
10 CLASSICAL PLANNING

In which we see how an agent can take advantage of the structure of a problem to

construct complex plans of action.

We have defined AI as the study of rational action, which means that planning—devising a

plan of action to achieve one’s goals—is a critical part of AI. We have seen two examples

of planning agents so far: the search-based problem-solving agent of Chapter 3 and the hy-

brid logical agent of Chapter 7. In this chapter we introduce a representation for planning

problems that scales up to problems that could not be handled by those earlier approaches.

Section 10.1 develops an expressive yet carefully constrained language for representing

planning problems. Section 10.2 shows how forward and backward search algorithms can

take advantage of this representation, primarily through accurate heuristics that can be derived

automatically from the structure of the representation. (This is analogous to the way in which

effective domain-independent heuristics were constructed for constraint satisfaction problems

in Chapter 6.) Section 10.3 shows how a data structure called the planning graph can make the

search for a plan more efficient. We then describe a few of the other approaches to planning,

and conclude by comparing the various approaches.

This chapter covers fully observable, deterministic, static environments with single

agents. Chapters 11 and 17 cover partially observable, stochastic, dynamic environments

with multiple agents.

10.1 DEFINITION OF CLASSICAL PLANNING

The problem-solving agent of Chapter 3 can find sequences of actions that result in a goal

state. But it deals with atomic representations of states and thus needs good domain-specific

heuristics to perform well. The hybrid propositional logical agent of Chapter 7 can find plans

without domain-specific heuristics because it uses domain-independent heuristics based on

the logical structure of the problem. But it relies on ground (variable-free) propositional

inference, which means that it may be swamped when there are many actions and states. For

example, in the wumpus world, the simple action of moving a step forward had to be repeated

for all four agent orientations, T time steps, and n2 current locations.

366
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In response to this, planning researchers have settled on a factored representation—

one in which a state of the world is represented by a collection of variables. We use a language

called PDDL, the Planning Domain Definition Language, that allows us to express all 4Tn2PDDL

actions with one action schema. There have been several versions of PDDL; we select a

simple version and alter its syntax to be consistent with the rest of the book.1 We now show

how PDDL describes the four things we need to define a search problem: the initial state, the

actions that are available in a state, the result of applying an action, and the goal test.

Each state is represented as a conjunction of fluents that are ground, functionless atoms.

For example, Poor ∧ Unknown might represent the state of a hapless agent, and a state

in a package delivery problem might be At(Truck1,Melbourne) ∧ At(Truck2,Sydney).
Database semantics is used: the closed-world assumption means that any fluents that are not

mentioned are false, and the unique names assumption means that Truck1 and Truck2 are

distinct. The following fluents are not allowed in a state: At(x, y) (because it is non-ground),

¬Poor (because it is a negation), and At(Father (Fred ),Sydney) (because it uses a function

symbol). The representation of states is carefully designed so that a state can be treated

either as a conjunction of fluents, which can be manipulated by logical inference, or as a set

of fluents, which can be manipulated with set operations. The set semantics is sometimesSET SEMANTICS

easier to deal with.

Actions are described by a set of action schemas that implicitly define the ACTIONS(s)
and RESULT(s, a) functions needed to do a problem-solving search. We saw in Chapter 7 that

any system for action description needs to solve the frame problem—to say what changes and

what stays the same as the result of the action. Classical planning concentrates on problems

where most actions leave most things unchanged. Think of a world consisting of a bunch of

objects on a flat surface. The action of nudging an object causes that object to change its lo-

cation by a vector ∆. A concise description of the action should mention only ∆; it shouldn’t

have to mention all the objects that stay in place. PDDL does that by specifying the result of

an action in terms of what changes; everything that stays the same is left unmentioned.

