
Contents

6 Multilayer Neural Networks 3
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
6.2 Feedforward operation and classification . . . . . . . . . . . . . . . . . 4

6.2.1 General feedforward operation . . . . . . . . . . . . . . . . . . 8
6.2.2 Expressive power of multilayer networks . . . . . . . . . . . . . 8

6.3 Backpropagation algorithm . . . . . . . . . . . . . . . . . . . . . . . . 10
6.3.1 Network learning . . . . . . . . . . . . . . . . . . . . . . . . . . 11
6.3.2 Training protocols . . . . . . . . . . . . . . . . . . . . . . . . . 15
Algorithm 1: Stochastic Backpropagation . . . . . . . . . . . . . . . . . 15
Algorithm 2: Batch Backpropagation . . . . . . . . . . . . . . . . . . . 16
6.3.3 Learning curves . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

6.4 Error surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.4.1 Some small networks . . . . . . . . . . . . . . . . . . . . . . . . 17
6.4.2 XOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.4.3 Larger networks . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.4.4 How important are multiple minima? . . . . . . . . . . . . . . 20

6.5 Backpropagation as feature mapping . . . . . . . . . . . . . . . . . . . 21
6.5.1 Representations at the hidden layer — weights . . . . . . . . . 23

6.6 Backpropagation, Bayes theory and probability . . . . . . . . . . . . . 24
6.6.1 Bayes discriminants and neural networks . . . . . . . . . . . . . 25
6.6.2 Outputs as probabilities . . . . . . . . . . . . . . . . . . . . . . 26

6.7 *Related statistical techniques . . . . . . . . . . . . . . . . . . . . . . . 28
6.8 Practical techniques for backpropagation . . . . . . . . . . . . . . . . . 29

6.8.1 Transfer function . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.8.2 Parameters for the sigmoid . . . . . . . . . . . . . . . . . . . . 30
6.8.3 Scaling input . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.8.4 Target values . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.8.5 Training with noise . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.8.6 Manufacturing data . . . . . . . . . . . . . . . . . . . . . . . . 32
6.8.7 Number of hidden units . . . . . . . . . . . . . . . . . . . . . . 33
6.8.8 Initializing weights . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.8.9 Learning rates . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.8.10 Momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Algorithm 3: Stochastic Backpropagation with momentum . . . . . . . 36
6.8.11 Weight decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.8.12 Hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.8.13 On-line, stochastic or batch training? . . . . . . . . . . . . . . 38
6.8.14 Stopped training . . . . . . . . . . . . . . . . . . . . . . . . . . 39

1



2 CONTENTS

6.8.15 How many hidden layers? . . . . . . . . . . . . . . . . . . . . . 39
6.8.16 Criterion function . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.9 *Second-order methods . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.9.1 Hessian matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.9.2 Newton’s method . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.9.3 Quickprop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.9.4 Conjugate gradient descent . . . . . . . . . . . . . . . . . . . . 43
Example 1: Conjugate gradient descent . . . . . . . . . . . . . . . . . . 44

6.10 *Additional networks and training methods . . . . . . . . . . . . . . . 46
6.10.1 Radial basis function networks (RBF) . . . . . . . . . . . . . . 46
6.10.2 Special bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.10.3 Time delay neural networks (TDNN) . . . . . . . . . . . . . . . 47
6.10.4 Recurrent networks . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.10.5 Counterpropagation . . . . . . . . . . . . . . . . . . . . . . . . 49
6.10.6 Cascade-Correlation . . . . . . . . . . . . . . . . . . . . . . . . 50
Algorithm 4: Cascade-correlation . . . . . . . . . . . . . . . . . . . . . 50
6.10.7 Neocognitron . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.11 Regularization and complexity adjustment . . . . . . . . . . . . . . . . 51
6.11.1 Complexity measurement . . . . . . . . . . . . . . . . . . . . . 53
6.11.2 Wald statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Bibliographical and Historical Remarks . . . . . . . . . . . . . . . . . . . . 56
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Computer exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74



Chapter 6

Multilayer Neural Networks

6.1 Introduction

I n the previous chapter we saw a number of methods for training classifiers con-
sisting of input units connected by modifiable weights to output units. The LMS

algorithm, in particular, provided a powerful gradient descent method for reducing
the error, even when the patterns are not linearly separable. Unfortunately, the class
of solutions that can be obtained from such networks — hyperplane discriminants
— while surprisingly good on a range or real-world problems, is simply not general
enough in demanding applications: there are many problems for which linear discrim-
inants are insufficient for minimum error.

With a clever choice of nonlinear ϕ functions, however, we can obtain arbitrary
decisions, in particular the one leading to minimum error. The central difficulty is,
naturally, choosing the appropriate nonlinear functions. One brute force approach
might be to choose a complete basis set (all polynomials, say) but this will not work;
such a classifier would have too many free parameters to be determined from a limited
number of training patterns (Chap. ??). Alternatively, we may have prior knowledge
relevant to the classification problem and this might guide our choice of nonlinearity.
In the absence of such information, up to now we have seen no principled or auto-
matic method for finding the nonlinearities. What we seek, then, is a way to learn
the nonlinearity at the same time as the linear discriminant. This is the approach
of multilayer neural networks (also called multilayer Perceptrons): the parameters
governing the nonlinear mapping are learned at the same time as those governing the
linear discriminant.

We shall revisit the limitations of the two-layer networks of the previous chapter,∗

and see how three-layer (and four-layer...) nets overcome those drawbacks — indeed
how such multilayer networks can, at least in principle, provide the optimal solution
to an arbitrary classification problem. There is nothing particularly magical about
multilayer neural networks; at base they implement linear discriminants, but in a space
where the inputs have been mapped nonlinearly. The key power provided by such
networks is that they admit fairly simple algorithms where the form of the nonlinearity

∗ Some authors describe such networks as single layer networks because they have only one layer of
modifiable weights, but we shall instead refer to them based on the number of layers of units.
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4 CHAPTER 6. MULTILAYER NEURAL NETWORKS

can be learned from training data. The models are thus extremely powerful, have nice
theoretical properties, and apply well to a vast array of real-world applications.

One of the most popular methods for training such multilayer networks is based
on gradient descent in error — the backpropagation algorithm (or generalized deltabackpropagation
rule), a natural extension of the LMS algorithm. We shall study backpropagation
in depth, first of all because it is powerful, useful and relatively easy to understand,
but also because many other training methods can be seen as modifications of it.
The backpropagation training method is simple even for complex models (networks)
having hundreds or thousands of parameters. In part because of the intuitive graphical
representation and the simplicity of design of these models, practitioners can test
different models quickly and easily; neural networks are thus a sort of “poor person’s”
technique for doing statistical pattern recognition with complicated models. The
conceptual and algorithmic simplicity of backpropagation, along with its manifest
success on many real-world problems, help to explain why it is a mainstay in adaptive
pattern recognition.

While the basic theory of backpropagation is simple, a number of tricks — some
a bit subtle — are often used to improve performance and increase training speed.
Choices involving the scaling of input values and initial weights, desired output values,
and more can be made based on an analysis of networks and their function. We shall
also discuss alternate training schemes, for instance ones that are faster, or adjust
their complexity automatically in response to training data.

Network architecture or topology plays an important role for neural net classifi-
cation, and the optimal topology will depend upon the problem at hand. It is here
that another great benefit of networks becomes apparent: often knowledge of the
problem domain which might be of an informal or heuristic nature can be easily in-
corporated into network architectures through choices in the number of hidden layers,
units, feedback connections, and so on. Thus setting the topology of the network is
heuristic model selection. The practical ease in selecting models (network topologies)
and estimating parameters (training via backpropagation) enable classifier designers
to try out alternate models fairly simply.

A deep problem in the use of neural network techniques involves regularization,regular-
ization complexity adjustment, or model selection, that is, selecting (or adjusting) the com-

plexity of the network. Whereas the number of inputs and outputs is given by the
feature space and number of categories, the total number of weights or parameters in
the network is not — or at least not directly. If too many free parameters are used,
generalization will be poor; conversely if too few parameters are used, the training
data cannot be learned adequately. How shall we adjust the complexity to achieve
the best generalization? We shall explore a number of methods for complexity ad-
justment, and return in Chap. ?? to their theoretical foundations.

It is crucial to remember that neural networks do not exempt designers from
intimate knowledge of the data and problem domain. Networks provide a powerful
and speedy tool for building classifiers, and as with any tool or technique one gains
intuition and expertise through analysis and repeated experimentation over a broad
range of problems.

6.2 Feedforward operation and classification

Figure 6.1 shows a simple three-layer neural network. This one consists of an input
layer (having two input units), a hidden layer with (two hidden units)∗ and an outputhidden

layer
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layer (a single unit), interconnected by modifiable weights, represented by links be-
tween layers. There is, furthermore, a single bias unit that is connected to each unit bias
other than the input units. The function of units is loosely based on properties of bio-
logical neurons, and hence they are sometimes called “neurons.” We are interested in neuron
the use of such networks for pattern recognition, where the input units represent the
components of a feature vector (to be learned or to be classified) and signals emitted
by output units will be discriminant functions used for classification.

∗ We call any units that are neither input nor output units “hidden” because their activations are
not directly “seen” by the external environment, i.e., the input or output.



6 CHAPTER 6. MULTILAYER NEURAL NETWORKS

We can clarify our notation and describe the feedforward (or classification or recall)recall
operation of such a network on what is perhaps the simplest nonlinear problem: the
exclusive-OR (XOR) problem (Fig. 6.1); a three-layer network can indeed solve this
problem whereas a linear machine operating directly on the features cannot.

Each two-dimensional input vector is presented to the input layer, and the output
of each input unit equals the corresponding component in the vector. Each hidden
unit performs the weighted sum of its inputs to form its (scalar) net activation ornet

activation simply net. That is, the net activation is the inner product of the inputs with the
weights at the hidden unit. For simplicity, we augment both the input vector (i.e.,
append a feature value x0 = 1) and the weight vector (i.e., append a value w0), and
can then write

netj =
d∑
i=1

xiwji + wj0 =
d∑
i=0

xiwji ≡ wt
jx, (1)

where the subscript i indexes units on the input layer, j for the hidden; wji denotes
the input-to-hidden layer weights at the hidden unit j. In analogy with neurobiol-
ogy, such weights or connections are sometimes called “synapses” and the value ofsynapse
the connection the “synaptic weights.” Each hidden unit emits an output that is a
nonlinear function of its activation, f(net), i.e.,

yj = f(netj). (2)

The example shows a simple threshold or sign (read “signum”) function,

f(net) = Sgn(net) ≡
{

1 if net ≥ 0
−1 if net < 0, (3)

but as we shall see, other functions have more desirable properties and are hence
more commonly used. This f() is sometimes called the transfer function or merelytransfer

function “nonlinearity” of a unit, and serves as a ϕ function discussed in Chap. ??. We have
assumed the same nonlinearity is used at the various hidden and output units, though
this is not crucial.

Each output unit similarly computes its net activation based on the hidden unit
signals as

netk =
nH∑
j=1

yjwkj + wk0 =
nH∑
j=0

yjwkj = wt
ky, (4)

where the subscript k indexes units in the output layer (one, in the figure) and nH
denotes the number of hidden units (two, in the figure). We have mathematically
treated the bias unit as equivalent to one of the hidden units whose output is always
y0 = 1. Each output unit then computes the nonlinear function of its net, emitting

zk = f(netk). (5)

where in the figure we assume that this nonlinearity is also a sign function. It is these
final output signals that represent the different discriminant functions. We would
typically have c such output units and the classification decision is to label the input
pattern with the label corresponding to the maximum yk = gk(x). In a two-category
case such as XOR, it is traditional to use a single output unit and label a pattern by
the sign of the output z.
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Figure 6.1: The two-bit parity or exclusive-OR problem can be solved by a three-layer
network. At the bottom is the two-dimensional feature space x1 − x2, and the four
patterns to be classified. The three-layer network is shown in the middle. The input
units are linear and merely distribute their (feature) values through multiplicative
weights to the hidden units. The hidden and output units here are linear threshold
units, each of which forms the linear sum of its inputs times their associated weight,
and emits a +1 if this sum is greater than or equal to 0, and −1 otherwise, as shown
by the graphs. Positive (“excitatory”) weights are denoted by solid lines, negative
(“inhibitory”) weights by dashed lines; the weight magnitude is indicated by the
relative thickness, and is labeled. The single output unit sums the weighted signals
from the hidden units (and bias) and emits a +1 if that sum is greater than or equal
to 0 and a -1 otherwise. Within each unit we show a graph of its input-output or
transfer function — f(net) vs. net. This function is linear for the input units, a
constant for the bias, and a step or sign function elsewhere. We say that this network
has a 2-2-1 fully connected topology, describing the number of units (other than the
bias) in successive layers.
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It is easy to verify that the three-layer network with the weight values listed indeed
solves the XOR problem. The hidden unit computing y1 acts like a Perceptron, and
computes the boundary x1 + x2 + 0.5 = 0; input vectors for which x1 + x2 + 0.5 ≥ 0
lead to y1 = 1, all other inputs lead to y1 = −1. Likewise the other hidden unit
computes the boundary x1 +x2−1.5 = 0. The final output unit emits z1 = +1 if and
only if both y1 and y2 have value +1. This gives to the appropriate nonlinear decision
region shown in the figure — the XOR problem is solved.

6.2.1 General feedforward operation

From the above example, it should be clear that nonlinear multilayer networks (i.e.,
ones with input units, hidden units and output units) have greater computational or
expressive power than similar networks that otherwise lack hidden units; that is, theyexpressive

power can implement more functions. Indeed, we shall see in Sect. 6.2.2 that given sufficient
number of hidden units of a general type any function can be so represented.

Clearly, we can generalize the above discussion to more inputs, other nonlineari-
ties, and arbitrary number of output units. For classification, we will have c output
units, one for each of the categories, and the signal from each output unit is the dis-
criminant function gk(x). We gather the results from Eqs. 1, 2, 4, & 5, to express
such discriminant functions as:

gk(x) ≡ zk = f

 nH∑
j=1

wkj f

(
d∑
i=1

wjixi + wj0

)
+ wk0

 . (6)

This, then, is the class of functions that can be implemented by a three-layer neural
network. An even broader generalization would allow transfer functions at the output
layer to differ from those in the hidden layer, or indeed even different functions at
each individual unit. We will have cause to use such networks later, but the attendant
notational complexities would cloud our presentation of the key ideas in learning in
networks.

6.2.2 Expressive power of multilayer networks

It is natural to ask if every decision can be implemented by such a three-layer network
(Eq. 6). The answer, due ultimately to Kolmogorov but refined by others, is “yes”
— any continuous function from input to output can be implemented in a three-layer
net, given sufficient number of hidden units nH , proper nonlinearities, and weights.
In particular, any posterior probabilities can be represented. In the c-category class-
ification case, we can merely apply a max[·] function to the set of network outputs
(just as we saw in Chap. ??) and thereby obtain any decision boundary.

Specifically, Kolmogorov proved that any continuous function g(x) defined on the
unit hypercube In (I = [0, 1] and n ≥ 2) can be represented in the form

g(x) =
2n+1∑
j=1

Ξj

(
d∑
i=1

ψij(xi)

)
(7)

for properly chosen functions Ξj and ψij . We can always scale the input region of
interest to lie in a hypercube, and thus this condition on the feature space is not
limiting. Equation 7 can be expressed in neural network terminology as follows: each
of 2n + 1 hidden units takes as input a sum of d nonlinear functions, one for each
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input feature xi. Each hidden unit emits a nonlinear function Ξ of its total input; the
output unit merely emits the sum of the contributions of the hidden units.

Unfortunately, the relationship of Kolmogorov’s theorem to practical neural net-
works is a bit tenuous, for several reasons. In particular, the functions Ξj and ψij
are not the simple weighted sums passed through nonlinearities favored in neural net-
works. In fact those functions can be extremely complex; they are not smooth, and
indeed for subtle mathematical reasons they cannot be smooth. As we shall soon
see, smoothness is important for gradient descent learning. Most importantly, Kol-
mogorov’s Theorem tells us very little about how to find the nonlinear functions based
on data — the central problem in network based pattern recognition.

