
4
Linear

Models for
Classification

In the previous chapter, we explored a class of regression models having particularly
simple analytical and computational properties. We now discuss an analogous class
of models for solving classification problems. The goal in classification is to take an
input vector x and to assign it to one of K discrete classes Ck where k = 1, . . . , K.
In the most common scenario, the classes are taken to be disjoint, so that each input is
assigned to one and only one class. The input space is thereby divided into decision
regions whose boundaries are called decision boundaries or decision surfaces. In
this chapter, we consider linear models for classification, by which we mean that the
decision surfaces are linear functions of the input vector x and hence are defined
by (D − 1)-dimensional hyperplanes within the D-dimensional input space. Data
sets whose classes can be separated exactly by linear decision surfaces are said to be
linearly separable.

For regression problems, the target variable t was simply the vector of real num-
bers whose values we wish to predict. In the case of classification, there are various

179

180 4. LINEAR MODELS FOR CLASSIFICATION

ways of using target values to represent class labels. For probabilistic models, the
most convenient, in the case of two-class problems, is the binary representation in
which there is a single target variable t ∈ {0, 1} such that t = 1 represents class C1

and t = 0 represents class C2. We can interpret the value of t as the probability that
the class is C1, with the values of probability taking only the extreme values of 0 and
1. For K > 2 classes, it is convenient to use a 1-of-K coding scheme in which t is
a vector of length K such that if the class is Cj , then all elements tk of t are zero
except element tj , which takes the value 1. For instance, if we have K = 5 classes,
then a pattern from class 2 would be given the target vector

t = (0, 1, 0, 0, 0)T. (4.1)

Again, we can interpret the value of tk as the probability that the class is Ck. For
nonprobabilistic models, alternative choices of target variable representation will
sometimes prove convenient.

In Chapter 1, we identified three distinct approaches to the classification prob-
lem. The simplest involves constructing a discriminant function that directly assigns
each vector x to a specific class. A more powerful approach, however, models the
conditional probability distribution p(Ck|x) in an inference stage, and then subse-
quently uses this distribution to make optimal decisions. By separating inference
and decision, we gain numerous benefits, as discussed in Section 1.5.4. There are
two different approaches to determining the conditional probabilities p(Ck|x). One
technique is to model them directly, for example by representing them as parametric
models and then optimizing the parameters using a training set. Alternatively, we
can adopt a generative approach in which we model the class-conditional densities
given by p(x|Ck), together with the prior probabilities p(Ck) for the classes, and then
we compute the required posterior probabilities using Bayes’ theorem

p(Ck|x) =
p(x|Ck)p(Ck)

p(x)
. (4.2)

We shall discuss examples of all three approaches in this chapter.
In the linear regression models considered in Chapter 3, the model prediction

y(x,w) was given by a linear function of the parameters w. In the simplest case,
the model is also linear in the input variables and therefore takes the form y(x) =
wTx+w0, so that y is a real number. For classification problems, however, we wish
to predict discrete class labels, or more generally posterior probabilities that lie in
the range (0, 1). To achieve this, we consider a generalization of this model in which
we transform the linear function of w using a nonlinear function f(·) so that

y(x) = f
(
wTx + w0

)
. (4.3)

In the machine learning literature f(·) is known as an activation function, whereas
its inverse is called a link function in the statistics literature. The decision surfaces
correspond to y(x) = constant, so that wTx + w0 = constant and hence the deci-
sion surfaces are linear functions of x, even if the function f(·) is nonlinear. For this
reason, the class of models described by (4.3) are called generalized linear models

4.1. Discriminant Functions 181

(McCullagh and Nelder, 1989). Note, however, that in contrast to the models used
for regression, they are no longer linear in the parameters due to the presence of the
nonlinear function f(·). This will lead to more complex analytical and computa-
tional properties than for linear regression models. Nevertheless, these models are
still relatively simple compared to the more general nonlinear models that will be
studied in subsequent chapters.

The algorithms discussed in this chapter will be equally applicable if we first
make a fixed nonlinear transformation of the input variables using a vector of basis
functions φ(x) as we did for regression models in Chapter 3. We begin by consider-
ing classification directly in the original input space x, while in Section 4.3 we shall
find it convenient to switch to a notation involving basis functions for consistency
with later chapters.

4.1. Discriminant Functions

A discriminant is a function that takes an input vector x and assigns it to one of K
classes, denoted Ck. In this chapter, we shall restrict attention to linear discriminants,
namely those for which the decision surfaces are hyperplanes. To simplify the dis-
cussion, we consider first the case of two classes and then investigate the extension
to K > 2 classes.