A set of ground (variable-free) actions can be represented by a single action schema.ACTION SCHEMA

The schema is a lifted representation—it lifts the level of reasoning from propositional logic

to a restricted subset of first-order logic. For example, here is an action schema for flying a

plane from one location to another:

Action(Fly(p, from , to),
PRECOND:At(p, from) ∧ Plane(p) ∧ Airport(from) ∧ Airport(to)
EFFECT:¬At(p, from) ∧ At(p, to))

The schema consists of the action name, a list of all the variables used in the schema, a

precondition and an effect. Although we haven’t said yet how the action schema convertsPRECONDITION

EFFECT into logical sentences, think of the variables as being universally quantified. We are free to

choose whatever values we want to instantiate the variables. For example, here is one ground

1 PDDL was derived from the original STRIPS planning language(Fikes and Nilsson, 1971). which is slightly

more restricted than PDDL: STRIPS preconditions and goals cannot contain negative literals.
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action that results from substituting values for all the variables:

Action(Fly(P1,SFO , JFK ),
PRECOND:At(P1,SFO) ∧ Plane(P1) ∧ Airport(SFO) ∧ Airport(JFK )
EFFECT:¬At(P1,SFO) ∧At(P1, JFK ))

The precondition and effect of an action are each conjunctions of literals (positive or negated

atomic sentences). The precondition defines the states in which the action can be executed,

and the effect defines the result of executing the action. An action a can be executed in state

s if s entails the precondition of a. Entailment can also be expressed with the set semantics:

s |= q iff every positive literal in q is in s and every negated literal in q is not. In formal

notation we say

(a ∈ ACTIONS(s)) ⇔ s |= PRECOND(a) ,

where any variables in a are universally quantified. For example,

∀ p, from, to (Fly(p, from , to) ∈ ACTIONS(s)) ⇔
s |= (At(p, from) ∧ Plane(p) ∧Airport(from) ∧ Airport(to))

We say that action a is applicable in state s if the preconditions are satisfied by s. WhenAPPLICABLE

an action schema a contains variables, it may have multiple applicable instantiations. For

example, with the initial state defined in Figure 10.1, the Fly action can be instantiated as

Fly(P1,SFO , JFK ) or as Fly(P2, JFK ,SFO), both of which are applicable in the initial

state. If an action a has v variables, then, in a domain with k unique names of objects, it takes

O(vk) time in the worst case to find the applicable ground actions.

Sometimes we want to propositionalize a PDDL problem—replace each action schemaPROPOSITIONALIZE

with a set of ground actions and then use a propositional solver such as SATPLAN to find a

solution. However, this is impractical when v and k are large.

The result of executing action a in state s is defined as a state s′ which is represented

by the set of fluents formed by starting with s, removing the fluents that appear as negative

literals in the action’s effects (what we call the delete list or DEL(a)), and adding the fluentsDELETE LIST

that are positive literals in the action’s effects (what we call the add list or ADD(a)):ADD LIST

RESULT(s, a) = (s− DEL(a))∪ADD(a) . (10.1)

For example, with the action Fly(P1,SFO , JFK ), we would remove At(P1,SFO) and add

At(P1, JFK ). It is a requirement of action schemas that any variable in the effect must also

appear in the precondition. That way, when the precondition is matched against the state s,

all the variables will be bound, and RESULT(s, a) will therefore have only ground atoms. In

other words, ground states are closed under the RESULT operation.

Also note that the fluents do not explicitly refer to time, as they did in Chapter 7. There

we needed superscripts for time, and successor-state axioms of the form

F t+1 ⇔ ActionCausesF t ∨ (F t ∧ ¬ActionCausesNotF t) .

In PDDL the times and states are implicit in the action schemas: the precondition always

refers to time t and the effect to time t+ 1.

A set of action schemas serves as a definition of a planning domain. A specific problem

within the domain is defined with the addition of an initial state and a goal. The initial
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Init(At(C1, SFO) ∧ At(C2, JFK ) ∧ At(P1, SFO) ∧ At(P2, JFK )
∧ Cargo(C1) ∧ Cargo(C2) ∧ Plane(P1) ∧ Plane(P2)
∧ Airport(JFK ) ∧ Airport(SFO))

Goal (At(C1, JFK ) ∧ At(C2, SFO))
Action(Load(c, p, a),

PRECOND: At(c, a) ∧ At(p, a) ∧ Cargo(c) ∧ Plane(p) ∧ Airport(a)
EFFECT: ¬ At(c, a) ∧ In(c, p))

Action(Unload(c, p, a),
PRECOND: In(c, p) ∧ At(p, a) ∧ Cargo(c) ∧ Plane(p) ∧ Airport(a)
EFFECT: At(c, a) ∧ ¬ In(c, p))