A more intuitive proof of the universal expressive power of three-layer nets is in-
spired by Fourier’s Theorem that any continuous function g(x) can be approximated
arbitrarily closely by a (possibly infinite) sum of harmonic functions (Problem 2). One
can imagine networks whose hidden units implement such harmonic functions. Proper
hidden-to-output weights related to the coefficients in a Fourier synthesis would then
enable the full network to implement the desired function. Informally speaking, we
need not build up harmonic functions for Fourier-like synthesis of a desired function.
Instead a sufficiently large number of “bumps” at different input locations, of different
amplitude and sign, can be put together to give our desired function. Such localized
bumps might be implemented in a number of ways, for instance by sigmoidal transfer
functions grouped appropriately (Fig. 6.2). The Fourier analogy and bump construc-
tions are conceptual tools, they do not explain the way networks in fact function. In
short, this is not how neural networks “work” — we never find that through train-
ing (Sect. 6.3) simple networks build a Fourier-like representation, or learn to group
sigmoids to get component bumps.

y1

y2

y4

y3

y3 y4y2y1

x1 x2

z1

z1

x1

x2

Figure 6.2: A 2-4-1 network (with bias) along with the response functions at different
units; each hidden and output unit has sigmoidal transfer function f(·). In the case
shown, the hidden unit outputs are paired in opposition thereby producing a “bump”
at the output unit. Given a sufficiently large number of hidden units, any continuous
function from input to output can be approximated arbitrarily well by such a network.
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While we can be confident that a complete set of functions, such as all polynomi-
als, can represent any function it is nevertheless a fact that a single functional form
also suffices, so long as each component has appropriate variable parameters. In the
absence of information suggesting otherwise, we generally use a single functional form
for the transfer functions.

While these latter constructions show that any desired function can be imple-
mented by a three-layer network, they are not particularly practical because for most
problems we know ahead of time neither the number of hidden units required, nor
the proper weight values. Even if there were a constructive proof, it would be of little
use in pattern recognition since we do not know the desired function anyway — it
is related to the training patterns in a very complicated way. All in all, then, these
results on the expressive power of networks give us confidence we are on the right
track, but shed little practical light on the problems of designing and training neural
networks — their main benefit for pattern recognition (Fig. 6.3).

Two layer

Three layer

x1 x2

x1

x2

...

x1 x2

fl

R1

R2

R1

R2

R2

R1

x2

x1

Figure 6.3: Whereas a two-layer network classifier can only implement a linear decision
boundary, given an adequate number of hidden units, three-, four- and higher-layer
networks can implement arbitrary decision boundaries. The decision regions need not
be convex, nor simply connected.

6.3 Backpropagation algorithm

We have just seen that any function from input to output can be implemented as a
three-layer neural network. We now turn to the crucial problem of setting the weights
based on training patterns and desired output.
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Backpropagation is one of the simplest and most general methods for supervised
training of multilayer neural networks — it is the natural extension of the LMS al-
gorithm for linear systems we saw in Chap. ??. Other methods may be faster or
have other desirable properties, but few are more instructive. The LMS algorithm
worked for two-layer systems because we had an error (proportional to the square of
the difference between the actual output and the desired output) evaluated at the
output unit. Similarly, in a three-layer net it is a straightforward matter to find how
the output (and thus error) depends on the hidden-to-output layer weights. In fact
this dependency is the same as in the analogous two-layer case, and thus the learning
rule is the same.

But how should the input-to-hidden weights be learned, the ones governing the
nonlinear transformation of the input vectors? If the “proper” outputs for a hidden
unit were known for any pattern, the input-to-hidden weights could be adjusted to
approximate it. However, there is no explicit teacher to state what the hidden unit’s
output should be. This is called the credit assignment problem. The power of back- credit

assignmentpropagation is that it allows us to calculate an effective error for each hidden unit,
and thus derive a learning rule for the input-to-hidden weights.

Networks have two primary modes of operation: feedforward and learning. Feed-
forward operation, such as illustrated in our XOR example above, consists of present-
ing a pattern to the input units and passing the signals through the network in order
to yield outputs from the output units. Supervised learning consists of presenting
an input pattern as well as a desired, teaching or target pattern to the output layer target

patternand changing the network parameters (e.g., weights) in order to make the actual out-
put more similar to the target one. Figure 6.4 shows a three-layer network and the
notation we shall use.

6.3.1 Network learning

The basic approach in learning is to start with an untrained network, present an input
training pattern and determine the output. The error or criterion function is some
scalar function of the weights that is minimized when the network outputs match the
desired outputs. The weights are adjusted to reduce this measure of error. Here we
present the learning rule on a per pattern basis, and return to other protocols later.

We consider the training error on a pattern to be the sum over output units of the training
errorsquared difference between the desired output tk (given by a teacher) and the actual

output zk, much as we had in the LMS algorithm for two-layer nets:

J(w) ≡ 1/2
c∑

k=1

(tk − zk)2 = 1/2(t− z)2, (8)

where t and z are the target and the network output vectors of length c; w represents
all the weights in the network.

The backpropagation learning rule is based on gradient descent. The weights are
initialized with random values, and are changed in a direction that will reduce the
error:

∆w = −η ∂J
∂w

, (9)

or in component form
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x1 x2 xi xd... ...

output z

x1 x2 xi xd

y1 y2 yj ynH

t1 t2 tk tctarget t

input x

output

hidden

input

Figure 6.4: A d-nH -c fully connected three-layer network and the notation we shall use
(bias not shown). During feedforward operation, a d-dimensional input pattern x is
presented to the input layer; each input unit then emits its corresponding component
xi. Each of the nH hidden units computes its net activation, netj , as the inner
product of the input layer signals with weights wji at the hidden unit. The hidden
unit emits yj = f(netj), where f(·) is the nonlinear transfer function, shown here as
a sigmoid. Each of the c output units functions in the same manner as the hidden
units do, computing netk as the inner product of the hidden unit signals and weights
at the output unit. The final signals emitted by the network, zk = f(netk) are used
as discriminant functions for classification. During network training, these output
signals are compared with a teaching or target vector t, and any difference is used in
training the weights throughout the network.

∆wmn = −η ∂J

∂wmn
, (10)

where η is the learning rate, and merely indicates the relative size of the changelearning
rate in weights. The power of Eqs. 9 & 10 is in their simplicity: they merely demand

that we take a step in weight space that lowers the criterion function. Because this
criterion can never be negative, moreover, this rule guarantees learning will stop
(except in pathological cases). This iterative algorithm requires taking a weight vector
at iteration m and updating it as:

w(m+ 1) = w(m) + ∆w(m), (11)

where m indexes the particular pattern presentation (but see also Sect. 6.8).
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We now turn to the problem of evaluating Eq. 10 for a three-layer net. Consider
first the hidden-to-output weights, wjk. Because the error is not explicitly dependent
upon wjk, we must use the chain rule for differentiation:

∂J

∂wkj
=

∂J

∂netk

∂netk
∂wkj

= δk
∂netk
∂wkj

, (12)

where the sensitivity of unit k is defined to be sensitivity

δk ≡ −∂J/∂netk, (13)

and describes how the overall error changes with the unit’s activation. We differentiate
Eq. 8 and find that for such an output unit δk is simply:

δk ≡ −
∂J

∂netk
= − ∂J

∂zk

∂zk
∂netk

= (tk − zk)f ′(netk). (14)

The last derivative in Eq. 12 is found using Eq. 4:

∂netk
∂wkj

= yj . (15)

Taken together, these results give the weight update (learning rule) for the hidden-
to-output weights:

∆wkj = ηδkyj = η(tk − zk)f ′(netk)yj . (16)

The learning rule for the input-to-hidden units is more subtle, indeed, it is the
crux of the solution to the credit assignment problem. From Eq. 10, and again using
the chain rule, we calculate

∂J

∂wji
=

∂J

∂yj

∂yj
∂netj

∂netj
∂wji

. (17)

The first term on the right hand side requires just a bit of care:

∂J

∂yj
=

∂

∂yj

[
1/2

c∑
k=1

(tk − zk)2

]

= −
c∑

k=1

(tk − zk)
∂zk
∂yj

= −
c∑

k=1

(tk − zk)
∂zk
∂netk

∂netk
∂yj

= −
c∑

k=1

(tk − zk)f ′(netk)wjk. (18)

For the second step above we had to use the chain rule yet again. The final sum over
output units in Eq. 18 expresses how the hidden unit output, yj , affects the error at
each output unit. In analogy with Eq. 13 we use Eq. 18 to define the sensitivity for
a hidden unit as:

δj ≡ f ′(netj)
c∑

k=1

wkjδk. (19)
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Equation 19 is the core of the solution to the credit assigment problem: the sensitivity
at a hidden unit is simply the sum of the individual sensitivities at the output units
weighted by the hidden-to-output weights wjk, all multiplied by f ′(netj). Thus the
learning rule for the input-to-hidden weights is:

∆wji = ηxiδj = ηxif
′(netj)

c∑
k=1

wkjδk. (20)

Equations 16 & 20, together with training protocols such as described below, give
the backpropagation algorithm — or more specifically the “backpropagation of errors”
algorithm — so-called because during training an “error” (actually, the sensitivities
δk) must be propagated from the output layer back to the hidden layer in order to
perform the learning of the input-to-hidden weights by Eq. 20 (Fig. 6.5). At base then,
backpropagation is “just” gradient descent in layered models where the chain rule
through continuous functions allows the computation of derivatives of the criterion
function with respect to all model parameters (i.e., weights).

wkj

ω1

... ...δ1

ω2

δ2

ω3

δ3

ωk

δk

ωc

δc

δj

output

hidden

input

Figure 6.5: The sensitivity at a hidden unit is proportional to the weighted sum of the

sensitivities at the output units: δj = f ′(netj)
c∑

k=1

wkjδk. The output unit sensitivities

are thus propagated “back” to the hidden units.

These learning rules make intuitive sense. Consider first the rule for learning
weights at the output units (Eq. 16). The weight update at unit k should indeed be
proportional to (tk − zk) — if we get the desired output (zk = tk), then there should
be no weight change. For a typical sigmoidal f(·) we shall use most often, f ′(netk) is
always positive. Thus if yj and (tk − zk) are both positive, then the actual output is
too small and the weight must be increased; indeed, the proper sign is given by the
learning rule. Finally, the weight update should be proportional to the input value; if
yj = 0, then hidden unit j has no effect on the output (and hence the error), and thus
changing wji will not change the error on the pattern presented. A similar analysis
of Eq. 20 yields insight of the input-to-hidden weights (Problem 5).

Problem 7 asks you to show that the presence of the bias unit does not materially
affect the above results. Further, with moderate notational and bookkeeping effort
(Problem 11), the above learning algorithm can be generalized directly to feed-forward
networks in which

• input units are connected directly to output units (as well as to hidden units)

• there are more than three layers of units

• there are different nonlinearities for different layers
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• each unit has its own nonlinearity

• each unit has a different learning rate.

It is a more subtle matter to perform incorporate learning into networks having con-
nections within a layer, or feedback connections from units in higher layers back to
those in lower layers. We shall consider such recurrent networks in Sect. ??.

6.3.2 Training protocols

In broad overview, supervised training consists in presenting to the network patterns
whose category label we know — the training set — finding the output of the net and training

setadjusting the weights so as to make the actual output more like the desired or teaching
signal. The three most useful training protocols are: stochastic, batch and on-line.
In stochastic training (or pattern training), patterns are chosen randomly from the stochastic

trainingtraining set, and the network weights are updated for each pattern presentation. This
method is called stochastic because the training data can be considered a random
variable. In batch training, all patterns are presented to the network before learning batch

training(weight update) takes place. In virtually every case we must make several passes
through the training data. In on-line training, each pattern is presented once and

on-line
protocol

only once; there is no use of memory for storing the patterns.∗

A fourth protocol is learning with queries where the output of the network is used
learning
with
queries

to select new training patterns. Such queries generally focus on points that are likely
to give the most information to the classifier, for instance those near category decision
boundaries (Chap. ??). While this protocol may be faster in many cases, its drawback
is that the training samples are no longer independent, identically distributed (i.i.d.),
being skewed instead toward sample boundaries. This, in turn, generally distorts the
effective distributions and may or may not improve recognition accuracy (Computer
exercise ??).

We describe the overall amount of pattern presentations by epoch — the number of epoch
presentations of the full training set. For other variables being constant, the number
of epochs is an indication of the relative amount of learning.† The basic stochastic
and batch protocols of backpropagation for n patterns are shown in the procedures
below.

Algorithm 1 (Stochastic backpropagation)

1 begin initialize network topology (# hidden units),w, criterion θ, η,m← 0
2 do m← m+ 1
3 xm ← randomly chosen pattern
4 wij ← wij + ηδjxi; wjk ← wjk + ηδkyj
5 until ∇J(w) < θ
6 return w
7 end

In the on-line version of backpropagation, line 3 of Algorithm 1 is replaced by sequen-
tial selection of training patterns (Problem 9). Line 5 makes the algorithm end when
the change in the criterion function J(w) is smaller than some pre-set value θ. While
this is perhaps the simplest meaningful stopping criterion, others generally lead to stopping

criterion∗ Some on-line training algorithms are considered models of biological learning, where the organism
is exposed to the environment and cannot store all input patterns for multiple “presentations.”

† The notion of epoch does not apply to on-line training, where instead the number of pattern
presentations is a more appropriate measure.
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better performance, as we shall discuss in Sect. 6.8.14.
In the batch version, all the training patterns are presented first and their corre-

sponding weight updates summed; only then are the actual weights in the network
updated. This process is iterated until some stopping criterion is met.

So far we have considered the error on a single pattern, but in fact we want to
consider an error defined over the entirety of patterns in the training set. With minor
infelicities in notation we can write this total training error as the sum over the errors
on n individual patterns:

J =
n∑
p=1

Jp. (21)

In stochastic training, a weight update may reduce the error on the single pattern
being presented, yet increase the error on the full training set. Given a large number
of such individual updates, however, the total error as given in Eq. 21 decreases.

Algorithm 2 (Batch backpropagation)

1 begin initialize network topology (# hidden units),w, criterion θ, η, r ← 0
2 do r ← r + 1 (increment epoch)
3 m← 0; ∆wij ← 0; ∆wjk ← 0
4 do m← m+ 1
5 xm ← select pattern
6 ∆wij ← ∆wij + ηδjxi; ∆wjk ← ∆wjk + ηδkyj
7 until m = n
8 wij ← wij + ∆wij ; wjk ← wjk + ∆wjk
9 until ∇J(w) < θ

10 return w
11 end

In batch backpropagation, we need not select pattern randomly, since the weights
are updated only after all patterns have been presented once. We shall consider the
merits and drawbacks of each protocol in Sect. 6.8.

6.3.3 Learning curves

Because the weights are initialized with random values, error on the training set
is large; through learning the error becomes lower, as shown in a learning curve
(Fig. 6.6). The (per pattern) training error ultimately reaches an asymptotic value
which depends upon the Bayes error, the amount of training data and the expressive
power (e.g., the number of weights) in the network — the higher the Bayes error
and the fewer the number of such weights, the higher this asymptotic value is likely
to be (Chap. ??). Since batch backpropagation performs gradient descent in the
criterion function, these training error decreases monotonically. The average error on
an independent test set is virtually always higher than on the training set, and while
it generally decreases, it can increase or oscillate.

Figure 6.6 also shows the average error on a validation set — patterns not usedvalidation
error directly for gradient descent training, and thus indirectly representative of novel pat-

terns yet to be classified. The validation set can be used in a stopping criterion in
both batch and stochastic protocols; gradient descent training on the training set is
stopped when a minimum is reached in the validation error (e.g., near epoch 5 in
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J/n

epochs

training

test

validation

1 2 3 4 5 6 7 8 9 10 11

Figure 6.6: A learning curve shows the criterion function as a function of the amount
of training, typically indicated by the number of epochs or presentations of the full
training set. We plot the average error per pattern, i.e., 1/n

∑n
p=1 Jp. The validation

error and the test (or generalization) error per pattern are virtually always higher
than the training error. In some protocols, training is stopped at the minimum of the
validation set.

the figure). We shall return in Chap. ?? to understand in greater depth why this
version of cross validation stopping criterion often leads to networks having improved cross

validationrecognition accuracy.

6.4 Error surfaces

Since backpropagation is based on gradient descent in a criterion function, we can gain
understanding and intuition about the algorithm by studying error surfaces themselves
— the function J(w). Of course, such an error surface depends upon the training and
classification task; nevertheless there are some general properties of error surfaces that
seem to hold over a broad range of real-world pattern recognition problems. One of
the issues that concerns us are local minima; if many local minima plague the error
landscape, then it is unlikely that the network will find the global minimum. Does this
necessarily lead to poor performance? Another issue is the presence of plateaus —
regions where the error varies only slightly as a function of weights. If such plateaus
are plentiful, we can expect training according to Algorithms 1 & 2 to be slow. Since
training typically begins with small weights, the error surface in the neighborhood of
w ' 0 will determine the general direction of descent. What can we say about the
error in this region? Most interesting real-world problems are of high dimensionality.
Are there any general properties of high dimensional error functions?

We now explore these issues in some illustrative systems.

