF-FOOD-AHEAD – food detection, 2 ar-
guments (is/is not food ahead),

⌅ unconditional PROG2, PROG3 – sequence of 2/3 ac-
tions.

Ant repeats the program until time runs out (600 time
steps) or all the food has been eaten.

Santa Fe trail

⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ GA & GP



pArtificial Ant Problem: GP Approach cont.

Typical solutions in the initial population

⌅ this solution

completely fails in finding and eating the food,

⌅ similarly this one

(IF-FOOD-AHEAD (LEFT)(RIGHT)),

⌅ this one

(PROG2 (MOVE) (MOVE))

just by chance finds 3 pieces of food.

Santa Fe trail

⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ GA & GP



pArtificial Ant Problem: GP Approach cont.

More interesting solutions

⌅ Quilter – performs systematic exploration of the grid,

(PROG3 (RIGHT)
(PROG3 (MOVE) (MOVE) (MOVE))
(PROG2 (LEFT) (MOVE)))

Quilter performance

⌅ Tracker – perfectly tracks the food until the first ob-
stacle occurs, then it gets trapped in an infinite loop.

(IF-FOOD-AHEAD (MOVE) (RIGHT))

Tracker performance

⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⌅ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ GA & GP



pArtificial Ant Problem: GP Approach cont.

⌅ Avoider – perfectly avoids food!!!

(I-F-A (RIGHT)
(I-F-A (RIGHT)

(PROG2 (MOVE) (LEFT))))

Avoider performance

Average fitness in the initial population is 3.5
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pArtificial Ant Problem: GP result

In generation 21, the following solution was found that already navigates an ant so that he eats
all 89 food pieces in the given time.

(I-F-A (MOVE)
(PROG3 (I-F-A (MOVE)

(RIGHT)
(PROG2 (RIGHT)

(PROG2 (LEFT)
(RIGHT))))

(PROG2 (I-F-A (MOVE)
(LEFT))

(MOVE))))

This program solves every trail with the obstacles of the same type as occurs in Santa Fe trail.

Compare the computational complexity with the GA approach!!!

GA approach: 65.536⇥ 200 = 13⇥ 106 trials.
vs.

GP approach: 500⇥ 21 = 10.500 trials.
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pExample of GP in Action: Trigonometric Identity

Task is to find an equivalent expression to cos(2x).

GP implementation:

⌅ Terminal set T = {x, 1.0}.

⌅ Function set F = {+,�, ⇤,%, sin}.

⌅ Training cases: 20 pairs (x
i

, y

i

), where x
i

are values evenly distributed in interval (0, 2⇡).

⌅ Fitness: Sum of absolute di↵erences between desired y
i

and the values returned by generated
expressions.

⌅ Stopping criterion: A solution found that gives the error less than 0.01.
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pExample of GP in Action: Trigonometric Identity cont.

1. run, 13th generation

(- (- 1 (* (sin x) (sin x))) (* (sin x) (sinx)))

which equals (after editing) to 1� 2 ⇤ sin2
x.

2. run, 34th generation

(- 1 (* (* (sin x) (sin x)) 2))

which is just another way of writing the same expression.
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pExample of GP in Action: Trigonometric Identity cont.

1. run, 13th generation

(- (- 1 (* (sin x) (sin x))) (* (sin x) (sinx)))

which equals (after editing) to 1� 2 ⇤ sin2
x.

2. run, 34th generation

(- 1 (* (* (sin x) (sin x)) 2))

which is just another way of writing the same expression.

3. run, 30th generation

(sin (- (- 2 (* x 2))

(sin (sin (sin (sin (sin (sin (* (sin (sin 1))

(sin (sin 1))

)))))))))
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pExample of GP in Action: Trigonometric Identity cont.

1. run, 13th generation

(- (- 1 (* (sin x) (sin x))) (* (sin x) (sinx)))

which equals (after editing) to 1� 2 ⇤ sin2
x.

2. run, 34th generation

(- 1 (* (* (sin x) (sin x)) 2))

which is just another way of writing the same expression.

3. run, 30th generation

(sin (- (- 2 (* x 2))

(sin (sin (sin (sin (sin (sin (* (sin (sin 1))

(sin (sin 1))

)))))))))

(2 minus the expression on the 2nd and 3rd rows) is almost ⇡/2 so the discovered identity is

cos(2x) = sin(⇡/2� 2x).
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pEA Materials: Reading, Demos, Software

Reading
⌅ D. E. Goldberg: Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-
Wesley, 1989.

⌅ Z. Michalewicz: Genetic Algorithms + Data Structures = Evolution Programs, Springer, 1998.

⌅ Poli, R., Langdon, W., McPhee, N.F.: A Field Guide to Genetic Programming, 2008,
http://www.gp-field-guide.org.uk/

⌅ Koza, J.: Genetic Programming: On the Programming of Computers by Means of Natural
Selection, MIT Press, 1992.

HUMIES: Human-Competitive Results
⌅ http://www.genetic-programming.org/hc2011/combined.html

Demos
⌅ M. Obitko: Introduction to genetic algorithms with java applets,

http://cs.felk.cvut.cz/ xobitko/ga/

Software
⌅ ECJ 16 – A Java-based Evolutionary Computation Research System

http://cs.gmu.edu/ eclab/projects/ecj/
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