4.1.1 Two classes
The simplest representation of a linear discriminant function is obtained by tak-

ing a linear function of the input vector so that

y(x) = wTx + w0 (4.4)

where w is called a weight vector, and w0 is a bias (not to be confused with bias in
the statistical sense). The negative of the bias is sometimes called a threshold. An
input vector x is assigned to class C1 if y(x) � 0 and to class C2 otherwise. The cor-
responding decision boundary is therefore defined by the relation y(x) = 0, which
corresponds to a (D − 1)-dimensional hyperplane within the D-dimensional input
space. Consider two points xA and xB both of which lie on the decision surface.
Because y(xA) = y(xB) = 0, we have wT(xA−xB) = 0 and hence the vector w is
orthogonal to every vector lying within the decision surface, and so w determines the
orientation of the decision surface. Similarly, if x is a point on the decision surface,
then y(x) = 0, and so the normal distance from the origin to the decision surface is
given by

wTx
‖w‖ = − w0

‖w‖ . (4.5)

We therefore see that the bias parameter w0 determines the location of the decision
surface. These properties are illustrated for the case of D = 2 in Figure 4.1.

Furthermore, we note that the value of y(x) gives a signed measure of the per-
pendicular distance r of the point x from the decision surface. To see this, consider

182 4. LINEAR MODELS FOR CLASSIFICATION

Figure 4.1 Illustration of the geometry of a
linear discriminant function in two dimensions.
The decision surface, shown in red, is perpen-
dicular to w, and its displacement from the
origin is controlled by the bias parameter w0.
Also, the signed orthogonal distance of a gen-
eral point x from the decision surface is given
by y(x)/‖w‖.

x2

x1

w
x

y(x)
‖w‖

x⊥

−w0
‖w‖

y = 0
y < 0

y > 0

R2

R1

an arbitrary point x and let x⊥ be its orthogonal projection onto the decision surface,
so that

x = x⊥ + r
w
‖w‖ . (4.6)

Multiplying both sides of this result by wT and adding w0, and making use of y(x) =
wTx + w0 and y(x⊥) = wTx⊥ + w0 = 0, we have

r =
y(x)
‖w‖ . (4.7)

This result is illustrated in Figure 4.1.
As with the linear regression models in Chapter 3, it is sometimes convenient

to use a more compact notation in which we introduce an additional dummy ‘input’
value x0 = 1 and then define w̃ = (w0,w) and x̃ = (x0,x) so that

y(x) = w̃Tx̃. (4.8)

In this case, the decision surfaces are D-dimensional hyperplanes passing through
the origin of the D + 1-dimensional expanded input space.

4.1.2 Multiple classes
Now consider the extension of linear discriminants to K > 2 classes. We might

be tempted be to build a K-class discriminant by combining a number of two-class
discriminant functions. However, this leads to some serious difficulties (Duda and
Hart, 1973) as we now show.

Consider the use of K−1 classifiers each of which solves a two-class problem of
separating points in a particular class Ck from points not in that class. This is known
as a one-versus-the-rest classifier. The left-hand example in Figure 4.2 shows an

4.1. Discriminant Functions 183

R1

R2

R3

?

C1

not C1

C2

not C2

R1

R2

R3

?C1

C2

C1

C3

C2

C3

Figure 4.2 Attempting to construct a K class discriminant from a set of two class discriminants leads to am-
biguous regions, shown in green. On the left is an example involving the use of two discriminants designed to
distinguish points in class Ck from points not in class Ck. On the right is an example involving three discriminant
functions each of which is used to separate a pair of classes Ck and Cj .

example involving three classes where this approach leads to regions of input space
that are ambiguously classified.

An alternative is to introduce K(K − 1)/2 binary discriminant functions, one
for every possible pair of classes. This is known as a one-versus-one classifier. Each
point is then classified according to a majority vote amongst the discriminant func-
tions. However, this too runs into the problem of ambiguous regions, as illustrated
in the right-hand diagram of Figure 4.2.

We can avoid these difficulties by considering a single K-class discriminant
comprising K linear functions of the form

yk(x) = wT
k x + wk0 (4.9)

and then assigning a point x to class Ck if yk(x) > yj(x) for all j 	= k. The decision
boundary between class Ck and class Cj is therefore given by yk(x) = yj(x) and
hence corresponds to a (D − 1)-dimensional hyperplane defined by

(wk − wj)Tx + (wk0 − wj0) = 0. (4.10)

This has the same form as the decision boundary for the two-class case discussed in
Section 4.1.1, and so analogous geometrical properties apply.