6.4.1 Some small networks

Consider the simplest three-layer nonlinear network, here solving a two-category prob-
lem in one dimension; this 1-1-1 sigmoidal network (and bias) is shown in Fig. 6.7.
The data shown are linearly separable, and the optimal decision boundary (a point
somewhat below x1 = 0) separates the two categories. During learning, the weights
descends to the global minimum, and the problem is solved.
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Figure 6.7: Six one-dimensional patterns (three in each of two classes) are to be
learned by a 1-1-1 network with sigmoidal hidden and output units (and bias). The
error surface as a function of w1 and w2 is also shown (for the case where the bias
weights have their final values). The network starts with random weights, and through
(stochastic) training descends to the global minimum in error, as shown by the trajec-
tory. Note especially that a low error solution exists, which in fact leads to a decision
boundary separating the training points into their two categories.

Here the error surface has a single (global) minimum, which yields the decision
point separating the patterns of the two categories. Different plateaus in the surface
correspond roughly to different numbers of patterns properly classified; the maximum
number of such misclassified patterns is three in this example. The plateau regions,
where weight change does not lead to a change in error, here correspond to sets of
weights that lead to roughly the same decision point in the input space. Thus as w1

increases and w2 becomes more negative, the surface shows that the error does not
change, a result that can be informally confirmed by looking at the network itself.

Now consider the same network applied to another, harder, one-dimensional prob-
lem — one that is not linearly separable (Fig. 6.8). First, note that overall the error
surface is slightly higher than in Fig. 6.7 because even the best solution attainable
with this network leads to one pattern being misclassified. As before, the different
plateaus in error correspond to different numbers of training patterns properly learned.
However, one must not confuse the (squared) error measure with classification error
(cf. Chap. ??, Fig. ??). For instance here there are two general ways to misclassify
exactly two patterns, but these have different errors. Incidentally, a 1-3-1 network
(but not a 1-2-1 network) can solve this problem (Computer exercise 3).

From these very simple examples, where the correspondences among weight val-
ues, decision boundary and error are manifest, we can see how the error of the global
minimum is lower when the problem can be solved and that there are plateaus corre-
sponding to sets of weights that lead to nearly the same decision boundary. Further-
more, the surface near w ' 0 (the traditional region for starting learning) has high
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Figure 6.8: As in Fig. 6.7, except here the patterns are not linearly separable; the
error surface is slightly higher than in that figure.

error and happens in this case to have a large slope; if the starting point had differed
somewhat, the network would descend to the same final weight values.

6.4.2 XOR

A somewhat more complicated problem is the XOR problem we have already consid-
ered. Figure ?? shows several two-dimensional slices through the nine-dimensional
weight space of the 2-2-1 sigmoidal network (with bias). The slices shown include a
global minimum in the error.

Notice first that the error varies a bit more gradually as a function of a single
weight than does the error in the networks solving the problems in Figs. 6.7 & 6.8.
This is because in a large network any single weight has on average a smaller relative
contribution to the output. Ridges, valleys and a variety of other shapes can all
be seen in the surface. Several local minima in the high-dimensional weight space
exist, which here correspond to solutions that classify three (but not four) patterns.
Although it is hard to show it graphically, the error surface is invariant with respect
to certain discrete permutations. For instance, if the labels on the two hidden units
are exchanged (and the weight values changed appropriately), the shape of the error
surface is unaffected (Problem ??).

6.4.3 Larger networks

Alas, the intuition we gain from considering error surfaces for small networks gives only
hints of what is going on in large networks, and at times can be quite misleading. Fig-
ure 6.10 shows a network with many weights solving a complicated high-dimensional
two-category pattern classification problem. Here, the error varies quite gradually as
a single weight is changed though we can get troughs, valleys, canyons, and a host of
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Figure 6.9: Two-dimensional slices through the nine-dimensional error surface after
extensive training for a 2-2-1 network solving the XOR problem.

shapes.

Whereas in low dimensional spaces local minima can be plentiful, in high dimen-
sion, the problem of local minima is different: the high-dimensional space may afford
more ways (dimensions) for the system to “get around” a barrier or local maximum
during learning. In networks with many superfluous weights (i.e., more than are
needed to learn the training set), one is less likely to get into local minima. However,
networks with an unnecessarily large number of weights are undesirable because of
the dangers of overfitting, as we shall see in Sect. 6.11.

6.4.4 How important are multiple minima?

The possibility of the presence of multiple local minima is one reason that we resort to
iterative gradient descent — analytic methods are highly unlikely to find a single global
minimum, especially in high-dimensional weight spaces. In computational practice, we
do not want our network to be caught in a local minimum having high training error
since this usually indicates that key features of the problem have not been learned by
the network. In such cases it is traditional to re-initialize the weights and train again,
possibly also altering other parameters in the net (Sect. 6.8).

In many problems, convergence to a non-global minimum is acceptable, if the
error is nevertheless fairly low. Furthermore, common stopping criteria demand that
training terminate even before the minimum is reached and thus it is not essential
that the network be converging toward the global minimum for acceptable performance
(Sect. 6.8.14).
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Figure 6.10: A network with xxx weights trained on data from a complicated pattern
recognition problem xxx.

6.5 Backpropagation as feature mapping

Since the hidden-to-output layer leads to a linear discriminant, the novel computa-
tional power provided by multilayer neural nets can be attributed to the nonlinear
warping of the input to the representation at the hidden units. Let us consider this
transformation, again with the help of the XOR problem.

Figure 6.11 shows a three-layer net addressing the XOR problem. For any input
pattern in the x1−x2 space, we can show the corresponding output of the two hidden
units in the y1 − y2 space. With small initial weights, the net activation of each
hidden unit is small, and thus the linear portion of their transfer function is used.
Such a linear transformation from x to y leaves the patterns linearly inseparable
(Problem 1). However, as learning progresses and the input-to-hidden weights increase
in magnitude, the nonlinearities of the hidden units warp and distort the mapping
from input to the hidden unit space. The linear decision boundary at the end of
learning found by the hidden-to-output weights is shown by the straight dashed line;
the nonlinearly separable problem at the inputs is transformed into a linearly separable
at the hidden units.

We can illustrate such distortion in the three-bit parity problem, where the output
= +1 if the number of 1s in the input is odd, and -1 otherwise — a generalization
of the XOR or two-bit parity problem (Fig. 6.12). As before, early in learning the
hidden units operate in their linear range and thus the representation after the hid-
den units remains linearly inseparable — the patterns from the two categories lie at
alternating vertexes of a cube. After learning and the weights have become larger,
the nonlinearities of the hidden units are expressed and patterns have been moved
and can be linearly separable, as shown.

Figure 6.13 shows a two-dimensional two-category problem and the pattern rep-
resentations in a 2-2-1 and in a 2-3-1 network of sigmoidal hidden units. Note that
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Figure 6.11: A 2-2-1 backpropagation network (with bias) and the four patterns of the
XOR problem are shown at the top. The middle figure shows the outputs of the hidden
units for each of the four patterns; these outputs move across the y1− y2 space as the
full network learns. In this space, early in training (epoch 1) the two categories are
not linearly separable. As the input-to-hidden weights learn, the categories become
linearly separable. Also shown (by the dashed line) is the linear decision boundary
determined by the hidden-to-output weights at the end of learning — indeed the
patterns of the two classes are separated by this boundary. The bottom graph shows
the learning curves — the error on individual patterns and the total error as a function
of epoch. While the error on each individual pattern does not decrease monotonically,
the total training error does decrease monotonically.
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Figure 6.12: A 3-3-1 backpropagation network (plus bias) can indeed solve the three-
bit parity problem. The representation of the eight patterns at the hidden units
(y1−y2−y3 space) as the system learns and the (planar) decision boundary found by
the hidden-to-output weights at the end of learning. The patterns of the two classes
are separated by this plane. The learning curve shows the error on individual patterns
and the total error as a function of epoch.

in the two-hidden unit net, the categories are separated somewhat, but not enough
for error-free classification; the expressive power of the net is not sufficiently high.
In contrast, the three-hidden unit net can separate the patterns. In general, given
sufficiently many hidden units in a sigmoidal network, any set of different patterns
can be learned in this way.

6.5.1 Representations at the hidden layer — weights

In addition to focusing on the transformation of patterns, we can also consider the
representation of learned weights themselves. Since the hidden-to-output weights
merely leads to a linear discriminant, it is instead the input-to-hidden weights that
are most instructive. In particular, such weights at a single hidden unit describe the
input pattern that leads to maximum activation of that hidden unit, analogous to
a “matched filter.” Because the hidden unit transfer functions are nonlinear, the matched

filtercorrespondence with classical methods such as matched filters (and principal compo-
nents, Sect. ??) is not exact; nevertheless it is often convenient to think of the hidden
units as finding feature groupings useful for the linear classifier implemented by the
hidden-to-output layer weights.

Figure 6.14 shows the input-to-hidden weights (displayed as patterns) for a simple
task of character recognition. Note that one hidden unit seems “tuned” for a pair of
horizontal bars while the other to a single lower bar. Both of these feature groupings
are useful building blocks for the patterns presented. In complex, high-dimensional
problems, however, the pattern of learned weights may not appear to be simply related
to the features we suspect are appropriate for the task. This could be because we
may be mistaken about which are the true, relevant feature groupings; nonlinear
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Figure 6.13: Seven patterns from a two-dimesional two-category nonlinearly separable
classification problem are shown at the bottom. The figure at the top left shows the
hidden unit representations of the patterns in a 2-2-1 sigmoidal network (with bias)
fully trained to the global error minimum; the linear boundary implemented by the
hidden-to-output weights is also shown. Note that the categories are almost linearly
separable in this y1 − y2 space, but one training point is misclassified. At the top
right is the analogous hidden unit representation for a fully trained 2-3-1 network
(with bias). Because of the higher dimension of the hidden layer representation, the
categories are now linearly separable; indeed the learned hidden-to-output weights
implement a plane that separates the categories.

interactions between features may be significant in a problem (and such interactions
are not manifest in the patterns of weights at a single hidden unit); or the network
may have too many weights (degrees of freedom), and thus the feature selectivity is
low.

It is generally much harder to represent the hidden-to-output layer weights in
terms of input features. Not only do the hidden units themselves already encode a
somewhat abstract pattern, there is moreover no natural ordering of the hidden units.
Together with the fact that the output of hidden units are nonlinearly related to the
inputs, this makes analyzing hidden-to-output weights somewhat problematic. Often
the best we can do is list the patterns of input weights for hidden units that have
strong connections to the output unit in question (Computer exercise 9).

6.6 Backpropagation, Bayes theory and probability

While multilayer neural networks may appear to be somewhat ad hoc, we now show
that when trained via backpropagation on a sum-squared error criterion they form a
least squares fit to the Bayes discriminant functions.
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learned input-to-hidden weights

Figure 6.14: The top images represent patterns from a large training set used to train
a 64-2-3 sigmoidal network for classifying three characters. The bottom figures show
the input-to-hidden weights (represented as patterns) at the two hidden units after
training. Note that these learned weights indeed describe feature groupings useful for
the classification task. In large networks, such patterns of learned weights may be
difficult to interpret in this way.

6.6.1 Bayes discriminants and neural networks

As we saw in Chap. ?? Sect. ??, the LMS algorithm computed the approximation to
the Bayes discriminant function for two-layer nets. We now generalize this result in
two ways: to multiple categories and to nonlinear functions implemented by three-
layer neural networks. We use the network of Fig. 6.4 and let gk(x; w) be the output
of the kth output unit — the discriminant function corresponding to category ωk.
Recall first Bayes’ formula,

P (ωk|x) =
P (x|ωk)P (ωk)
c∑
i=1

P (x|ωi)P (ωi)
=
P (x, ωk)
P (x)

, (22)

and the Bayes decision for any pattern x: choose the category ωk having the largest
discriminant function gk(x) = P (ωk|x).

Suppose we train a network having c output units with a target signal according
to:

tk(x) =
{

1 if x ∈ ωk
0 otherwise. (23)

(In practice, teaching values of ±1 are to be preferred, as we shall see in Sect. 6.8; we
use the values 0–1 in this derivation for computational simplicity.) The contribution
to the criterion function based on a single output unit k for finite number of training
samples x is:

J(w) =
∑
x

[gk(x; w)− tk]2 (24)
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=
∑

x∈ωk
[gk(x; w)− 1]2 +

∑
x/∈ωk

[gk(x; w)− 0]2

= n

nkn 1
nk

∑
x∈ωk

[gk(x; w)− 1]2 +
n− nk
n

1
n− nk

∑
x/∈ωk

[gk(x; w)− 0]2

 ,

where n is the total number of training patterns, nk of which are in ωk. In the limit
of infinite data we can use Bayes’ formula (Eq. 22) to express Eq. 24 as (Problem 17):

lim
n→∞

1
n
J(w) ≡ J̃(w) (25)

= P (ωk)
∫

[gk(x; w)− 1]2 p(x|ωk)dx + P (ωi 6=k)
∫
g2
k(x; w)p(x|ωi 6=k)dx

=
∫
g2
k(x; w)p(x)dx− 2

∫
gk(x; w)p(x, ωk)dx +

∫
p(x, ωk)dx

=
∫

[gk(x; w)− P (ωk|x)]2 p(x)dx +
∫
P (ωk|x)P (ωi 6=k|x)p(x)dx︸ ︷︷ ︸

independent of w

.

The backpropagation rule changes weights to minimize the left hand side of Eq. 25,
and thus it minimizes ∫

[gk(x; w)− P (ωk|x)]2p(x)dx. (26)

Since this is true for each category ωk (k = 1, 2, ..., c), backpropagation minimizes the
sum (Problem 22):

c∑
k=1

∫
[gk(x; w)− P (ωk|x)]2 p(x)dx. (27)

Thus in the limit of infinite data the outputs of the trained network will approximate
(in a least-squares sense) the true a posteriori probabilities, that is, the output units
represent the a posteriori probabilities,

gk(x; w) ' P (ωk|x). (28)

Figure 6.15 illustrates the development of the learned outputs toward the Bayes dis-
criminants as the amount of training data and the expressive power of the net in-
creases.

We must be cautious in interpreting these results, however. A key assumption un-
derlying the argument is that the network can indeed represent the functions P (ωk|x);
with insufficient hidden units, this will not be true (Problem ??). Moreover, fitting
the discriminant function does not guarantee the optimal classification boundaries are
found, just as we saw in Chap. ??.

6.6.2 Outputs as probabilities

In the previous subsection we saw one way to make the c output units of a trained net
represent probabilities by training with 0–1 target values. While indeed given infinite
amounts of training data (and assuming the net can express the discriminants, does
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Figure 6.15: As a network is trained via backpropagation (under the assumptions
given in the text), its outputs more closely approximate posterior probabilities. The
figure shows the outputs of a 1-3-2 and a 1-8-2 sigmoidal network after backpropaga-
tion training with n = 10 and n = 1000 points from two categories. Note especially
the excellent agreement between the large net’s outputs and the Bayesian discriminant
functions in the regions of high p(x).

not fall into an undesirable local minimum, etc.), then the outputs will represent
probabilities. If, however, these conditions do not hold — in particular we have only
a finite amount of training data — then the outputs will not represent probabilities;
for instance there is no guarantee that they will sum to 1.0. In fact, if the sum of the
network outputs differs significantly from 1.0 within some range of the input space, it
is an indication that the network is not accurately modeling the posteriors. This, in
turn, may suggest changing the network topology, number of hidden units, or other
aspects of the net (Sect. 6.8).

One approach toward approximating probabilities is to choose the output unit
nonlinearity to be exponential rather than sigmoidal — f(netk) ∝ enetk — and for
each pattern normalize the outputs to sum to 1.0,

zk =
enetk
c∑

m=1
enetm

, (29)

and to train using 0–1 target signals. This is the softmax method — a smoothed or softmax
continuous version of a winner-take-all nonlinearity in which the maximum output is

winner-
take-all

transformed to 1.0, and all others reduced to 0.0. The softmax output finds theoretical
justification if for each category ωk the hidden unit representations y can be assumed
to come from an exponential distribution (Problem 20, Computer exercise 10).