Action(Fly(p, from , to),
PRECOND: At(p, from) ∧ Plane(p) ∧ Airport(from) ∧ Airport(to)
EFFECT: ¬ At(p, from) ∧ At(p, to))

Figure 10.1 A PDDL description of an air cargo transportation planning problem.

state is a conjunction of ground atoms. (As with all states, the closed-world assumption isINITIAL STATE

used, which means that any atoms that are not mentioned are false.) The goal is just like aGOAL

precondition: a conjunction of literals (positive or negative) that may contain variables, such

as At(p,SFO) ∧ Plane(p). Any variables are treated as existentially quantified, so this goal

is to have any plane at SFO. The problem is solved when we can find a sequence of actions

that end in a state s that entails the goal. For example, the state Rich ∧Famous ∧Miserable
entails the goal Rich ∧ Famous , and the state Plane(Plane1) ∧ At(Plane1,SFO) entails

the goal At(p,SFO) ∧ Plane(p).
Now we have defined planning as a search problem: we have an initial state, an ACTIONS

function, a RESULT function, and a goal test. We’ll look at some example problems before

investigating efficient search algorithms.

10.1.1 Example: Air cargo transport

Figure 10.1 shows an air cargo transport problem involving loading and unloading cargo and

flying it from place to place. The problem can be defined with three actions: Load , Unload ,

and Fly . The actions affect two predicates: In(c, p) means that cargo c is inside plane p, and

At(x, a) means that object x (either plane or cargo) is at airport a. Note that some care must

be taken to make sure the At predicates are maintained properly. When a plane flies from

one airport to another, all the cargo inside the plane goes with it. In first-order logic it would

be easy to quantify over all objects that are inside the plane. But basic PDDL does not have

a universal quantifier, so we need a different solution. The approach we use is to say that a

piece of cargo ceases to be At anywhere when it is In a plane; the cargo only becomes At the

new airport when it is unloaded. So At really means “available for use at a given location.”

The following plan is a solution to the problem:

[Load (C1, P1,SFO),Fly(P1,SFO , JFK ),Unload (C1, P1, JFK ),
Load (C2, P2, JFK ),Fly(P2, JFK ,SFO),Unload (C2, P2,SFO)] .
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Finally, there is the problem of spurious actions such as Fly(P1, JFK , JFK ), which should

be a no-op, but which has contradictory effects (according to the definition, the effect would

include At(P1, JFK ) ∧ ¬At(P1, JFK )). It is common to ignore such problems, because

they seldom cause incorrect plans to be produced. The correct approach is to add inequality

preconditions saying that the from and to airports must be different; see another example of

this in Figure 10.3.

10.1.2 Example: The spare tire problem

Consider the problem of changing a flat tire (Figure 10.2). The goal is to have a good spare

tire properly mounted onto the car’s axle, where the initial state has a flat tire on the axle and

a good spare tire in the trunk. To keep it simple, our version of the problem is an abstract

one, with no sticky lug nuts or other complications. There are just four actions: removing the

spare from the trunk, removing the flat tire from the axle, putting the spare on the axle, and

leaving the car unattended overnight. We assume that the car is parked in a particularly bad

neighborhood, so that the effect of leaving it overnight is that the tires disappear. A solution

to the problem is [Remove(Flat ,Axle),Remove(Spare ,Trunk ),PutOn(Spare ,Axle)].

Init(Tire(Flat) ∧ Tire(Spare) ∧ At(Flat ,Axle) ∧ At(Spare,Trunk))
Goal(At(Spare,Axle))
Action(Remove(obj , loc),

PRECOND: At(obj , loc)
EFFECT: ¬ At(obj , loc) ∧ At(obj ,Ground))

Action(PutOn(t , Axle),
PRECOND: Tire(t) ∧ At(t ,Ground) ∧ ¬ At(Flat ,Axle)
EFFECT: ¬ At(t ,Ground) ∧ At(t ,Axle))

Action(LeaveOvernight ,
PRECOND:

EFFECT: ¬ At(Spare,Ground) ∧ ¬ At(Spare,Axle) ∧ ¬ At(Spare,Trunk)
∧ ¬ At(Flat ,Ground) ∧ ¬ At(Flat ,Axle) ∧ ¬ At(Flat , Trunk))

Figure 10.2 The simple spare tire problem.