The decision regions of such a discriminant are always singly connected and
convex. To see this, consider two points xA and xB both of which lie inside decision
region Rk, as illustrated in Figure 4.3. Any point x̂ that lies on the line connecting
xA and xB can be expressed in the form

x̂ = λxA + (1 − λ)xB (4.11)

184 4. LINEAR MODELS FOR CLASSIFICATION

Figure 4.3 Illustration of the decision regions for a mul-
ticlass linear discriminant, with the decision
boundaries shown in red. If two points xA

and xB both lie inside the same decision re-
gion Rk, then any point bx that lies on the line
connecting these two points must also lie in
Rk, and hence the decision region must be
singly connected and convex.

Ri

Rj

Rk

xA

xB

x̂

where 0 � λ � 1. From the linearity of the discriminant functions, it follows that

yk(x̂) = λyk(xA) + (1 − λ)yk(xB). (4.12)

Because both xA and xB lie inside Rk, it follows that yk(xA) > yj(xA), and
yk(xB) > yj(xB), for all j 	= k, and hence yk(x̂) > yj(x̂), and so x̂ also lies
inside Rk. Thus Rk is singly connected and convex.

Note that for two classes, we can either employ the formalism discussed here,
based on two discriminant functions y1(x) and y2(x), or else use the simpler but
equivalent formulation described in Section 4.1.1 based on a single discriminant
function y(x).

We now explore three approaches to learning the parameters of linear discrimi-
nant functions, based on least squares, Fisher’s linear discriminant, and the percep-
tron algorithm.

4.1.3 Least squares for classification
In Chapter 3, we considered models that were linear functions of the parame-

ters, and we saw that the minimization of a sum-of-squares error function led to a
simple closed-form solution for the parameter values. It is therefore tempting to see
if we can apply the same formalism to classification problems. Consider a general
classification problem with K classes, with a 1-of-K binary coding scheme for the
target vector t. One justification for using least squares in such a context is that it
approximates the conditional expectation E[t|x] of the target values given the input
vector. For the binary coding scheme, this conditional expectation is given by the
vector of posterior class probabilities. Unfortunately, however, these probabilities
are typically approximated rather poorly, indeed the approximations can have values
outside the range (0, 1), due to the limited flexibility of a linear model as we shall
see shortly.

Each class Ck is described by its own linear model so that

yk(x) = wT
k x + wk0 (4.13)

where k = 1, . . . , K. We can conveniently group these together using vector nota-
tion so that

y(x) = W̃Tx̃ (4.14)

4.1. Discriminant Functions 185

where W̃ is a matrix whose kth column comprises the D + 1-dimensional vector
w̃k = (wk0,wT

k)T and x̃ is the corresponding augmented input vector (1,xT)T with
a dummy input x0 = 1. This representation was discussed in detail in Section 3.1. A
new input x is then assigned to the class for which the output yk = w̃T

k x̃ is largest.

We now determine the parameter matrix W̃ by minimizing a sum-of-squares
error function, as we did for regression in Chapter 3. Consider a training data set
{xn, tn} where n = 1, . . . , N , and define a matrix T whose nth row is the vector tT

n ,
together with a matrix X̃ whose nth row is x̃T

n . The sum-of-squares error function
can then be written as

ED(W̃) =
1
2

Tr
{

(X̃W̃ − T)T(X̃W̃ − T)
}

. (4.15)

Setting the derivative with respect to W̃ to zero, and rearranging, we then obtain the
solution for W̃ in the form

W̃ = (X̃TX̃)−1X̃TT = X̃†T (4.16)

where X̃† is the pseudo-inverse of the matrix X̃, as discussed in Section 3.1.1. We
then obtain the discriminant function in the form

y(x) = W̃Tx̃ = TT
(
X̃†

)T

x̃. (4.17)

An interesting property of least-squares solutions with multiple target variables
is that if every target vector in the training set satisfies some linear constraint

aTtn + b = 0 (4.18)

for some constants a and b, then the model prediction for any value of x will satisfy
the same constraint so thatExercise 4.2

aTy(x) + b = 0. (4.19)

Thus if we use a 1-of-K coding scheme for K classes, then the predictions made
by the model will have the property that the elements of y(x) will sum to 1 for any
value of x. However, this summation constraint alone is not sufficient to allow the
model outputs to be interpreted as probabilities because they are not constrained to
lie within the interval (0, 1).