A neural network classifier trained in this manner approximates the posterior
probabilities P (ωi|x), whether or not the data was sampled from unequal priors P (ωi).
If such a trained network is to be used on problems in which the priors have been
changed, it is a simple matter to rescale each network output, gi(x) = P (ωi|x) by the
ratio of such priors (Computer exercise 11).
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6.7 *Related statistical techniques

While the graphical, topological representation of networks is useful and a guide to
intuition, we must not forget that the underlying mathematics of the feedforward
operation is governed by Eq. 6. A number of statistical methods bear similarities
to that equation. For instance, projection pursuit regression (or simply projectionprojection

pursuit pursuit) implements

z =
jmax∑
j=1

wjfj(vtjx + uj0) + w0. (30)

Here each vj and vj0 together define the projection of the input x onto one of jmax
different d-dimensional hyperplanes. These projections are transformed by nonlinear
functions fj(·) whose values are then linearly combined at the output; traditionally,
sigmoidal or Gaussian functions are used. The fj(·) have been called ridge functionsridge

function because for peaked fj(·), one obtains ridges in two dimensions. Equation 30 imple-
ments a mapping to a scalar function z; in a c-category classification problem there
would be c such outputs. In computational practice, the parameters are learned in
groups minimizing an LMS error, for instance first the components of v1 and v10, then
v2 and v20 up to vjmax and vjmax0; then the wj and w0, iterating until convergence.

Such models are related to the three-layer networks we have seen in that the vj
and vj0 are analogous to the input-to-hidden weights at a hidden unit and the effective
output unit is linear. The class of functions fj(·) at such hidden units are more general
and have more free parameters than do sigmoids. Moreover, such a model can have
an output much larger than 1.0, as might be needed in a general regression task. In
the classification tasks we have considered, a saturating output, such as a sigmoid is
more appropriate.

Another technique related to multilayer neural nets is generalized additive models,generalized
additive
model

which implement

z = f

(
d∑
i=1

fi(xi) + w0

)
, (31)

where again f(·) is often chosen to be a sigmoid, and the functions fi() operating on
the input features are nonlinear, and sometimes chosen to be sigmoidal. Such models
are trained by iteratively adjusting parameters of the component nonlinearities fi(·).
Indeed, the basic three-layer neural networks of Sect. 6.2 implement a special case of
general additive models (Problem 24), though the training methods differ.

An extremely flexible technique having many adjustable parameters is multivari-
ate adaptive regression splines (MARS). In this technique, localized spline functionsmultivariate

adaptive
regression
spline

(polynomials adjusted to insure continuous derivative) are used in the initial process-
ing. Here the output is the weighted sum of M products of splines:

z =
M∑
k=1

wk

rk∏
r=1

φkr(xq(k,r)) + w0, (32)

where the kth basis function is the product of rk one-dimensional spline functions φkr;
w0 is a scalar offset. The splines depend on the input values xq, such as the feature
component of an input, where the index is labeled q(k, r). Naturally, in a c-category
task, there would be one such output for each category.
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In broad overview, training in MARS begins by fitting the data with a spline
function along each feature dimension in turn. The spline that best fits the data (in
a sum squared error sense) is retained. This is the r = 1 term in Eq. 32. Next, each
of the other feature dimensions is considered, one by one. For each such dimension,
candidate splines are selected based on the data fit using the product of that spline
with the one previously selected, thereby giving the product r = 1 → 2. The best
such second spline is retained, thereby giving the r = 2 term. In this way, splines are
added incrementally up to some value rk, where some desired quality of fit is achieved.
The weights wk are learned using an LMS criterion.

For several reasons, multilayer neural nets have all but supplanted projection pur-
suit, MARS and earlier related techniques in practical pattern recognition research.
Backpropagation is simpler than learning in projection pursuit and MARS, especially
when the number of training patterns and the dimension is large; heuristic informa-
tion can be incorporated more simply into nets (Sect. 6.8.12); nets admit a variety of
simplification or regularization methods (Sec. 6.11) that have no direct counterpart
in those earlier methods. It is, moreover, usually simpler to refine a trained neural
net using additional training data than it is to modify classifiers based on projection
pursuit or MARS.

6.8 Practical techniques for improving backpropa-
gation

When creating a multilayer neural network classifier, the designer must make two ma-
jor types of decision: selection of the architecture and selection of parameters (though
the distinction is not always crisp or important). Our goal here is to give a princi-
pled basis for making such choices based on learning speed and optimal recognition
performance. In practice, while parameter adjustment is problem dependent several
rules of thumb emerge from an analysis of networks.

6.8.1 Transfer function

There are a number of desirable properties for f(·), but we must not lose sight of the
fact that backpropagation will work with virtually any transfer function, given that
a few simple conditions such as continuity of f and its derivative are met. In any
particular classification problem we may have a good reason for selecting a particular
transfer function. For instance, if we have prior information that the distributions
arise from a mixture of Gaussians, then Gaussian transfer functions are appropriate
(Sect. ??).

When not guided by such problem dependent information, what general proper-
ties might we seek in f(·)? First, of course, f(·) must be nonlinear — otherwise the
three-layer network provides no computational power above that of a two-layer net
(Problem 1). A second desirable property is that f(·) saturate, i.e., have some maxi-
mum and minimum output value. This will keep the weights and activations bounded,
and thus keep training time limited. (This property is less desirable in networks used
for regression, since there we may seek outputs values greater than any saturation
level selected before training.) A third property is continuity and smoothness, i.e.,
that f(·) and f ′(·) be defined throughout the range of their argument. Recall that
the fact that we could take a derivative of f(·) was crucial in the derivation of the
backpropagation learning rule. The rule would not, therefore, work with the threshold
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or sign function of Eq. 3. Backpropagation can be made to work with piecewise linear
transfer functions, but with added complexity and few benefits.

Monotonicity is another convenient (but non-essential) property for f(·) — we
might wish the derivative have the same sign throughout the range of the argument,
e.g., f ′(·) ≥ 0. If f is not monotonic, additional (and undesirable) local extremum in
the error surface may become introduced (Computer Exercise ??). Non-monotonic
transfer functions such as radial basis functions can be used if proper care is taken
(Sect. 6.10.1). Another desirable property is linearity for small value of net, which will
enable the system to implement a linear model if adequate for low error. A property
that is might occasionally be of importance is computational simplicity — we seek a
function whose value and derivative can be easily computed.

We mention in passing that polynomial classifiers use transfer functions of thepolynomial
classifier form x1, x2, ..., xd, x

2
1, x

2
2, ..., x

2
d, x1x2, ..., x1xd, and so forth — all terms up to some

limit; training is via gradient descent too. One drawback is that the outputs of the
hidden units (φ functions) can become extremely large even for realistic problems
(Problem 29, Computer exercise ??). Instead, standard neural networks employ the
same nonlinearity at each hidden unit.

One class of function that has all the above properties is the sigmoid such as asigmoid
hyperbolic tangent. The sigmoid is smooth, differentiable, nonlinear, and saturating.
It also admits a linear model if the network weights are small. A minor benefit is that
the derivative f ′(·) can be easily expressed in terms of f(·) itself (Problem 10). One
last benefit of the sigmoid is that it maximizes information transmission for features
that are normally distributed (Problem 25).

A hidden layer of sigmoidal units affords a distributed or global representationdistributed
representa-
tion

of the input. That is, any particular input x is likely to yield activity throughout
several hidden units. In contrast, if the hidden units have transfer functions that have
significant response only for inputs within a small range, then an input x generally
leads to fewer hidden units being active — a local representation. (Nearest neighborlocal

representa-
tion

classifiers employ local representations, of course.) It is often found in practice that
when there are few training points, distributed representations are superior because
more of the data influences the posteriors at any given input region (Computer exercise
14).

The sigmoid is the most widely used transfer function for the above reasons, and
in much of the following we shall employ sigmoids.

6.8.2 Parameters for the sigmoid

Given that we will use the sigmoidal form, there remain a number of parameters
to set. It is best to keep the function centered on zero and anti-symmetric, i.e.,
f(−net) = −f(net), rather than one whose value is always positive. Together with
the data preprocessing described in Sec. 6.8.3, anti-symmetric sigmoids speed learning
by eliminating the need to learn the mean values of the training data. Thus, sigmoid
functions of the form

f(net) = a tanh(b net) = a

[
1− eb net
1 + eb net

]
=

2a
1 + e−b net

− a (33)

work well. The overall range and slope are not important, since it is their relationship
to parameters such as the learning rate and magnitudes of the inputs and targets
that determine learning times (Problem 23). For convenience, though, we choose
a = 1.716 and b = 2/3 in Eq. 33 — values which insure f ′(0) ' 1, that the linear
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range is −1 < net < +1, and that the extrema of the second derivative occur roughly
at net ' ±2 (Fig. 6.16).
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Figure 6.16: A useful transfer function f(net) is an anti-symmetric sigmoid. For the
parameters given in the text, f(net) is nearly linear in the range −1 < net < +1 and
its second derivative, f ′′(net), has extrema near net ' ±2.

6.8.3 Scaling input

Suppose we were using a two-input network to classify fish based on the features of
mass (measured in grams) and length (measured in meters). Such a representation
will have serious drawbacks for a neural network classifier: the numerical value of
the mass will be orders of magnitude larger than that for length. During training the
network will adjust weights from the “mass” input unit far more than for the “length”
input — indeed the error will hardly depend upon the tiny length values. If however,
the same physical information were presented but with mass measured in kilograms
and length in millimeters, the situation would be reversed. Naturally we do not want
our classifier to prefer one of these features over the other, since they differ solely in
the arbitrary representation. The difficulty arises even for features having the same
units but differing overall magnitude, of course, for instance if a fish’s length and its
fin thickness were both measured in millimeters.

In order to avoid such difficulties, the input patterns should be shifted so that the
average (over the training set) of each feature is zero. Moreover, the full data set
should then be scaled to have the same variance in each feature component — here
chosen to be 1.0 for reasons that will be clear in Sect. 6.8.8. That is, we standardize the standardize
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training patterns. This data standardization is done once, before actually network
training, and thus represents a small one-time computational burden (Problem 27,
Computer exercise 15). Standardization can only be done for stochastic and batch
learning protocols, but not on-line protocols where the full data set is never available
at any one time.

6.8.4 Target values

For pattern recognition, we typically train with the pattern and its category label,
and thus we use a one-of-c representation for the target vector. Since the output units
saturate at ±1.716, we might naively feel that the target values should be those values;
however, that would present a difficulty. For any finite value of netk, the output would
be less than the saturation values, and thus there would be error. Full training would
never terminate as weights would become extremely large as netk would be driven to
± ∞.

This difficulty can be avoided by using teaching values of +1 for the target cat-
egory and -1 for the non-target categories. For instance, in a four-category prob-
lem if the pattern is in category ω3, the following target vector should be used:
t = (−1,−1,+1,−1). Of course, this target representation yields efficient learning for
categorization — the outputs here do not represent posterior probabilities (Sec. 6.6.2).

6.8.5 Training with noise

When the training set is small, one can generate virtual or surrogate training pat-
terns and use them as if they were normal training patterns sampled from the source
distributions. In the absence of problem-specific information, a natural assumption
is that such surrogate patterns should be made by adding d-dimensional Gaussian
noise to true training points. In particular, for the standardized inputs described in
Sect. 6.8.3, the variance of the added noise should be less than 1.0 (e.g., 0.1) and the
category label left unchanged. This method of training with noise can be used with
virtually every classification method, though it generally does not improve accuracy
for highly local classifiers such as ones based on the nearest neighbor (Problem 30).

6.8.6 Manufacturing data

If we have knowledge about the sources of variation among patterns (for instance due
to geometrical invariances), we can “manufacture” training data that conveys more
information than does the method of training with uncorrelated noise (Sec. 6.8.5).
For instance, in an optical character recognition problem, an input image may be pre-
sented rotated by various amounts. Hence during training we can take any particular
training pattern and rotate its image to “manufacture” a training point that may be
representative of a much larger training set. Likewise, we might scale a pattern, per-
form simple image processing to simulate a bold face character, and so on. If we have
information about the range of expected rotation angles, or the variation in thickness
of the character strokes, we should manufacture the data accordingly.

While this method bears formal equivalence to incorporating prior information in
a maximum likelihood approach, it is usually much simpler to implement, since we
need only the (forward) model for generating patterns. As with training with noise,
manufacturing data can be used with a wide range of pattern recognition methods.
A drawback is that the memory requirements may be large and overall training slow.



6.8. PRACTICAL TECHNIQUES FOR BACKPROPAGATION 33

6.8.7 Number of hidden units

While the number of input units and output units are dictated by the dimensionality
of the input vectors and the number of categories, respectively, the number of hidden
units is not simply related to such obvious properties of the classification problem.
The number of hidden units, nH , governs the expressive power of the net — and
thus the complexity of the decision boundary. If the patterns are well separated or
linearly separable, then few hidden units are needed; conversely, if the patterns are
drawn from complicated densities that are highly interspersed, then more hiddens are
needed. Thus without further information there is no foolproof method for setting
the number of hidden units before training.

Figure 6.17 shows the training and test error on a two-category classification prob-
lem for networks that differ solely in their number of hidden units. For large nH , the
training error can become small because such networks have high expressive power and
become tuned to the particular training data. Nevertheless, in this regime, the test
error is unacceptably high, an example of overfitting we shall study again in Chap. ??.
At the other extreme of too few hidden units, the net does not have enough free pa-
rameters to fit the training data well, and again the test error is high. We seek some
intermediate number of hidden units that will give low test error.
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Figure 6.17: The error per pattern for networks fully trained but differing in the
numbers of hidden units, nH . Each 2–nH–1 network (with bias) was trained with
90 two-dimensional patterns from each of two categories (sampled from a mixture of
three Gaussians); thus n = 180. The minimum of the test error occurs for networks in
the range 4 ≤ nH ≤ 5, i.e., the range of weights 17 to 21. This illustrates the rule of
thumb that choosing networks with roughly n/10 weights often gives low test error.

The number of hidden units determines the total number of weights in the net
— which we consider informally as the number of degrees of freedom — and thus
we should not have more weights than the total number of training points, n. A
convenient rule of thumb is to choose the number of hidden units such that the total
number of weights in the net is roughly n/10. This seems to work well over a range
of practical problems. A more principled method is to adjust the complexity of the
network in response to the training data, for instance start with a “large” number of
hiddens and prune or eliminate weights — techniques we shall study in Sect. ?? and
Chap. ??.
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6.8.8 Initializing weights

Suppose we have fixed the network topology, and thus set the number of hidden
units. We now seek to set the initial weight values in order to have fast and uniform
learning, i.e., all weights reach their final equilibrium values at about the same time.uniform

learning One form of non-uniform learning occurs when category ωi is learned well before ωj .
In this undesirable case, the distribution of errors differs markedly from Bayes, and
the overall error rate is typically higher than necessary. (The data standarization
described above also helps to insure uniform learning.)

In setting weights in a given layer, we choose weights randomly from a single dis-
tribution to help insure uniform learning. Because data standardization gives positive
and negative values equally, on average, we want positive and negative weights as well;
thus we choose weights from a uniform distribution −w̃ < w < +w̃, for some w̃ yet
to be determined. If w̃ is chosen too small, the net activation of a hidden unit will be
small and the linear model will be implemented. Alternatively, if w̃ is too large, the
hidden unit may saturate even before learning begins. Hence we set w̃ such that the
net activation at a hidden unit is in the range −1 < netj < +1, since netj ' ±1 are
the limits to its linear range (Fig. 6.16).

In order to calculate w̃, consider a hidden unit having a fan-in of d inputs. Suppose
too that all weights have the same value w̃. On average, then, the net activation from
d random variables of variance 1.0 from our standarized input through such weights
will be w̃

√
d. As mentioned, we would like this net activation to be roughly in the

range −1 < net < +1. This implies that w̃ = 1/
√
d and thus input weights should

be chosen in the range −1/
√
d < wji < +1/

√
d. The same argument holds for the

hidden-to-output weights, where the fan-in is nH ; hidden-to-output weights should
initialized with values chosen in the range −1/

√
nH < wkj < +1/

√
nH .

6.8.9 Learning rates

In principle, so long as the learning rate is small enough to assure convergence, its
value determines only the speed at which the network attains a minimum in the
criterion function J(w), not the final weight values themselves. In practice, however,
because networks are rarely fully trained to a training error minimum (Sect. 6.8.14),
the learning rate can affect the quality of the final network. If some weights converge
significantly earlier than others (non-uniform learning) then the network may notnonuniform

learning perform equally well throughout the full range of inputs, or equally well for patterns
in each category. Figure 6.18 shows the effect of different learning rates on convergence
in a single dimension.

The optimal learning rate is the one which leads to the local error minimum in one
learning step. A principled method of setting the learning rate comes from assuming
the criterion function can be reasonably approximated by a quadratic which thus gives
(Fig. 6.19):

∂2J

∂w2
∆w =

∂J

∂w
. (34)

The optimal rate is found directly to be

ηopt =
(
∂2J

∂w2

)−1

. (35)
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Figure 6.18: Gradient descent in a one-dimensional quadratic criterion with different
learning rates. If η < ηopt, convergence is assured, but training can be needlessly
slow. If η = ηopt, a single learning step suffices to find the error minimum. If
ηopt < η < 2ηopt, the system will oscillate but nevertheless converge, but training is
needlessly slow. If η > 2ηopt, the system diverges.