10.1.3 Example: The blocks world

One of the most famous planning domains is known as the blocks world. This domainBLOCKS WORLD

consists of a set of cube-shaped blocks sitting on a table.2 The blocks can be stacked, but

only one block can fit directly on top of another. A robot arm can pick up a block and move

it to another position, either on the table or on top of another block. The arm can pick up

only one block at a time, so it cannot pick up a block that has another one on it. The goal will

always be to build one or more stacks of blocks, specified in terms of what blocks are on top

2 The blocks world used in planning research is much simpler than SHRDLU’s version, shown on page 20.
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Init(On(A,Table) ∧ On(B,Table) ∧ On(C,A)
∧ Block (A) ∧ Block (B) ∧ Block (C) ∧ Clear (B) ∧ Clear (C))

Goal (On(A,B) ∧ On(B,C))
Action(Move(b, x, y),

PRECOND: On(b, x) ∧ Clear (b) ∧ Clear (y) ∧ Block (b) ∧ Block (y) ∧
(b )=x) ∧ (b )=y) ∧ (x)=y),

EFFECT: On(b, y) ∧ Clear (x) ∧ ¬On(b, x) ∧ ¬Clear (y))
Action(MoveToTable(b, x),

PRECOND: On(b, x) ∧ Clear (b) ∧ Block (b) ∧ (b )=x),
EFFECT: On(b,Table) ∧ Clear (x) ∧ ¬On(b, x))

Figure 10.3 A planning problem in the blocks world: building a three-block tower. One

solution is the sequence [MoveToTable(C,A),Move(B,Table , C),Move(A,Table , B)].

Start State Goal State

B A

C

A

B

C

Figure 10.4 Diagram of the blocks-world problem in Figure 10.3.

of what other blocks. For example, a goal might be to get block A on B and block B on C
(see Figure 10.4).

We use On(b, x) to indicate that block b is on x, where x is either another block or the

table. The action for moving block b from the top of x to the top of y will be Move(b, x, y).
Now, one of the preconditions on moving b is that no other block be on it. In first-order logic,

this would be ¬∃x On(x, b) or, alternatively, ∀x ¬On(x, b). Basic PDDL does not allow

quantifiers, so instead we introduce a predicate Clear(x) that is true when nothing is on x.

(The complete problem description is in Figure 10.3.)

The action Move moves a block b from x to y if both b and y are clear. After the move

is made, b is still clear but y is not. A first attempt at the Move schema is

Action(Move(b, x, y),
PRECOND:On(b, x) ∧ Clear(b) ∧ Clear(y),
EFFECT:On(b, y) ∧ Clear(x) ∧ ¬On(b, x) ∧ ¬Clear(y)) .

Unfortunately, this does not maintain Clear properly when x or y is the table. When x is the

Table , this action has the effect Clear(Table), but the table should not become clear; and

when y=Table , it has the precondition Clear(Table), but the table does not have to be clear
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for us to move a block onto it. To fix this, we do two things. First, we introduce another

action to move a block b from x to the table:

Action(MoveToTable(b, x),
PRECOND:On(b, x) ∧ Clear(b),
EFFECT:On(b,Table) ∧ Clear(x) ∧ ¬On(b, x)) .

Second, we take the interpretation of Clear(x) to be “there is a clear space on x to hold a

block.” Under this interpretation, Clear(Table) will always be true. The only problem is that

nothing prevents the planner from using Move(b, x,Table) instead of MoveToTable(b, x).
We could live with this problem—it will lead to a larger-than-necessary search space, but will

not lead to incorrect answers—or we could introduce the predicate Block and add Block(b)∧
Block(y) to the precondition of Move.

10.1.4 The complexity of classical planning

In this subsection we consider the theoretical complexity of planning and distinguish two

decision problems. PlanSAT is the question of whether there exists any plan that solves aPLANSAT

planning problem. Bounded PlanSAT asks whether there is a solution of length k or less;BOUNDED PLANSAT

this can be used to find an optimal plan.