The least-squares approach gives an exact closed-form solution for the discrimi-
nant function parameters. However, even as a discriminant function (where we use it
to make decisions directly and dispense with any probabilistic interpretation) it suf-
fers from some severe problems. We have already seen that least-squares solutionsSection 2.3.7
lack robustness to outliers, and this applies equally to the classification application,
as illustrated in Figure 4.4. Here we see that the additional data points in the right-
hand figure produce a significant change in the location of the decision boundary,
even though these point would be correctly classified by the original decision bound-
ary in the left-hand figure. The sum-of-squares error function penalizes predictions
that are ‘too correct’ in that they lie a long way on the correct side of the decision

186 4. LINEAR MODELS FOR CLASSIFICATION

−4 −2 0 2 4 6 8

−8

−6

−4

−2

0

2

4

−4 −2 0 2 4 6 8

−8

−6

−4

−2

0

2

4

Figure 4.4 The left plot shows data from two classes, denoted by red crosses and blue circles, together with
the decision boundary found by least squares (magenta curve) and also by the logistic regression model (green
curve), which is discussed later in Section 4.3.2. The right-hand plot shows the corresponding results obtained
when extra data points are added at the bottom left of the diagram, showing that least squares is highly sensitive
to outliers, unlike logistic regression.

boundary. In Section 7.1.2, we shall consider several alternative error functions for
classification and we shall see that they do not suffer from this difficulty.

However, problems with least squares can be more severe than simply lack of
robustness, as illustrated in Figure 4.5. This shows a synthetic data set drawn from
three classes in a two-dimensional input space (x1, x2), having the property that lin-
ear decision boundaries can give excellent separation between the classes. Indeed,
the technique of logistic regression, described later in this chapter, gives a satisfac-
tory solution as seen in the right-hand plot. However, the least-squares solution gives
poor results, with only a small region of the input space assigned to the green class.

The failure of least squares should not surprise us when we recall that it cor-
responds to maximum likelihood under the assumption of a Gaussian conditional
distribution, whereas binary target vectors clearly have a distribution that is far from
Gaussian. By adopting more appropriate probabilistic models, we shall obtain clas-
sification techniques with much better properties than least squares. For the moment,
however, we continue to explore alternative nonprobabilistic methods for setting the
parameters in the linear classification models.

4.1.4 Fisher’s linear discriminant
One way to view a linear classification model is in terms of dimensionality

reduction. Consider first the case of two classes, and suppose we take the D-

4.1. Discriminant Functions 187

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

Figure 4.5 Example of a synthetic data set comprising three classes, with training data points denoted in red
(×), green (+), and blue (◦). Lines denote the decision boundaries, and the background colours denote the
respective classes of the decision regions. On the left is the result of using a least-squares discriminant. We see
that the region of input space assigned to the green class is too small and so most of the points from this class
are misclassified. On the right is the result of using logistic regressions as described in Section 4.3.2 showing
correct classification of the training data.

dimensional input vector x and project it down to one dimension using

y = wTx. (4.20)

If we place a threshold on y and classify y � −w0 as class C1, and otherwise class
C2, then we obtain our standard linear classifier discussed in the previous section.
In general, the projection onto one dimension leads to a considerable loss of infor-
mation, and classes that are well separated in the original D-dimensional space may
become strongly overlapping in one dimension. However, by adjusting the com-
ponents of the weight vector w, we can select a projection that maximizes the class
separation. To begin with, consider a two-class problem in which there are N1 points
of class C1 and N2 points of class C2, so that the mean vectors of the two classes are
given by

m1 =
1

N1

∑
n∈C1

xn, m2 =
1

N2

∑
n∈C2

xn. (4.21)

The simplest measure of the separation of the classes, when projected onto w, is the
separation of the projected class means. This suggests that we might choose w so as
to maximize

m2 − m1 = wT(m2 − m1) (4.22)

where
mk = wTmk (4.23)

188 4. LINEAR MODELS FOR CLASSIFICATION

−2 2 6

−2

0

2

4

−2 2 6

−2

0

2

4

Figure 4.6 The left plot shows samples from two classes (depicted in red and blue) along with the histograms
resulting from projection onto the line joining the class means. Note that there is considerable class overlap in
the projected space. The right plot shows the corresponding projection based on the Fisher linear discriminant,
showing the greatly improved class separation.

is the mean of the projected data from class Ck. However, this expression can be
made arbitrarily large simply by increasing the magnitude of w. To solve this
problem, we could constrain w to have unit length, so that

∑
i w2

i = 1. Using
a Lagrange multiplier to perform the constrained maximization, we then find thatAppendix E
w ∝ (m2 −m1). There is still a problem with this approach, however, as illustratedExercise 4.4
in Figure 4.6. This shows two classes that are well separated in the original two-
dimensional space (x1, x2) but that have considerable overlap when projected onto
the line joining their means. This difficulty arises from the strongly nondiagonal
covariances of the class distributions. The idea proposed by Fisher is to maximize
a function that will give a large separation between the projected class means while
also giving a small variance within each class, thereby minimizing the class overlap.