Of course the maximum learning rate that will give convergence is ηmax = 2ηopt. It
should be noted that a learning rate η in the range ηopt < η < 2ηopt will lead to slower
convergence (Computer exercise 8).
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Figure 6.19: If the criterion function is quadratic (above), its derivative is linear (be-
low). The optimal learning rate ηopt insures that the weight value yielding minimum
error, w∗ is found in a single learning step.

Thus, for rapid and uniform learning, we should calculate the second derivative of
the criterion function with respect to each weight and set the optimal learning rate
separately for each weight. We shall return in Sect. ?? to calculate second derivatives
in networks, and to alternate descent and training methods such as Quickprop that
give fast, uniform learning. For typical problems addressed with sigmoidal networks
and parameters discussed throughout this section, it is found that a learning rate
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of η ' 0.1 is often adequate as a first choice, and lowered if the criterion function
diverges, or raised if learning seems unduly slow.

6.8.10 Momentum

Error surfaces often have plateaus — regions in which the slope dJ(w)/dw is very
small — for instance because of “too many” weights. Momentum — loosely based
on the notion from physics that moving objects tend to keep moving unless acted
upon by outside forces — allows the network to learn more quickly when plateaus
in the error surface exist. The approach is to alter the learning rule in stochastic
backpropagation to include some fraction α of the previous weight update:

w(m+ 1) = w(m) + ∆w(m)︸ ︷︷ ︸
gradient
descent

+α∆w(m− 1)︸ ︷︷ ︸
momentum

(36)

Of course, α must be less than 1.0 for stability; typical values are α ' 0.9. It must
be stressed that momentum rarely changes the final solution, but merely allows it to
be found more rapidly. Momentum provides another benefit: effectively “averaging
out” stochastic variations in weight updates during stochastic learning and thereby
speeding learning, even far from error plateaus (Fig. 6.20).
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Figure 6.20: The incorporation of momentum into stochastic gradient descent by
Eq. 36 (white arrows) reduces the variation in overall gradient directions and speeds
learning, especially over plateaus in the error surface.

Algorithm 3 shows one way to incorporate momentum into gradient descent.

Algorithm 3 (Stochastic backpropagation with momentum)

1 begin initialize topology (# hidden units),w, criterion, α(< 1), θ, η,m← 0, bji ← 0, bkj ← 0
2 do m← m+ 1
3 xm ← randomly chosen pattern
4 bji ← ηδjxi + αbji; bkj ← ηδkyj + αbkj
5 wji ← wji + bji; wkj ← wkj + bkj
6 until ∇J(w) < θ
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7 return w
8 end

6.8.11 Weight decay

One method of simplifying a network and avoiding overfitting is to impose a heuristic
that the weights should be small. There is no principled reason why such a method
of “weight decay” should always lead to improved network performance (indeed there
are occasional cases where it leads to degraded performance) but it is found in most
cases that it helps. The basic approach is to start with a network with “too many”
weights (or hidden units) and “decay” all weights during training. Small weights favor
models that are more nearly linear (Problems 1 & 41). One of the reasons weight
decay is so popular is its simplicity. After each weight update every weight is simply
“decayed” or shrunk according to:

wnew = wold(1− ε), (37)

where 0 < ε < 1. In this way, weights that are not needed for reducing the criterion
function become smaller and smaller, possibly to such a small value that they can be
eliminated altogether. Those weights that are needed to solve the problem cannot de-
cay indefinitely. In weight decay, then, the system achieves a balance between pattern
error (Eq. 60) and some measure of overall weight. It can be shown (Problem 43) that
the weight decay is equivalent to gradient descent in a new effective error or criterion
function:

Jef = J(w) +
2ε
η

wtw. (38)

The second term on the right hand side of Eq. 38 preferentially penalizes a single large
weight. Another version of weight decay includes a decay parameter that depends
upon the value of the weight itself, and this tends to distribute the penalty throughout
the network:

εmr =
γη/2

(1 + w2
mr)

2 . (39)

We shall discuss principled methods for setting ε, and see how weight decay is an
instance of a more general regularization procedure in Chap. ??.

6.8.12 Hints

Often we have insufficient training data for adequate classification accuracy and we
would like to add information or constraints to improve the network. The approach
of learning with hints is to add output units for addressing an ancillary problem, one
related to the classification problem at hand. The expanded network is trained on the
classification problem of interest and the ancillary one, possibly simultaneously. For
instance, suppose we seek to train a network to classify c phonemes based on some
acoustic input. In a standard neural network we would have c output units. In learning
with hints, we might add two ancillary output units, one which represents vowels and
the other consonants. During training, the target vector must be lengthened to include
components for the hint outputs. During classification the hint units are not used;
they and their hidden-to-output weights can be discarded (Fig. 6.21).
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Figure 6.21: In learning with hints, the output layer of a standard network having
c units (discriminant functions) is augmented with hint units. During training, the
target vectors are also augmented with signals for the hint units. In this way the
input-to-hidden weights learn improved feature groupings. During classification the
hint units are not used, and thus they and their hidden-to-output weights are removed
from the trained network.

The benefit provided by hints is in improved feature selection. So long as the hints
are related to the classification problem at hand, the feature groupings useful for the
hint task are likely to aid category learning. For instance, the feature groupings useful
for distinguishing vowel sounds from consonants in general are likely to be useful
for distinguishing the /b/ from /oo/ or the /g/ from /ii/ categories in particular.
Alternatively, one can train just the hint units in order to develop improved hidden
unit representations (Computer exercise 16).

Learning with hints illustrates another benefit of neural networks: hints are more
easily incorporated into neural networks than into classifiers based on other algo-
rithms, such as the nearest-neighbor or MARS.

6.8.13 On-line, stochastic or batch training?

Each of the three leading training protocols described in Sect. 6.3.2 has strengths and
drawbacks. On-line learning is to be used when the amount of training data is so
large, or that memory costs are so high, that storing the data is prohibitive. Most
practical neural network classification problems are addressed instead with batch or
stochastic protocols.

Batch learning is typically slower than stochastic learning. To see this, imag-
ine a training set of 50 patterns that consists of 10 copies each of five patterns
(x1,x2, ...,x5). In batch learning, the presentations of the duplicates of x1 provide as
much information as a single presentation of x1 in the stochastic case. For example,
suppose in the batch case the learning rate is set optimally. The same weight change
can be achieved with just a single presentation of each of the five different patterns in
the batch case (with learning rate correspondingly greater). Of course, true problems
do not have exact duplicates of individual patterns; nevertheless, true data sets are
generally highly redundant, and the above analysis holds.

For most applications — especially ones employing large redundant training sets
— stochastic training is hence to be preferred. Batch training admits some second-
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order techniques that cannot be easily incorporated into stochastic learning protocols
and in some problems should be preferred, as we shall see in Sect. ??.

6.8.14 Stopped training

In three-layer networks having many weights, excessive training can lead to poor
generalization, as the net implements a complex decision boundary “tuned” to the
specific training data rather than the general properties of the underlying distribu-
tions. In training the two-layer networks of Chap. ??, we could train as long as we like
without fear that it would degrade final recognition accuracy because the complexity
of the decision boundary is not changed — it is always simply a hyperplane. This
example shows that the general phenomenon should be called “overfitting,” and not
“overtraining.”

Because the network weights are initialized with small values, the units operate in
their linear range and the full network implements linear discriminants. As training
progresses, the nonlinearities of the units are expressed and the decision boundary
warps. Qualitatively speaking, stopping the training before gradient descent is com-
plete can help avoid overfitting. In practice, the elementary criterion of stopping when
the error function decreases less than some preset value (e.g., line ?? in Algorithm ??),
does not lead reliably to accurate classifiers as it is hard to know beforehand what an
appropriate threshold θ should be set. A far more effective method is to stop training
when the error on a separate validation set reaches a minimum (Fig. ??). We shall
explore the theory underlying this version of cross validation in Chap. ??. We note
in passing that weight decay is equivalent to a form of stopped training (Fig. 6.22).

w1

w2

learning
stopped

initial weights

Figure 6.22: When weights are initialized with small magnitudes, stopped training
is equivalent to a form of weight decay since the final weights are smaller than they
would be after extensive training.

6.8.15 How many hidden layers?

The backpropagation algorithm applies equally well to networks with three, four, or
more layers, so long as the units in such layers have differentiable transfer functions.
Since, as we have seen, three layers suffice to implement any arbitrary function, we
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would need special problem conditions or requirements recommend the use of more
than three layers.

One possible such requirement is translation, rotation or other distortion invari-
ances. If the input layer represents the pixel image in an optical character recognition
problem, we generally want such a recognizer to be invariant with respect to such
transformations. It is easier for a three-layer net to accept small translations than to
accept large ones. In practice, then, networks with several hidden layers distribute
the invariance task throughout the net. Naturally, the weight initialization, learning
rate, data preprocessing arguments apply to these networks too. The Neocognitron
network architecture (Sec. 6.10.7) has many layers for just this reason (though it is
trained by a method somewhat different than backpropagation). It has been found
empirically that networks with multiple hidden layers are more prone to getting caught
in undesirable local minima.

In the absence of a problem-specific reason for multiple hidden layers, then, it is
simplest to proceed using just a single hidden layer.

6.8.16 Criterion function

The squared error criterion of Eq. 8 is the most common training criterion because
it is simple to compute, non-negative, and simplifies the proofs of some theorems.
Nevertheless, other training criteria occasionally have benefits. One popular alternate
is the cross entropy which for n patterns is of the form:

J(w)ce =
n∑

m=1

c∑
k=1

tmkln(tmk/zmk), (40)

where tmk and zmk are the target and the actual output of unit k for pattern m. Of
course, this criterion function requires both the teaching and the output values in the
range (0, 1).

Regularization and overfitting avoidance is generally achieved by penalizing com-
plexity of models or networks (Chap. ??). In regularization, the training error and the
complexity penalty should be of related functional forms. Thus if the pattern error is
the sum of squares, then a reasonable network penalty would be squared length of the
total weight vector (Eq. 38). Likewise, if the model penalty is some description length
(measured in bits), then a pattern error based on cross entropy would be appropriate
(Eq. 40).

Yet another criterion function is based on the Minkowski error:Minkowski
error

JMink(w) =
n∑

m=1

c∑
k=1

|zmk(x)− tmk(x)|R, (41)

much as we saw in Chap. ??. It is a straightforward matter to derive the backpropa-
gation rule for the this error (Problem ??). While in general the rule is a bit more
complex than for the (R = 2) sum squared error we have considered (since it includes
a Sgn[·] function), the Minkowski error for 1 ≤ R < 2 reduces the influence of long
tails in the distributions — tails that may be quite far from the category decision
boundaries. As such, the designer can adjust the “locality” of the classifier indirectly
through choice of R; the smaller the R, the more local the classifier.

Most of the heuristics described in this section can be used alone or in combination
with others. While they may interact in unexpected ways, all have found use in
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important pattern recognition problems and classifier designers should have experience
with all of them.

6.9 *Second-order methods

We have used a second-order analysis of the error in order to determine the optimal
learning rate. One can use second-order information more fully in other ways.

6.9.1 Hessian matrix

We derived the first-order derivatives of a sum-squared-error criterion function in
three-layer networks, summarized in Eqs. 16 & 20. We now turn to second-order
derivatives, which find use in rapid learning methods, as well as some pruning or
regularization algorithms. For our criterion function,

J(w) =
1
2

n∑
m=1

(tm − zm)2, (42)

where tm and zm are the target and output signals, and n the total number of training
patterns. The elements in the Hessian matrix are

∂2J(w)
∂wji∂wlk

=
n∑

m=1

∂J

∂wji

∂J

∂wlk
+

n∑
m=1

(z − t) ∂2J

∂wji∂wlk
(43)

where we have used the subscripts to refer to any weight in the network — thus i, j, l
and k could all take on values that describe input-to-hidden weights, or that describe
hidden-to-output weights, or mixtures. Of course the Hessian matrix is symmetric.
The second term in Eq. 43 is often neglected as ; this approximation guarantees that
the resulting approximation is positive definite.

The second term is of orderO(‖t− o‖); using Fisher’s method of scoring we set this
term to zero. This gives the expected value, a positive definite matrix thereby guar-
anteeing that gradient descent will progress. In this so-called Levenberg-Marquardt or Levenberg-

Marquardt
approxima-
tion

outer product approximation our Hessian reduces to:
The full exact calculation of the Hessian matrix for a three-layer network such as

we have considered is (Problem 31):
If the two weights are both in the hidden-to-output layer:

outout (44)

If the two weights are both in the input-to-hidden layer:

inin (45)

If the weights are in different layers:

inout (46)
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6.9.2 Newton’s method

xxx

∆J(w) = J(w + ∆w)− J(w)

'
(
∂J(w)
∂w

)t
∆w +

1
2
∆wtH∆w, (47)

where H is the Hessian matrix. We differentiate Eq. 47 with respect to ∆ and find
that ∆J(w) is minimized for (

∂J(w)
∂w

)
+ H∆w = 0, (48)

and thus the optimum change in weights can be expressed as

∆w = −H−1

(
∂J(w)
∂w

)
. (49)

Thus, if we have an estimate for the optimal weights w(m), we can get an improved
estimate using the weight change given by Eq. 49, i.e.,

w(m+ 1) = w(m) + ∆w = w(m)−H−1(m)
(
∂J(w(m))

∂w

)
, (50)

Thus in this Newton’s algorithm, we iteratively recompute w.
Alas, the computation of the Hessian can be expensive, and there is no guarantee

that the Hessian is nonsingular.
xxx

6.9.3 Quickprop

The simplest method for using second-order information to increase training speed is
the Quickprop algorithm. In this method, the weights are assumed to be independent,
and the descent is optimized separately for each. The error surface is assumed to be
quadratic (i.e., a parabola) and the coefficients for the parabola are determined by
two successive evaluations of J(w) and dJ(w)/dw. The single weight w is then moved
to the computed minimum of the parabola (Fig. 6.23). It can be shown (Problem 34)
that this approach leads to the following weight update rule:

∆w(m+ 1) =
dJ
dw

∣∣
m

dJ
dw

∣∣
m−1

− dJ
dw

∣∣
m

∆w(m). (51)

If the third- and higher-order terms in the error are non-negligible, or if the assumption
of weight independence does not hold, then the computed error minimum will not
equal the true minimum, and further weight updates will be needed. When a number
of obvious heuristics are imposed — to reduce the effects of estimation error when
the surface is nearly flat, or the step actually increases the error — the method can
be significantly faster than standard backpropagation. Another benefit is that each
weight has, in effect, its own learning rate, and thus weights tend to converge at
roughly the same time, thereby reducing problems due to nonuniform learning.
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Figure 6.23: The quickprop weight update takes the error derivatives at two points
separated by a known amount, and by Eq. 51 makes its next weight value. If the
error can be fully expressed as a second-order function, then the weight update leads
to the weight (w∗) leading to minimum error.

6.9.4 Conjugate gradient descent

Another fast learning method is conjugate gradient descent, which employs a series
of line searches in weight or parameter space. One picks the first descent direction
(for instance, determined by the gradient) and moves along that direction until the
minimum in error is reached. The second descent direction is then computed: this
direction — the “conjugate direction” — is the one along which the gradient does not
change its direction, but merely its magnitude during the next descent. Descent along
this direction will not “spoil” the contribution from the previous descent iterations
(Fig. ??).
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Figure 6.24: Conjugate gradient descent in weight space employs a sequence of
line searches. If ∆w(1) is the first descent direction, the second direction obeys
∆wt(1)H∆w(2) = 0. Note especially that along this second descent, the gradient
changes only in magnitude, not direction; as such the second descent does not “spoil”
the contribution due to the previous line search. In the case where the Hessian is
diagonal (right), the directions of the line searches are orthogonal.

More specifically, if we let ∆w(m − 1) represent the direction of a line search on
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step m− 1. (Note especially that this is not an overall magnitude of change, which is
determined by the line search). We demand that the subsequent direction, ∆w(m),
obey

∆wt(m− 1)H∆w(m) = 0, (52)

where H is the Hessian matrix. Pairs of descent directions that obey Eq. 52 are
called “conjugate.” If the Hessian is proportional to the identity matrix, then such
directions are orthogonal in weight space. Conjugate gradient requires batch training,
since the Hessian matrix is defined over the full training set.