The projection formula (4.20) transforms the set of labelled data points in x
into a labelled set in the one-dimensional space y. The within-class variance of the
transformed data from class Ck is therefore given by

s2
k =

∑
n∈Ck

(yn − mk)2 (4.24)

where yn = wTxn. We can define the total within-class variance for the whole
data set to be simply s2

1 + s2
2. The Fisher criterion is defined to be the ratio of the

between-class variance to the within-class variance and is given by

J(w) =
(m2 − m1)2

s2
1 + s2

2

. (4.25)

We can make the dependence on w explicit by using (4.20), (4.23), and (4.24) to
rewrite the Fisher criterion in the formExercise 4.5

4.1. Discriminant Functions 189

J(w) =
wTSBw
wTSWw

(4.26)

where SB is the between-class covariance matrix and is given by

SB = (m2 − m1)(m2 − m1)T (4.27)

and SW is the total within-class covariance matrix, given by

SW =
∑
n∈C1

(xn − m1)(xn − m1)T +
∑
n∈C2

(xn − m2)(xn − m2)T. (4.28)

Differentiating (4.26) with respect to w, we find that J(w) is maximized when

(wTSBw)SWw = (wTSWw)SBw. (4.29)

From (4.27), we see that SBw is always in the direction of (m2−m1). Furthermore,
we do not care about the magnitude of w, only its direction, and so we can drop the
scalar factors (wTSBw) and (wTSWw). Multiplying both sides of (4.29) by S−1

W

we then obtain
w ∝ S−1

W (m2 − m1). (4.30)

Note that if the within-class covariance is isotropic, so that SW is proportional to the
unit matrix, we find that w is proportional to the difference of the class means, as
discussed above.

The result (4.30) is known as Fisher’s linear discriminant, although strictly it
is not a discriminant but rather a specific choice of direction for projection of the
data down to one dimension. However, the projected data can subsequently be used
to construct a discriminant, by choosing a threshold y0 so that we classify a new
point as belonging to C1 if y(x) � y0 and classify it as belonging to C2 otherwise.
For example, we can model the class-conditional densities p(y|Ck) using Gaussian
distributions and then use the techniques of Section 1.2.4 to find the parameters
of the Gaussian distributions by maximum likelihood. Having found Gaussian ap-
proximations to the projected classes, the formalism of Section 1.5.1 then gives an
expression for the optimal threshold. Some justification for the Gaussian assumption
comes from the central limit theorem by noting that y = wTx is the sum of a set of
random variables.

4.1.5 Relation to least squares
The least-squares approach to the determination of a linear discriminant was

based on the goal of making the model predictions as close as possible to a set of
target values. By contrast, the Fisher criterion was derived by requiring maximum
class separation in the output space. It is interesting to see the relationship between
these two approaches. In particular, we shall show that, for the two-class problem,
the Fisher criterion can be obtained as a special case of least squares.

So far we have considered 1-of-K coding for the target values. If, however, we
adopt a slightly different target coding scheme, then the least-squares solution for

190 4. LINEAR MODELS FOR CLASSIFICATION

the weights becomes equivalent to the Fisher solution (Duda and Hart, 1973). In
particular, we shall take the targets for class C1 to be N/N1, where N1 is the number
of patterns in class C1, and N is the total number of patterns. This target value
approximates the reciprocal of the prior probability for class C1. For class C2, we
shall take the targets to be −N/N2, where N2 is the number of patterns in class C2.

The sum-of-squares error function can be written

E =
1
2

N∑
n=1

(
wTxn + w0 − tn

)2
. (4.31)

Setting the derivatives of E with respect to w0 and w to zero, we obtain respectively

N∑
n=1

(
wTxn + w0 − tn

)
= 0 (4.32)

N∑
n=1

(
wTxn + w0 − tn

)
xn = 0. (4.33)

From (4.32), and making use of our choice of target coding scheme for the tn, we
obtain an expression for the bias in the form

w0 = −wTm (4.34)

where we have used
N∑

n=1

tn = N1
N

N1

− N2
N

N2

= 0 (4.35)

and where m is the mean of the total data set and is given by

m =
1
N

N∑
n=1

xn =
1
N

(N1m1 + N2m2). (4.36)

After some straightforward algebra, and again making use of the choice of tn, the
second equation (4.33) becomesExercise 4.6 (

SW +
N1N2

N
SB

)
w = N(m1 − m2) (4.37)

where SW is defined by (4.28), SB is defined by (4.27), and we have substituted for
the bias using (4.34). Using (4.27), we note that SBw is always in the direction of
(m2 − m1). Thus we can write

w ∝ S−1
W (m2 − m1) (4.38)

where we have ignored irrelevant scale factors. Thus the weight vector coincides
with that found from the Fisher criterion. In addition, we have also found an expres-
sion for the bias value w0 given by (4.34). This tells us that a new vector x should be
classified as belonging to class C1 if y(x) = wT(x−m) > 0 and class C2 otherwise.

4.1. Discriminant Functions 191

4.1.6 Fisher’s discriminant for multiple classes
We now consider the generalization of the Fisher discriminant to K > 2 classes,

and we shall assume that the dimensionality D of the input space is greater than the
number K of classes. Next, we introduce D′ > 1 linear ‘features’ yk = wT

k x, where
k = 1, . . . , D′. These feature values can conveniently be grouped together to form
a vector y. Similarly, the weight vectors {wk} can be considered to be the columns
of a matrix W, so that

y = WTx. (4.39)

Note that again we are not including any bias parameters in the definition of y. The
generalization of the within-class covariance matrix to the case of K classes follows
from (4.28) to give

SW =
K∑

k=1

Sk (4.40)

where

Sk =
∑
n∈Ck

(xn − mk)(xn − mk)T (4.41)

mk =
1

Nk

∑
n∈Ck

xn (4.42)

and Nk is the number of patterns in class Ck. In order to find a generalization of the
between-class covariance matrix, we follow Duda and Hart (1973) and consider first
the total covariance matrix

ST =
N∑

n=1

(xn − m)(xn − m)T (4.43)

where m is the mean of the total data set

m =
1
N

N∑
n=1

xn =
1
N

K∑
k=1

Nkmk (4.44)

and N =
∑

k Nk is the total number of data points. The total covariance matrix can
be decomposed into the sum of the within-class covariance matrix, given by (4.40)
and (4.41), plus an additional matrix SB, which we identify as a measure of the
between-class covariance

ST = SW + SB (4.45)

where

SB =
K∑

k=1

Nk(mk − m)(mk − m)T. (4.46)

192 4. LINEAR MODELS FOR CLASSIFICATION

These covariance matrices have been defined in the original x-space. We can now
define similar matrices in the projected D′-dimensional y-space

sW =
K∑

k=1

∑
n∈Ck

(yn − µk)(yn − µk)T (4.47)

and

sB =
K∑

k=1

Nk(µk − µ)(µk − µ)T (4.48)

where

µk =
1

Nk

∑
n∈Ck

yn, µ =
1
N

K∑
k=1

Nkµk. (4.49)

Again we wish to construct a scalar that is large when the between-class covariance
is large and when the within-class covariance is small. There are now many possible
choices of criterion (Fukunaga, 1990). One example is given by

J(W) = Tr
{
s−1
W sB

}
. (4.50)

This criterion can then be rewritten as an explicit function of the projection matrix
W in the form

J(w) = Tr
{
(WSWWT)−1(WSBWT)

}
. (4.51)

Maximization of such criteria is straightforward, though somewhat involved, and is
discussed at length in Fukunaga (1990). The weight values are determined by those
eigenvectors of S−1

W SB that correspond to the D′ largest eigenvalues.
There is one important result that is common to all such criteria, which is worth

emphasizing. We first note from (4.46) that SB is composed of the sum of K ma-
trices, each of which is an outer product of two vectors and therefore of rank 1. In
addition, only (K − 1) of these matrices are independent as a result of the constraint
(4.44). Thus, SB has rank at most equal to (K − 1) and so there are at most (K − 1)
nonzero eigenvalues. This shows that the projection onto the (K − 1)-dimensional
subspace spanned by the eigenvectors of SB does not alter the value of J(w), and
so we are therefore unable to find more than (K − 1) linear ‘features’ by this means
(Fukunaga, 1990).