The descent direction on iteration m is in the direction of the gradient plus a
component along the previous descent direction:

∆w(m) = −∇J(w(m)) + βm∆w(m− 1), (53)

and the relative proportions of these contributions is governed by β. This proportion
can be derived by insuring that the descent direction on iteration m does not spoil
that from direction m− 1, and indeed all earlier directions. It is generally calculated
in one of two ways. The first formula (Fletcher-Reeves) is

βm =
[∇J(w(m))]t ∇J(w(m))

[∇J(w(m− 1))]t ∇J(w(m− 1))
(54)

A slightly preferable formula (Polak-Ribiere) is more robust in non-quadratic error
functions is:

βm =
[∇J(w(m))]t [∇J(w(m))−∇J(w(m− 1))]

[∇J(w(m− 1))]t ∇J(w(m− 1))
. (55)

Equations 53 & 36 show that conjugate gradient descent algorithm is analogous
to calculating a “smart” momentum, where β plays the role of a momentum. If the
error function is quadratic, then the convergence of conjugate gradient descent is
guaranteed when the number of iterations equals the total number of weights.

Example 1: Conjugate gradient descent

Consider finding the miminimum of a simple quadratic criterion function centered
on the origin of weight space, J(w) = 1/2(.2w2

1 + w2
2) = wtHw, where by simple

differentiation the Hessian is found to be H =
(
.2 0
0 1

)
. We start descent descent at a

randomly selected position, which happens to be w(0) =
(−8
−4

)
, as shown in the figure.

The first descent direction is determined by a simple gradient, which is easily found to
be −∆J(w(0)) = −

(
.4w1(0)
2w2(0)

)
=
(

3.2
8

)
. In typical complex problems in high dimensions,

the minimum along this direction is found using a line search, in this simple case the
minimum can be found be calculus. We let s represent the distance along the first
descent direction, and find its value for the minimum of J(w) according to:

d

ds

[[(−8
−4

)
+ s

(
3.2
8

)]t(
.2 0
0 1

)[(−8
−4

)
+ s

(
3.2
8

)]]
= 0

which has solution s = 0.562. Therefore the minimum along this direction is
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w(1) = w(0) + 0.562(−∆J(w(0)))

=
(−8
−4

)
+ 0.562

(
3.2
8

)
=
(−6.202

0.496

)
.

Now we turn to the use of conjugate gradients for the next descent. The simple
gradient evaluated at w(1) is

−∆J(w(1)) = −
(
.4w1(1)
2w2(1)

)
=
(

2.48
−0.99

)
.

(It is easy to verify that this direction, shown as a black arrow in the figure, does not
point toward the global minimum at w =

(
0
0

)
.) We use the Fletcher-Reeves formula

(Eq. 54) to construct the conjugate gradient direction:

β1 =
[∆J(w(1))]t∆J(w(1))
[∆J(w(0))]t∆J(w(0))

=
(−2.48 .99)

(−2.48
.99

)
(−3.2 8)

(−3.2
8

) =
7.13
74

= 0.096.

Incidentally, for this quadratic error surface, the Polak-Ribiere formula (Eq. 55) would
give the same value. Thus the conjugate descent direction is

∆w(1) = −∆J(w(1)) + β1

(
3.2
8

)
=
(

2.788
−.223

)
.
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Conjugate gradient descent in a quadratic error landscape, shown in contour plot,
starts at a random point w(0) and descends by a sequence of line searches. The first
direction is given by the standard gradient and terminates at a minimum of the error
— the point w(1). Standard gradient descent from w(1) would be along the black
vector, “spoiling” some of the gains made by the first descent; it would, furthermore,
miss the global minimum. Instead, the conjugate gradient (red vector) does not spoil
the gains from the first descent, and properly passes through the global error minimum
at w =

(
0
0

)
.
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As above, rather than perform a traditional line search, we use calculus to find the
error minimum along this second descent direction:

d

ds

[
[w(1) + s∆w(1)]t H [w(1) + s∆w(1)]

]
=

d

ds

[[(−6.202
0.496

)
+ s

(
2.788
−.223

)]t(
.2 0
0 1

)[(−6.202
0.496

)
+ s

(
2.788
−.223

)]]
= 0

which has solution s = 2.231. This yields the next minimum to be

w(2) = w(1) + s∆w(1) =
(−6.202

0.496

)
+ 2.231

(
2.788
−.223

)
=
(

0
0

)
.

Indeed, the conjugate gradient search finds the global minimum in this quadratic
error function in two search steps — the number of dimensions of the space.

6.10 *Additional networks and training methods

The elementary method of gradient descent used by backpropagation can be slow,
even with straightforward improvements. We now consider some alternate networks
and training methods.

6.10.1 Radial basis function networks (RBF)

We have already considered several classifiers, such as Parzen windows, that employ
densities estimated by localized basis functions such as Gaussians. In light of our
discussion of gradient descent and backpropagation in particular, we now turn to a
different method for training such networks. A radial basis function network with
linear output unit implements

zk(x) =
nH∑
j=0

wkjφj(x). (56)

where we have included a j = 0 bias unit. If we define a vector φ whose components
are the hidden unit outputs, and a matrix W whose entries are the hidden-to-output
weights, then Eq. 56 can be rewritten as: z(x) = Wφ. Minimizing the criterion
function

J(w) =
1
2

n∑
m=1

(y(xm; w)− tm)2 (57)

is formally equivalent to the linear problem we saw in Chap. ??. We let T be the
matrix consisting of target vectors and Φ the matrix whose columns are the vectors
φ, then the solution weights obey

ΦtΦWt = ΦtT, (58)

and the solution can be written directly: Wt = Φ†T. Recall that Φ† is the pseu-
doinverse of Φ. One of the benefits of such radial basis function or RBF networks
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with linear output units is that the solution requires merely such standard linear tech-
niques. Nevertheless, inverting large matrices can be computationally expensive, and
thus the above method is generally confined to problems of moderate size.

If the output units are nonlinear, that is, if the network implements

zk(x) = f

 nH∑
j=0

wkjφj(x)

 (59)

rather than Eq. 56, then standard backpropagation can be used. One need merely
take derivatives of the localized transfer functions. For classification problems it is
traditional to use a sigmoid for the output units in order to keep the output values
restricted to a fixed range. Some of the computational simplification afforded by
sigmoidal at the hidden units functions is absent, but this presents no conceptual
difficulties (Problem ??).

6.10.2 Special bases

Occasionally we may have special information about the functional form of the dis-
tributions underlying categories and then it makes sense to use corresponding hidden
unit transfer functions. In this way, fewer parameters need to be learned for a given
quality of fit to the data. This is an example of increasing the bias of our model, and
thereby reducing the variance in the solution, a crucial topic we shall consider again
in Chap. ??. For instance, if we know that each underlying distribution comes from
a mixture of two Gaussians, naturally we would use Gaussian transfer functions and
use a learning rule that set the parameters (such as the mean and covariance).

6.10.3 Time delay neural networks (TDNN)

One can also incorporate prior knowledge into the network architecture itself. For
instance, if we demand that our classifier be insensitive to translations of the pattern,
we can effectively replicate the recognizer at all such translations. This is the approach
taken in time delay neural networks (or TDNNs)

Figure 6.25 shows a typical TDNN architecture; while the architecture consists
of input, hidden and output layers, much as we have seen before, there is a crucial
difference. Each hidden unit accepts input from a restricted (spatial) range of posi-
tions in the input layer. Hidden units at “delayed” locations (i.e., shifted to the right)
accept inputs from the input layer that are similarly shifted. Training proceeds as in
standard backpropagation, but with the added constraint that corresponding weights
are forced to have the same value — an example of weight sharing. Thus, the weights weight

sharinglearned do not depend upon the position of the pattern (so long as the full pattern
lies in the domain of the input layer).

The feedforward operation of the network (during recognition) is the same as in
standard three-layer networks, but because of the weight sharing, the final output
does not depend upon the position of the input. The network gets its name from the
fact that it was developed for, and finds greatest use in speech and other temporal
phenomena, where the shift corresponds to delays in time. Such weight sharing can
be extended to translations in an orthogonal spatial dimensions, and has been used
in optical character recognition systems, where the location of an image in the input
space is not precisely known.
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Figure 6.25: A time delay neural network (TDNN) uses weight sharing to insure that
patterns are recognized regardless of shift in one dimension; in practice, this dimension
generally corresponds to time. In this example, there are five input units at each time
step. Because we hypothesize that the input patterns are of four time steps or less
in duration, each of the hidden units at a given time step accepts inputs from only
4× 5 = 20 input units, as highlighted in gray. An analogous translation constraint is
also imposed between the hidden and output layer units.

6.10.4 Recurrent networks

Up to now we have considered only networks which use feedforward flow of information
during classification; the only feedback flow was of error signals during training. Now
we turn to feedback or recurrent networks. In their most general form, these have
found greatest use in time series prediction, but we consider here just one specific
type of recurrent net that has had some success in static classification tasks.

Figure 6.26 illustrates such an architecture, one in which the output unit values
are fed back and duplicated as auxiliary inputs, augmenting the traditional feature
values. During classification, a static pattern x is presented to the input units, the
feedforward flow computed, and the outputs fed back as auxiliary inputs. This, in
turn, leads to a different set of hidden unit activations, new output activations, and
so on. Ultimately, the activations stabilize, and the final output values are used for
classification. As such, this recurrent architecture, if “unfolded” in time, is equivalent
to the static network shown at the right of the figure, where it must be emphasized that
many sets of weights are constrained to be the same (weight sharing), as indicated.

This unfolded representation shows that recurrent networks can be trained via
standard backpropagation, but with the weight sharing constraint imposed, as in
TDNNs.
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Figure 6.26: The form of recurrent network most useful for static classification has
the architecture shown at the bottom, with the recurrent connections in red. It is
functionally equivalent to a static network with many hidden layers and extensive
weight sharing, as shown above. Note that the input is replicated.

6.10.5 Counterpropagation

Occasionally, one wants a rapid prototype of a network, yet one that has expressive
power greater than a mere two-layer network. Figure 6.27 shows a three-layer net,
which consists of familiar input, hidden and output layers.∗ When one is learning the
weights for a pattern in category ωi,

In this way, the hidden units create a Voronoi tesselation (cf. Chap. ??), and the
hidden-to-output weights pool information from such centers of Voronoi cells. The
processing at the hidden units is competitive learning (Chap. ??).

The speedup in counterpropagation is that only the weights from the single most
active hidden unit are adjusted during a pattern presentation. While this can yield
suboptimal recognition accuracy, counterpropagation can be orders of magnitude
faster than full backpropagation. As such, it can be useful during preliminary data
exploration. Finally, the learned weights often provide an excellent starting point for
refinement by subsequent full training via backpropagation.

∗ It is called “counterpropagation” for an earlier implementation that employed five layers with
signals that passed bottom-up as well as top-down.
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Figure 6.27: The simplest version of a counterpropagation network consists of three
layers. During training, an input is presented and the most active hidden unit is
determined. The only weights that are modified are the input-to-hidden weights
leading to this most active hidden unit and the single hidden-to-output weight leading
to the proper category. Weights can be trained using an LMS criterion.

6.10.6 Cascade-Correlation

The central notion underlying the training of networks by cascade-correlation is quite
simple. We begin with a two-layer network and train to minimum of an LMS error. If
the resulting training error is low enough, training is stopped. In the more common
case in which the error is not low enough, we fix the weights but add a single hid-
den unit, fully connected from inputs and to output units. Then these new weights
are trained using an LMS criterion. If the resulting error is not sufficiently low, yet
another hidden unit is added, fully connected from the input layer and to the output
layer. Further, the output of each previous hidden unit is multiplied by a fixed weight
of -1 and presented to the new hidden unit. (This prevents the new hidden unit from
learning function already represented by the previous hidden units.) Then the new
weights are trained via an LMS criterion. Thus training proceeds by alternatively
training weights, then (if needed) adding a new hidden unit, training the new modi-
fiable weights, and so on. In this way the network grows to a size that depends upon
the problem at hand (Fig. 6.28).

The benefit is that often faster than strict backprop since fewer weights are up-
dated at any time (Computer exercise 18).

Algorithm 4 (Cascade-correlation)

1 begin initialize a, criterion θ, η, k ← 0
2 do m← m+ 1
3 wki ← wki − η∇J(w)
4 until ∇J(w) ' θ
5 if J(w > θ then add hidden unit else exit
6 do m← m+ 1
7 wji ← wji − η∇J(w); wkj ← wkj − η∇J(w)
8 until ∇J(w) ' θ
9 return w

10 end
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Figure 6.28: The training of a multilayer network via cascade-correlation begins with
the input later fully connected to the output layer (black). Such weights, wki are
trained using an LMS criterion, as discussed in Chap. ??. If the resulting training
error is not sufficiently low, a first hidden unit (labeled 1, in red) is introduced, fully
interconnected from the input layer and to the output layer. These new red weights are
trained, while the previous (black) ones are held fixed. If the resulting training error
is still not sufficiently low, a second hidden unit (labeled 2) is likewise introduced,
fully interconnected; it also receives a the output from each previous hidden unit,
multiplied by -1. Training proceeds in this way, training successive hidden units until
the training error is acceptably low.

6.10.7 Neocognitron

The cognitron and its descendent, the Neocognitron, address the problem of recogni-
tion of characters in pixel input. The networks are noteworthy not for the learning
method, but instead for their reliance on a large number of layers for translation, scale
and rotation invariance.

The first layer consists of hand tuned feature detectors, such as vertical, horizon-
tal and diagonal line detectors. Subsequent layers consist of slightly more complex
features, such as Ts or Xx, and so forth — weighted groupings of the outputs of
units at earlier layers. The total number of weights in such a network is enormous
(Problem 35).

6.11 Regularization and complexity adjustment

Whereas the number of inputs and outputs of a backpropagation network are deter-
mined by the problem itself, we do not know a priori the number of hidden units,
or weights. If we have too many degrees of freedom, we will have overfitting. This
will depend upon the number of training patterns and the complexity of the problem
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Figure 6.29: The neocognitron consists of a 19× 19 pixel input layer, seven interme-
diate layers, and an output layer consisting of 10 units, one for each digit. The earlier
layers consist of relatively fixed feature detectors (as shown); units in successively
layer respond to a spatial range of units in the previous layer. In this way, shift,
rotation and scale invariance is distributed throughout the network. The network is
trained one-layer at a time by a large number of patterns.

itself.
We could try different numbers of hidden units, apply knowledge of the problem

domain or add other constraints. The error is the sum of an error over patterns (such
as we have used before) plus a regularization term, which expresses constraints or
desirable properties of solutions:

J = Jpat + λJreg. (60)

The parameter λ is adjusted to impose the regularization more or less strongly.
Because a desirable constraint is simpler networks (i.e., simpler models), regular-

ization is often used to adjust complexity, as in weight decay.
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6.11.1 Complexity measurement

xxx

6.11.2 Wald statistics

The fundamental theory of generalization favors simplicity. For a given level of per-
formance on observed data, models with fewer parameters can be expected to perform
better on test data. For instance weight decay leads to simpler decision boundaries
(closer to linear). Likewise, training via cascade-correlation adds weights only as
needed.

The fundamental idea in Wald statistics is that we can estimate the importance
of a parameter in a model, such as a weight, by how much the training error increases
if that parameter is eliminated. To this end the Optimal Brain Damage method
(OBD) seeks to delete weights by keeping the training error as small as possible.
OBS extended OBD to include the off-diagonal terms in the network’s Hessian, which
were shown to be significant and important for pruning in classical and benchmark
problems.

OBD and Optimal Brain Surgeon (OBS) share the same basic approach of training
a network to (local) minimum in error at weight w∗, and then pruning a weight that
leads to the smallest increase in the training error. The predicted functional increase
in the error for a change in full weight vector δw is:

δJ =
(
∂J

∂w

)T
· δw︸ ︷︷ ︸

'0

+
1
2
δwT · ∂

2J

∂w2︸ ︷︷ ︸
≡H

·δw +O(‖δw‖3)︸ ︷︷ ︸
'0

, (61)

where H is the Hessian matrix. The first term vanishes because we are at a local
minimum in error; we ignore third- and higher-order terms. The general solution for
minimizing this function given the constraint of deleting one weight is (Problem ??):

δw = − wq
[H−1]qq

H−1 · uq and Lq =
1
2

w2
q

[H−1]qq
. (62)

Here, uq is the unit vector along the qth direction in weight space and Lq is the
saliency of weight q — an estimate of the increase in training error if weight q is
pruned and the other weights updated by the left equation in Eq. 62 (Problem 42).