4.1.7 The perceptron algorithm
Another example of a linear discriminant model is the perceptron of Rosenblatt

(1962), which occupies an important place in the history of pattern recognition al-
gorithms. It corresponds to a two-class model in which the input vector x is first
transformed using a fixed nonlinear transformation to give a feature vector φ(x),
and this is then used to construct a generalized linear model of the form

y(x) = f
(
wTφ(x)

)
(4.52)

4.1. Discriminant Functions 193

where the nonlinear activation function f(·) is given by a step function of the form

f(a) =
{

+1, a � 0
−1, a < 0. (4.53)

The vector φ(x) will typically include a bias component φ0(x) = 1. In earlier
discussions of two-class classification problems, we have focussed on a target coding
scheme in which t ∈ {0, 1}, which is appropriate in the context of probabilistic
models. For the perceptron, however, it is more convenient to use target values
t = +1 for class C1 and t = −1 for class C2, which matches the choice of activation
function.

The algorithm used to determine the parameters w of the perceptron can most
easily be motivated by error function minimization. A natural choice of error func-
tion would be the total number of misclassified patterns. However, this does not lead
to a simple learning algorithm because the error is a piecewise constant function
of w, with discontinuities wherever a change in w causes the decision boundary to
move across one of the data points. Methods based on changing w using the gradi-
ent of the error function cannot then be applied, because the gradient is zero almost
everywhere.

We therefore consider an alternative error function known as the perceptron cri-
terion. To derive this, we note that we are seeking a weight vector w such that
patterns xn in class C1 will have wTφ(xn) > 0, whereas patterns xn in class C2

have wTφ(xn) < 0. Using the t ∈ {−1, +1} target coding scheme it follows that
we would like all patterns to satisfy wTφ(xn)tn > 0. The perceptron criterion
associates zero error with any pattern that is correctly classified, whereas for a mis-
classified pattern xn it tries to minimize the quantity −wTφ(xn)tn. The perceptron
criterion is therefore given by

EP(w) = −
∑

n∈M
wTφntn (4.54)

Frank Rosenblatt
1928–1969

Rosenblatt’s perceptron played an
important role in the history of ma-
chine learning. Initially, Rosenblatt
simulated the perceptron on an IBM
704 computer at Cornell in 1957,
but by the early 1960s he had built

special-purpose hardware that provided a direct, par-
allel implementation of perceptron learning. Many of
his ideas were encapsulated in “Principles of Neuro-
dynamics: Perceptrons and the Theory of Brain Mech-
anisms” published in 1962. Rosenblatt’s work was
criticized by Marvin Minksy, whose objections were
published in the book “Perceptrons”, co-authored with

Seymour Papert. This book was widely misinter-
preted at the time as showing that neural networks
were fatally flawed and could only learn solutions for
linearly separable problems. In fact, it only proved
such limitations in the case of single-layer networks
such as the perceptron and merely conjectured (in-
correctly) that they applied to more general network
models. Unfortunately, however, this book contributed
to the substantial decline in research funding for neu-
ral computing, a situation that was not reversed un-
til the mid-1980s. Today, there are many hundreds,
if not thousands, of applications of neural networks
in widespread use, with examples in areas such as
handwriting recognition and information retrieval be-
ing used routinely by millions of people.

194 4. LINEAR MODELS FOR CLASSIFICATION

where M denotes the set of all misclassified patterns. The contribution to the error
associated with a particular misclassified pattern is a linear function of w in regions
of w space where the pattern is misclassified and zero in regions where it is correctly
classified. The total error function is therefore piecewise linear.

We now apply the stochastic gradient descent algorithm to this error function.Section 3.1.3
The change in the weight vector w is then given by

w(τ+1) = w(τ) − η∇EP(w) = w(τ) + ηφntn (4.55)

where η is the learning rate parameter and τ is an integer that indexes the steps of
the algorithm. Because the perceptron function y(x,w) is unchanged if we multiply
w by a constant, we can set the learning rate parameter η equal to 1 without of
generality. Note that, as the weight vector evolves during training, the set of patterns
that are misclassified will change.

The perceptron learning algorithm has a simple interpretation, as follows. We
cycle through the training patterns in turn, and for each pattern xn we evaluate the
perceptron function (4.52). If the pattern is correctly classified, then the weight
vector remains unchanged, whereas if it is incorrectly classified, then for class C1

we add the vector φ(xn) onto the current estimate of weight vector w while for
class C2 we subtract the vector φ(xn) from w. The perceptron learning algorithm is
illustrated in Figure 4.7.