We define Xk ≡ ∂g(xm; w)
∂w and ak ≡ ∂2d(tm,zm)

∂z2 , and can easily show that the
recursion for computing the inverse Hessian becomes:

H−1
m+1 = H−1

m −
H−1
m ·Xm+1 ·XT

m+1 ·H−1
m

P
ak

+ XT
m+1 ·H−1

m ·Xm+1

,

H−1
0 = α−1I (63)

H−1
n = H−1 , (64)

where α is a small parameter — effectively a weight decay constant (Problem 38).
Note how different error measures d(t, z) scale the gradient vectors Xk forming the
Hessian (Eq. ??). For the squared error d(t, z) = (t − z)2, we have ak = 1, and all
gradient vectors are weighted equally.

Problem: repeat for cross-entropy (Problem 36).
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Figure 6.30: The saliency of a parameter, such as a weight, is the increase in the
training error when that weight is set to zero. One can approximate the saliency by
expanding the true error around a local minimum, w∗, and setting the weight to zero.
In this example the approximated saliency is smaller than the true saliency; this is
typically, but not always the case.

w*

0

mag

O
B

DOBS

w2

w1

J(w)

Figure 6.31: In the second-order approximation to the criterion function, optimal
brain damage assumes the Hessian matrix is diagonal, while Optimal Brain Surgeon
uses the full Hessian matrix.

Summary

Multilayer nonlinear neural networks — nets with two or more layers of modifiable
weights — trained by gradient descent methods such as backpropagation perform a
maximum likelihood estimation of the weight values (parameters) in the model defined
by the network topology. One of the great benefits of learning in such networks is the
simplicity of the learning algorithm, the ease in model selection, and the incorporation
of heuristic constraints by means such as weight decay. Discrete pruning algorithms
such as Optimal Brain Surgeon and Optimal Brain Damage correspond to priors
favoring few weights, and can help avoid overfitting.
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Alternate networks and training algorithms have benefits. For instance radial basis
functions are most useful when the data clusters. Cascade-correlation and counter-
propagation are generally faster than backpropagation.

Complexity adjustment: weight decay, Wald statistic, which for networks is opti-
mal brain damage and optimal brain surgeon, which use the second-order approxima-
tion to the true saliency as a pruning criterion.
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Bibliographical and Historical Remarks

McCulloch and Pitts provided the first principled mathematical and logical treatment
of the behavior of networks of simple neurons [49]. This pioneering work addressed
non-recurrent as well as recurrent nets (those possessing “circles,” in their termi-
nology), but not learning. Its concentration on all-or-none or threshold function of
neurons indirectly delayed the consideration of continuous valued neurons that would
later dominate the field. These authors later wrote an extremely important paper
on featural mapping (cf. Chap. ??), invariances, and learning in nervous systems and
thereby advanced the conceptual development of pattern recognition significantly [56].

Rosenblatt’s work on the (two-layer) Perceptron (cf. Chap. ??) [61, 62] was some
of the earliest to address learning, and was the first to include rigorous proofs about
convergence. A number of stochastic methods, including Pandemonium [66, 67], were
developed for training networks with several layers of processors, though in keeping
with the preoccupation with threshold functions, such processors generally computed
logical functions (AND or OR), rather than some continuous functions favored in later
neural network research. The limitations of networks implementing linear discrimi-
nants — linear machines — were well known in the 1950s and 1960s and discussed by
both their promoters [62, cf., Chapter xx, “Summary of Three-Layer Series-Coupled
Systems: Capabilities and Deficiencies”] and their detractors [51, cf., Chapter 5,
“ψCONNECTED: A Geometric Property with Unbounded Order”].

A popular early method was to design by hand three-layer networks with fixed
input-to-hidden weights, and then train the hidden-to-output weight [80, for a review].
Much of the difficulty in finding learning algorithms for all layers in a multilayer neural
network came from the prevalent use of linear threshold units. Since these do not have
useful derivatives throughout their entire range, the current approach of applying the
chain rule for derivatives and the resulting “backpropagation of errors” did not gain
more adherents earlier.

The development of backpropagation was gradual, with several steps, not all of
which were appreciated or used at the time. The earliest application of adaptive
methods that would ultimately become backpropagation came from the field of con-
trol. Kalman filtering from electrical engineering [38, 28] used an analog error (dif-
ference between predicted and measured output) for adjusting gain parameters in
predictors. Bryson, Denham and Dreyfus showed how Lagrangian methods could
train multilayer networks for control, as described in [6]. We saw in the last chapter
the work of Widrow, Hoff and their colleagues [81, 82] in using analog signals and
the LMS training criterion applied to pattern recognition in two-layer networks. Wer-
bos [77][78, Chapter 2], too, discussed a method for calculating the derivatives of a
function based on a sequence of samples (as in a time series), which, if interpreted
carefully carried the key ideas of backpropagation. Parker’s early “Learning logic”
[53, 54], developed independently, showed how layers of linear units could be learned
by a sufficient number of input-output pairs. This work lacked simulations on repre-
sentative or challenging problems (such as XOR) and was not appreciated adequately.
Le Cun independently developed a learning algorithm for three-layer networks [9, in
French] in which target values are propagated, rather than derivatives; the resulting
learning algorithm is equivalent to standard backpropagation, as pointed out shortly
thereafter [10].

Without question, the paper by Rumelhart, Hinton and Williams [64], later ex-
panded into a full and readable chapter [65], brought the backpropagation method to
the attention of the widest audience. These authors clearly appreciated the power of
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the method, demonstrated it on key tasks (such as the exclusive OR), and applied it
to pattern recognition more generally. An enormous number of papers and books of
applications — from speech production and perception, optical character recognition,
data mining, finance, game playing and much more — continues unabated. One novel
class of for such networks includes generalization for production [20, 21]. One view of
the history of backpropagation is [78]; two collections of key papers in the history of
neural processing more generally, including many in pattern recognition, are [3, 2].

Clear elementary papers on neural networks can be found in [46, 36], and several
good textbooks, which differ from the current one in their emphasis on neural networks
over other pattern recognition techniques, can be recommended [4, 60, 29, 27]. An
extensive treatment of the mathematical aspects of networks, much of which is beyond
that needed for mastering the use of networks for pattern classification, can be found
in [19]. There is continued exploration of the strong links between networks and more
standard statistical methods; White presents and overview [79], and books such as
[8, 68] explore a number of close relationships. The important relation of multilayer
Perceptrons to Bayesian methods and probability estimation can be found in [23,
59, 43, 5, 13, 63, 52].posterior probability!and backpropagation Original papers on
projection pursuit and MARS, can be found in [15] and [34], respectively, and a good
overview in [60].

Shortly after its wide dissemination, the backpropagation algorithm was criti-
cized for its lack of biological plausibility; in particular, Grossberg [22] discussed the
non-local nature of the algorithm, i.e., that synaptic weight values were transported
without physical means. Somewhat later Stork devised a local implementation of
backpropagation was [71, 45], and pointed out that it was nevertheless highly implau-
sible as a biological model.

The discussions and debates over the relevance of Kolmogorov’s Theorem [39] to
neural networks, e.g. [18, 40, 41, 33, 37, 12, 42], have centered on the expressive
power. The proof of the univerasal expressive power of three-layer nets based on
bumps and Fourier ideas appears in [31]. The expressive power of networks having
non-traditional transfer functions was explored in [72, 73] and elsewhere. The fact
that three-layer networks can have local minima in the criterion function was explored
in [50] and some of the properties of error surfaces illustrated in [35].

The Levenberg-Marquardt approximation and deeper analysis of second-order
methods can be found in [44, 48, 58, 24]. Three-layer networks trained via cascade-
correlation have been shown to perform well compared to standard three-layer nets
trained via backpropagation [14]. Our presentation of counterpropagation networks
focussed on just three of the five layers in a full such network [30]. Although there
was little from a learning theory new presented in Fukushima’s Neocognitron [16, 17],
its use of many layers and mixture of hand-crafted feature detectors and learning
groupings showed how networks could address shift, rotation and scale invariance.

Simple method of weight decay was introduced in [32], and gained greater accep-
tance due to the work of Weigend and others [76]. The method of hints was introduced
in [1]. While the Wald test [74, 75] has been used in traditional statistical research
[69], its application to multilayer network pruning began with the work of Le Cun
et al’s Optimal Brain Damage method [11], later extended to include non-diagonal
Hessian matrices [24, 25, 26], including some speedup methods [70]. A good review
of the computation and use of second order derivatives in networks can be found in
[7] and of pruning algorithms in [58].
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Problems⊕
Section 6.2

1. Show that if the transfer function of the hidden units is linear, a three-layer
network is equivalent to a two-layer one. Explain why, therefore, that a three-layer
network with linear hidden units cannot solve a non-linearly separable problem such
as XOR or n-bit parity.
2. Fourier’s Theorem can be used to show that a three-layer neural net with sigmoidal
hidden units can approximate to arbitrary accuracy any posterior function. Consider
two-dimensional input and a single output, z(x1, x2). Recall that Fourier’s Theorem
states that, given weak restrictions, any such functions can be written as a possibly
infinite sum of cosine functions, as

z(x1, x2) ≈
∑
f1

∑
f2

Af1f2cos(f1x1) cos(f2x2),

with coefficients Af1f2 .

(a) Use the trigonometric identity

cosα cosβ =
1
2

cos(α+ β) +
1
2

cos(α− β)

to write z(x1, x2) as a linear combination of terms cos(f1x1 + f2x2) and
cos(f1x1 − f2x2).

(b) Show that cos(x) or indeed any continuous function f(x) can be approximated
to any accuracy by a linear combination of sign functions as:

f(x) ≈ f(x0) +
N∑
i=0

[f(xi+1)− f(xi)]
[

1 + Sgn(x− xi)
2

]
,

where the xi are sequential values of x; the smaller xi+1 − xi, the better the
approximation.

(c) Put your results together to show that z(x1, x2) can be expressed as a linear
combination of step functions or sign functions whose arguments are themselves
linear combinations of the input variables x1 and x2. Explain, in turn, why
this implies that a three-layer network with sigmoidal hidden units and a linear
output unit can implement any function that can be expressed by a Fourier
series.

(d) Does your construction guarantee that the derivative df(x)/dx can be well ap-
proximated too?⊕

Section 6.3

3. Consider an d− nH − c network trained with n patterns for me epochs.

(a) What is the space complexity in this problem? (Consider both the storage of
network parameters as well as the storage of patterns, but not the program
itself.)
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(b) Suppose the network is trained in stochastic mode. What is the time complex-
ity? Since this is dominated by the number of multiply-accumulations, use this
as a measure of the time complexity.

(c) Suppose the network is trained in batch mode. What is the time complexity?

4. Prove that the formula for the sensitivity δ for a hidden unit in a three-layer net
(Eq. 20) generalizes to a hidden unit in a four- (or higher-) layer network, where the
sensitivity is the weighted sum of sensitivities of units in the next higher layer.
5. Explain in words why the backpropagation rule for training input-to-hidden

weights makes intuitive sense by considering the dependency upon each of the terms
in Eq. 20.
6. One might reason that the the dependence of the backpropagation learning rules

(Eq. ??) should be roughly inversely related to f ′(net); i.e., that weight change should
be large where the output does not vary. In fact, of course, the learning rule is linear
in f ′(net). What, therefore, is wrong with the above view?
7. Show that the learning rule described in Eqs. 16 & 20 works for bias, where
x0 = y0 = 1 is treated as another input and hidden unit.
8. Consider a standard three-layer backpropagation net with d input units, nH

hidden units, c output units, and bias.

(a) How many weights are in the net?

(b) Consider the symmetry in the value of the weights. In particular, show that if
the sign if flipped on every weight, the network function is unaltered.

(c) Consider now the hidden unit exchange symmetry. There are no labels on
the hidden units, and thus they can be exchanged (along with corresponding
weights) and leave network function unaffected. Prove that the number of such
equivalent labellings — the exchange symmetry factor — is thus nH2nH . Eval-
uate this factor for the case nH = 10.

9. Using the style of procedure, write the procedure for on-line version of backpropa-
gation training, being careful to distinguish it from stochastic and batch procedures.
10. Express the derivative of a sigmoid in terms of the sigmoid itself in the following

two cases (for positive constants a and b):

(a) A sigmoid that is purely positive: f(net) = 1
1+ea net .

(b) An anti-symmetric sigmoid: f(net) = atanh(b net).

11. Generalize the backpropagation to four layers, and individual (smooth, differ-
entiable) transfer functions at each unit. In particular, let xi, yj , vl and zk denote
the activations on units in successive layers of a four-layer fully connected network,
trained with target values tk. Let f1i be the transfer function of unit i in the first
layer, f2j in the second layer, and so on. Write a program, with greater detail than
that of Algorithm 1, showing the calculation of sensitivities, weight update, etc. for
the general four-layer network.⊕

Section 6.4

12. Use Eq. ?? to show why the input-to-hidden weights must be different from each
other (e.g., random) or else learning cannot proceed well (cf. Computer Exercise 2).
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13. Show that proper preprocessing of the data will lead to faster convergence, at
least in a simple network 2-1 (two-layer) network with bias. Suppose the training
data come from two Gaussians, p(x|ω1) ∼ N(−.5, 1) and p(x|ω2) ∼ N(+.5, 1). Let
the teaching values for the two categories be t = ±1.

(a) Write the error as a sum over the n patterns of a function of the weights, inputs,
etc.

(b) Differentiate twice with respect to the weights to get the Hessian H. Express
your answer in words as well.

(c) Consider two data sets drawn from p(x|ωi) ∼ N(µi, I) for i = 1, 2 and I is the
2× 2 identity matrix. Calculate your Hessian in terms of µi.

(d) Calculate the maximum and minimum eigenvalues of the Hessian in terms of
the components of µi.

(e) Suppose µ1 = (1, 0)t and µ2 = (0, 1)t. Calculate the ratio of the eigenvalues,
and hence a measure of the convergence time.

(f) Now standardize your data, by subtracting means and scaling to have unit
covariances in each of the two dimensions. That is, find two new distributions
that have overall zero mean and the same covariance. Check your answer by
calculating the ratio of the maximum to minimum eigenvalues.

(g) If T denotes the total training time in the unprocessed data, express the time
required for the preprocessed data (cf. Computer exercise 13).

14. Consider the derivation of the bounds on the convergence time for gradient
descent. Complete the steps leading to Eq. ?? as follows:

(a) Express the error to second order in new coordinates w̃ that are parallel to the
principal axes of the Hessian.

(b) Write an equation analogous to that of Eq. ?? in the transformed space. Use Λ
as the diagonal matrix of eigenvalues of the Hessian.

(c) Inspect your result and use Eq. ?? to state a criterion for convergence in terms
of λmax, the maximum eigenvalue of the Hessian.

15. Assume that the criterion function J(w) is well described to second order by a
Hessian matrix H.

(a) Show that convergence of learning is assured if the learning rate obeys η <
2/λmax, where λmax is the largest eigenvalue of H.

(b) Show that the learning time is thus dependent upon the ratio of the largest to
the smallest non-negligible eigenvalue of H.

(c) Explain why “standardizing” the training data can therefore reduce learning
time.
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⊕
Section 6.5

16. Problem on feature mapping. xx⊕
Section 6.6

17. Fill in the steps in the derivation leading to Eq. 25.
18. Consider Eq. 27, and confirm that one of the solutions to the minimum squared

error condition yields outputs that are indeed posterior probabilities. Do this as
follows:

(a) To find the minimum of J̃(w), calculate its derivative ∂J̃(w)/∂w; this will
consist of the sum of two integrals. Set ∂J̃(w)/∂w = 0 and solve to obtain the
natural solution.

(b) Apply Bayes’ rule and the normalization P (ωk|x) + P (ωi 6=k|x) = 1 to prove
that the outputs zk = gk(x; w) are indeed equal to the posterior probabilities
P (ωk|x).

19. In the derivation that backpropagation finds a least squares fit to the posterior
probabilities, it was implicitly assumed that the network could indeed represent the
true underlying distribution. Explain where in the derivation this was assumed, and
what in the subsequent steps may not hold if that assumption is violated.
20. Show that the softmax output (Eq. 29) indeed approximates posterior probabil-

ities if the hidden unit outputs, y, belong to the family of exponential distributions
as:

p(y|ωk) = exp[A(w̃k) +B(y, φ) + w̃t
ky]

for nH -dimensional vectors w̃k and y, and scalar φ and scalar functions A(·) and
B(·, ·). Proceed as follows:

(a) Given p(y|ωk), use Bayes’ Theorem to write the posterior probability P (ωk|y).

(b) Interpret the parameters A(·), w̃k, B(·, ·) and φ in light of your results.

21. Consider a three-layer network for classification with output units employing
softmax (Eq. 29), trained with 0− 1 signals.

(a) Derive the learning rule if the criterion function (per pattern) is sum squared
error, i.e.,

J(w) =
1
2

c∑
k=1

(tk − zk)2.

(b) Repeat for the criterion function is cross-entropy, i.e.,

Jce(w) =
c∑

k=1

tkln
tk
zk
.
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22. Clearly if the discriminant functions gk1(x; w) and gk2(x; w) were independent,
the derivation of Eq. 26 would follow from Eq. 27. Show that the derivation is never-
theless valid despite the fact that these functions are implemented in part using the
same input-to-hidden weights.⊕

Section 6.7

23. Show that the slope of the sigmoid and the learning rates together determine
the learning time.

(a) That is, show that if the slope of the sigmoid is increased by a factor of γ, and
the learning rate decreased by a factor 1/γ, that the total learning time remains
the same.

(b) Must the input be rescaled for this relationship to hold?

24. Show that the basic three-layer neural networks of Sect. 6.2 are special cases of
general additive models by describing in detail the correspondences between Eqs. 6 &
31.
25. Show that the sigmoidal transfer function acts to transmit the maximum infor-

mation if its inputs are distributed normally. Recall that the entropy (a measure of
information) is defined as H =

∫
p(y)ln[p(y)]dy.

(a) Consider a continuous input variable x drawn from the density p(x) ∼ N(0, σ2).
What is entropy for this distribution?

(b) Suppose samples x are passed through an antisymmetric sigmoidal function to
give y = f(x), where the zero crossing of the sigmoid occurs at the peak of the
Gaussian input, and the effective width of the linear region equal to the range
−σ < x < +σ. What are the values of a and b in Eq. 33 insures this?

(c) Calculate the entropy of the output distribution p(y).

(d) Suppose instead that the transfer function were a Dirac delta function δ(x− 0).
What is the entropy of the resulting output distribution p(y)?

(e) Summarize your results of (c) and (d) in words.

⊕
Section 6.8

26. Consider the sigmoidal transfer function:

f(net) = a tanh(b net) = a

[
1− eb net
1 + eb net

]
=

2a
1 + e−b net

− a.

(a) Show that its derivative f ′(net) can be written simply in terms of f(net) itself.

(b) What are f(net), f ′(net) and f ′′(net) at net = −∞? 0? +∞?

(c) For which value of net is the second derivative f ′′(net) extremal?

27. Consider the computational burden for standardizing data, as described in the
text.
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(a) What is the computational complexity of standardizing a training set of n d-
dimensional patterns?

(b) Estimate the computational complexity of training. Use the heuristic for choos-
ing the size of the network (i.e., number of weights) described in Sect. 6.8.7.
Assume that the number of training epochs is nd.

(c) Use your results from (a) and (b) to express the computational burden of stan-
dardizing as a ratio. (Assume unknown constants are 1.)

28. Derive the gradient descent learning rule for a three-layer network with linear in-
put units and sigmoidal hidden and output units for the Minkowski xxx and arbitrary
R. Confirm that your answer reduces to Eqs. 16 & 20 for R = 2.
29. Training rule for polynomial classifier. Show that terms can become extremely

large for realistic values of the input.
30. Train in noise. show improves bp under realistic assumptions; not so nearest

neighbor⊕
Section 6.9

31. Derive the exact expression for the full Hessian matrix for a sum squared error
criterion in a three-layer network, as given in Eqs. 44 – 46.
32. Repeat Problem 31 but for a cross entropy error criterion.
33. Calculate a Hessian, see if it shrinks any vector. (Convergence assured.)
34. Derive Eq. 51 from the discussion in the text.⊕

Section 6.10

35. What is the space complexity of the Neocognitron network of Fig. 6.29? If
we used the heuristic of Sec. 6.8.7, how many training patterns would be needed?
(In practice, since many weights are hand set in the form of feature detectors, fewer
training patterns are needed.)
36. Derive the central equations for OBD and OBS in a three-layer sigmoidal network
for a cross-entropy error.⊕

Section 6.11

37. Consider a general constant matrix K and variable vector parameter x.

(a) Write in summation notation with components explicit, and derive the formula
for the derivative:

d

dx
[xtKx] = (K + Kt)x.

(b) Show simply that for the case where K is symmetric (as for instance the Hessian
matrix H = Ht), we have:

d

dx
[xtHx] = 2Hx

as was used in Eq. ?? and in the derivation of the Optimal Brain Surgeon
method.
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38. Show that the constant α in the OBS derivation (Eq. ??) is equivalent to a
weight decay.
39.

(a) Find the space and the time computational complexities for one step in the
nominal OBS method.

(b) Find the space and the time computational complexities for pruning the first
weight in OBS. What is it for pruning subsequent weights, if one uses Shur’s
decomposition method?

(c) Find the space and the time computational complexities for one step of OBD
(without retraining).

40. Weight decay is equivalent to doing gradient descent on an error that has a
“complexity” term.

(a) Show that in the weight decay rule wnewij = woldij (1− ε) amounts to performing
gradient descent in the error function Jef = J(w) + 2ε

η wtw (Eq.38).

(b) Express γ in terms of the weight decay constant ε and learning rate η.

(c) Likewise, show that if wnewmr = woldmr(1 − εmr) where εmr = 1/(1 + w2
mr)

2, that
the new effective error function is Jef = J(w) + γ

∑
mr
w2
mr/(1 +w2

mr). Find γ in

terms of η and εmr.

(d) Consider a network with a wide range of magnitudes for weights. Describe
qualitatively how the two different weight decay methods affect the network.

41. Show that the weight decay rule of Eq. 37 is equivalent to a prior on models
that favors small weights.⊕

Section ??

42.

(a) Fill in the steps between Eq. ?? and ?? for the saliency.

(b) Find the saliency in OBD, where one assumes Hij = 0 for i 6= j.

⊕
Section ??

43. Prove that the weight decay rule of Eq. 37 leads to the Jreg of Eq. 38.

Computer exercises

Several exercises will make use of the following three-dimensional data sampled from
three categories, denoted ωi. (CHANGE NUMBERS xxx)
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ω1 ω2 ω3

sample x1 x2 x3 x1 x2 x3 x1 x2 x3

1 0.28 1.31 -6.2 0.011 1.03 -0.21 1.36 2.17 0.14
2 0.07 0.58 -0.78 1.27 1.28 0.08 1.41 1.45 -0.38
3 1.54 2.01 -1.63 0.13 3.12 0.16 1.22 0.99 0.69
4 -0.44 1.18 -4.32 -0.21 1.23 -0.11 2.46 2.19 1.31
5 -0.81 0.21 5.73 -2.18 1.39 -0.19 0.68 0.79 0.87
6 1.52 3.16 2.77 0.34 1.96 -0.16 2.51 3.22 1.35
7 2.20 2.42 -0.19 -1.38 0.94 0.45 0.60 2.44 0.92
8 0.91 1.94 6.21 -0.12 0.82 0.17 0.64 0.13 0.97
9 0.65 1.93 4.38 -1.44 2.31 0.14 0.85 0.58 0.99
10 -0.26 0.82 -0.96 0.26 1.94 0.08 0.66 0.51 0.88⊕

Section 6.2

1. Consider a 2-2-1 network with bias, where the transfer function at the hidden
units and the output unit is a sigmoid yj = a tanh[b netj ] for a = 1.716 and b = 2/3.
Suppose the matrices describing the input-to-hidden weights (wji for j = 1, 2 and
i = 0, 1, 2) and the hidden-to-output weights (wkj for k = 1 and j = 0, 1, 2) are,
respectively,

 xx xx
xx xx
xx xx

 and

 xx
xx
xx

 .

The network is to be used to classify patterns into one of two categories, based on
the sign of the output unit signal. Shade a two-dimensional input space x1 − x2

(−5 ≤ x1, x2 ≤ +5) black or white according to the category given by the network.
Repeat with

 xx xx
xx xx
xx xx

 and

 xx
xx
xx

 .

xxx⊕
Section 6.3

2. Create a 3-1-1 sigmoidal network with bias to be trained to classify patterns from
ω1 and ω2 in the table above. Use stochastic backpropagation to (Algorithm 1) with
learning rate η = 0.1 and sigmoid as described in Eq. 33 in Sect. 6.8.2.

(a) Initialize all weights randomly in the range −1 ≤ w ≤ +1. Plot a learning curve
— the training error as a function of epoch.

(b) Now repeat (a) but with weights initialized to be the same throughout each
level. In particular, let all input-to-hidden weights be initialized with wji = 0.5
and all hidden-to-output weights with wkj = −0.5.

(c) Explain the source of the differences between your learning curves (cf. Prob-
lem 12).
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3. Consider the nonlinearly separable categorization problem shown in Fig. 6.8.

(a) Train a 1-3-1 sigmoidal network with bias by means of batch backpropagation
(Algorithm 2) to solve it.

(b) Display your decision boundary by classifying points along separated by ∆x '
0.1.

(c) Repeat with a 1-2-1 network.

(d) Inspect the decision boundary for your 1-3-1 network (or construct by hand an
optimal one) and explain why no 1-2-1 network with sigmoidal hidden units can
achieve it.

4. Write a backpropagation program for a 2-2-1 network with bias to solve the XOR
problem (see Fig. 6.1). Show the input-to-hidden weights and analyze the function of
each hidden unit.
5. Write a basic backpropagation program for a 3-3-1 network with bias to solve the

three-bit parity problem, i.e., return a +1 if the number of input units that are high
is even, and -1 if odd.

(a) Show the input-to-hidden weights and analyze the function of each hidden unit.

(b) Retrain several times from a new random point until you get a local (but not
global) minimum. Analyze the function of the hidden units now.

(c) How many patterns are properly classified for your local minimum?

6. Write a stochastic backpropagation program for a 2− nH − 1 network with bias
to classify points chosen randomly in the range −1 ≤ x1, x2 ≤ +1 with P (ω1) =
P (ω2) = 0.5. Train using 40 points (20 from each category). Train with nH = 1, 2, 3
and 4 hidden units. Plot your minimum training error as a function of nH . How
many hidden units are needed to implement your particular random function?
7. Train a 2-4-1 network having a different transfer function at each hidden unit on

a random problem.⊕
Section 6.4

8. Measure H, show that convergence is slower for ηopt < η < 2ηopt.⊕
Section 6.5

9. Train net and show that the hidden⊕
Section 6.6

10. Three-layer with softmax outputs.
11. Train with one set of priors; test with other priors.⊕

Section 6.7

12. Consider several gradient descent methods applied to a criterion function in one
dimension: simple gradient descent with learning rate η, optimized descent, Newton’s
method, and Quickprop. Consider first the criterion function J(w) = w2 which of
course has minimum J = 0 at w = 0. In all cases, start the descent at w(0) = 1. For
definiteness, we consider convergence to be complete when
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(a) Plot the number of steps until convergence as a function of η for η = 0.01, 0.03, 0.1, 0.3, 1, 3.

(b) Calculate the optimum learning rate ηopt by Eq. 35, and confirm that this value
is correct from your graph in (??).

(c)⊕
Section 6.8

13. Demonstrate that preprocessing data can lead to significant reduction in time of
learning. Consider a single linear output unit for a two-category classification task,
with teaching values tω1 = + 1, tω2 = − 1, with squared error criterion.

(a) Write a program to train the three weights based on training samples.

(b) Generate 20 samples from each of two categories P (ω1) = P (ω2) = .5 and
p(x|ωi) ∼ N(µi), I, where I is the 2× 2 identity matrix and µ1 = (??, ??)t and
µ2 = (??, ??)t.

(c) Find the optimal learning rate empirically by trying a few values.

(d) Train to minimum error. Why is there no danger of overtraining in this case?

(e) Why can we be sure that it is at least possible that this network can achieve
the minimum (Bayes) error?

(f) Generate 100 test samples, 50 from each category, and find the error rate.

(g) Now preprocess the data by subtracting off the mean and scaling standard
deviation in each dimension.

(h) Repeat the above, and find the optimal learning rate.

(i) Find the error rate on the (transformed) test set.

(j) Verify that the accuracy is virtually the same in the two cases (any differences
can be attributed to stochastic effects).

(k) Explain in words the underlying reasons for your results.

14. global vs. local representations
15. standardize the input
16. problem with hints⊕

Section 6.9

17. Train with Hessian near identity, train with it far from identity.⊕
Section 6.10

18. Compare cascade-correlation to backprop.⊕
Section 6.11

xxx⊕
Section ??
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augmented vector, 6

backpropagation, 4, 10–15
Algorithm, 50

stochastic, 15, 16
stochastic with momentum, 36

and neurobiology, 6
Bayes Theory, 24
biological plausibility, 57
feature mapping, 21

Bayes’
formula, 26

bias unit, 5
bump

network response, 9

cascade-correlation, 50, 57
chain rule, see derivative, chain rule
classifier

polynomial, 30
conjugate gradient, 43
counterpropagation, 57
credit assignment problem, 11, 13
criterion

stopping, see stopping criterion
cross entropy, see entropy, cross
cross validation, 17

degree of freedom
network, 33

derivative
chain rule, 13

discriminant
hyperplane, 3
linear, 3

discriminant function
neural network, 5, 8

distributed representation, see represen-
tation, distributed

entropy, 62
cross, 40

epoch, 15
error

Minkowski, 40
training, 11

error surface, 17–20
plateau, 17

expressive power
network, 8

filter
matched, see matched filter

Fletcher-Reeves equation, 44
Fourier’s Theorem, 9, 58
free parameter, 4
function

harmonic, 9

generalized additive model, 28
generalized delta rule, see backpropa-

gation
global error minimum, 18
gradient descent, see also backpropa-

gation

hidden layer, 4
hidden unit exchange symmetry, see sym-

metry, hidden unit exchange
hidden unit weights

representation, 23
hidden units

number of, 33
hint, 37
hyperbolic tangent, 30
hypercube

Kolmogorov Theorem, 8

independent, identically distributed, 15
information, 62
inner product

in networks, 6
input

scaling, see standarization, 31
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input layer, 4

Kalman filtering, 56
Kolmogorov’s Theorem, 8, 57

Lagrangian method
network training, see network train-

ing, Lagrangian method
learning

curve, 16
nonuniform, 34, 42
rate, 12
uniform, 34
with queries, 15

learning logic, 56
learning rate

optimal, 34
least mean square

algorithm, 11, 25
Levenberg-Marquardt approximation, 41
linear machine, 6, 56
linear threshold unit, 6, 56
LMS Algorithm, 3, see least mean square,

algorithm
LMS error

projection pursuit, 28
local minimum

high dimensional, 20
local representation, see representation,

local
logical function, 56
LTU, see linear threshold unit

MARS, see multivariate adaptive re-
gression

matched filter, 23
model section

heuristic, 4
momentum, 36
multivariate adaptive regression, 28

net, see net activation
net activation, 6
network

expressive power, 57
network pruning, 57
network topology, 4
neural network

feedforward operation, 11
learning, 11
time delay, 47

neuron, see unit
nonuniform learning, see learning, nonuni-

form

OBD, see Optimal Brain Damage
OBS, see Optimal Brain Surgeon
Optimal Brain Damage, 53, 57
Optimal Brain Surgeon, 53, 57
outer product approximation, see Levenberg-

Marquardt approximation

Pandemonium, 56
parameter adjustment, 29
parity

three-bit, 21
pattern

desired, see pattern, target
target, 11
teaching, see pattern, target

pattern training, see training protocol,
stochastic

Perceptron, 8, 56
phi function, 3, see transfer function,

6
Polak-Ribiere equation, 44
polynomial classifier, see classifier, poly-

nomial
posterior probability

and backpropagation, 26
principal components, 23
prior knowledge, 3
projection pursuit, 28
pseudoinverse, 46

query learning, see learning, with queries

recall, see classification
regularization, 51–52

network, 4
representation

distributed, 30
global, see representation, distributed
local, 30

ridge function, 28
ridge regression, 28

sensitivity
unit, 13

sigmoid
parameter, 30

sign function, 6
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softmax, 27
spline function, 28
standardize, 31, 34
standardized data, 60
stopping criterion, 15, 20
symmetry

hidden unit exchange, 59
synapse, 6

tanh, see hyperbolic tangent
target

value, 32
target propagation, 56
TDNN, see neural network, time delay
threshold function, 6
time delay neural network, see neural

network, time delay
topology

network, see network topology
training procedure

stochastic, 15
training protocol

batch, 15
learning with queries, 15
on-line, 15
stochastic, 15

transfer function, 6, 29
continuity, 29
linearity, 30
piecewise linear, 30

uniform learning, see learning, uniform
unit, 5

hidden, 51

validation error, 16
vector

augmented, see augmented vector
target, 11

Wald statistic, 53
Wald test, 57
weight

excitatory, 6
inhibitory, 6
initialization, 34
sharing, 47

weight decay, 37, 57
winner-take-all, 27

XOR problem

error surface, 19
network, 6