If we consider the effect of a single update in the perceptron learning algorithm,
we see that the contribution to the error from a misclassified pattern will be reduced
because from (4.55) we have

−w(τ+1)Tφntn = −w(τ)Tφntn − (φntn)Tφntn < −w(τ)Tφntn (4.56)

where we have set η = 1, and made use of ‖φntn‖2 > 0. Of course, this does
not imply that the contribution to the error function from the other misclassified
patterns will have been reduced. Furthermore, the change in weight vector may have
caused some previously correctly classified patterns to become misclassified. Thus
the perceptron learning rule is not guaranteed to reduce the total error function at
each stage.

However, the perceptron convergence theorem states that if there exists an ex-
act solution (in other words, if the training data set is linearly separable), then the
perceptron learning algorithm is guaranteed to find an exact solution in a finite num-
ber of steps. Proofs of this theorem can be found for example in Rosenblatt (1962),
Block (1962), Nilsson (1965), Minsky and Papert (1969), Hertz et al. (1991), and
Bishop (1995a). Note, however, that the number of steps required to achieve con-
vergence could still be substantial, and in practice, until convergence is achieved,
we will not be able to distinguish between a nonseparable problem and one that is
simply slow to converge.

Even when the data set is linearly separable, there may be many solutions, and
which one is found will depend on the initialization of the parameters and on the or-
der of presentation of the data points. Furthermore, for data sets that are not linearly
separable, the perceptron learning algorithm will never converge.

4.1. Discriminant Functions 195

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Figure 4.7 Illustration of the convergence of the perceptron learning algorithm, showing data points from two
classes (red and blue) in a two-dimensional feature space (φ1, φ2). The top left plot shows the initial parameter
vector w shown as a black arrow together with the corresponding decision boundary (black line), in which the
arrow points towards the decision region which classified as belonging to the red class. The data point circled
in green is misclassified and so its feature vector is added to the current weight vector, giving the new decision
boundary shown in the top right plot. The bottom left plot shows the next misclassified point to be considered,
indicated by the green circle, and its feature vector is again added to the weight vector giving the decision
boundary shown in the bottom right plot for which all data points are correctly classified.

196 4. LINEAR MODELS FOR CLASSIFICATION

Figure 4.8 Illustration of the Mark 1 perceptron hardware. The photograph on the left shows how the inputs
were obtained using a simple camera system in which an input scene, in this case a printed character, was
illuminated by powerful lights, and an image focussed onto a 20 × 20 array of cadmium sulphide photocells,
giving a primitive 400 pixel image. The perceptron also had a patch board, shown in the middle photograph,
which allowed different configurations of input features to be tried. Often these were wired up at random to
demonstrate the ability of the perceptron to learn without the need for precise wiring, in contrast to a modern
digital computer. The photograph on the right shows one of the racks of adaptive weights. Each weight was
implemented using a rotary variable resistor, also called a potentiometer, driven by an electric motor thereby
allowing the value of the weight to be adjusted automatically by the learning algorithm.

Aside from difficulties with the learning algorithm, the perceptron does not pro-
vide probabilistic outputs, nor does it generalize readily to K > 2 classes. The most
important limitation, however, arises from the fact that (in common with all of the
models discussed in this chapter and the previous one) it is based on linear com-
binations of fixed basis functions. More detailed discussions of the limitations of
perceptrons can be found in Minsky and Papert (1969) and Bishop (1995a).

Analogue hardware implementations of the perceptron were built by Rosenblatt,
based on motor-driven variable resistors to implement the adaptive parameters wj .
These are illustrated in Figure 4.8. The inputs were obtained from a simple camera
system based on an array of photo-sensors, while the basis functions φ could be
chosen in a variety of ways, for example based on simple fixed functions of randomly
chosen subsets of pixels from the input image. Typical applications involved learning
to discriminate simple shapes or characters.

At the same time that the perceptron was being developed, a closely related
system called the adaline, which is short for ‘adaptive linear element’, was being
explored by Widrow and co-workers. The functional form of the model was the same
as for the perceptron, but a different approach to training was adopted (Widrow and
Hoff, 1960; Widrow and Lehr, 1990).

4.2. Probabilistic Generative Models

We turn next to a probabilistic view of classification and show how models with
linear decision boundaries arise from simple assumptions about the distribution of
the data. In Section 1.5.4, we discussed the distinction between the discriminative
and the generative approaches to classification. Here we shall adopt a generative