The first result is that both decision problems are decidable for classical planning. The

proof follows from the fact that the number of states is finite. But if we add function symbols

to the language, then the number of states becomes infinite, and PlanSAT becomes only

semidecidable: an algorithm exists that will terminate with the correct answer for any solvable

problem, but may not terminate on unsolvable problems. The Bounded PlanSAT problem

remains decidable even in the presence of function symbols. For proofs of the assertions in

this section, see Ghallab et al. (2004).

Both PlanSAT and Bounded PlanSAT are in the complexity class PSPACE, a class that

is larger (and hence more difficult) than NP and refers to problems that can be solved by a

deterministic Turing machine with a polynomial amount of space. Even if we make some

rather severe restrictions, the problems remain quite difficult. For example, if we disallow

negative effects, both problems are still NP-hard. However, if we also disallow negative

preconditions, PlanSAT reduces to the class P.

These worst-case results may seem discouraging. We can take solace in the fact that

agents are usually not asked to find plans for arbitrary worst-case problem instances, but

rather are asked for plans in specific domains (such as blocks-world problems with n blocks),

which can be much easier than the theoretical worst case. For many domains (including the

blocks world and the air cargo world), Bounded PlanSAT is NP-complete while PlanSAT is

in P; in other words, optimal planning is usually hard, but sub-optimal planning is sometimes

easy. To do well on easier-than-worst-case problems, we will need good search heuristics.

That’s the true advantage of the classical planning formalism: it has facilitated the develop-

ment of very accurate domain-independent heuristics, whereas systems based on successor-

state axioms in first-order logic have had less success in coming up with good heuristics.
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10.2 ALGORITHMS FOR PLANNING AS STATE-SPACE SEARCH

Now we turn our attention to planning algorithms. We saw how the description of a planning

problem defines a search problem: we can search from the initial state through the space

of states, looking for a goal. One of the nice advantages of the declarative representation of

action schemas is that we can also search backward from the goal, looking for the initial state.

Figure 10.5 compares forward and backward searches.

10.2.1 Forward (progression) state-space search

Now that we have shown how a planning problem maps into a search problem, we can solve

planning problems with any of the heuristic search algorithms from Chapter 3 or a local

search algorithm from Chapter 4 (provided we keep track of the actions used to reach the

goal). From the earliest days of planning research (around 1961) until around 1998 it was

assumed that forward state-space search was too inefficient to be practical. It is not hard to

come up with reasons why.

First, forward search is prone to exploring irrelevant actions. Consider the noble task

of buying a copy of AI: A Modern Approach from an online bookseller. Suppose there is an

(a)

(b)

At(P1, A)
Fly(P1, A, B)

Fly(P2, A, B)

Fly(P1, A, B)

Fly(P2, A, B)

At(P2, A)

At(P1, B)

At(P2, A)

At(P1, A)

At(P2, B)

At(P1, B)

At(P2, B)

At(P1, B)

At(P2, A)

At(P1, A)

At(P2, B)

Figure 10.5 Two approaches to searching for a plan. (a) Forward (progression) search

through the space of states, starting in the initial state and using the problem’s actions to

search forward for a member of the set of goal states. (b) Backward (regression) search

through sets of relevant states, starting at the set of states representing the goal and using the

inverse of the actions to search backward for the initial state.
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action schema Buy(isbn) with effect Own(isbn). ISBNs are 10 digits, so this action schema

represents 10 billion ground actions. An uninformed forward-search algorithm would have

to start enumerating these 10 billion actions to find one that leads to the goal.

Second, planning problems often have large state spaces. Consider an air cargo problem

with 10 airports, where each airport has 5 planes and 20 pieces of cargo. The goal is to move

all the cargo at airport A to airport B. There is a simple solution to the problem: load the 20

pieces of cargo into one of the planes at A, fly the plane to B, and unload the cargo. Finding

the solution can be difficult because the average branching factor is huge: each of the 50

planes can fly to 9 other airports, and each of the 200 packages can be either unloaded (if

it is loaded) or loaded into any plane at its airport (if it is unloaded). So in any state there

is a minimum of 450 actions (when all the packages are at airports with no planes) and a

maximum of 10,450 (when all packages and planes are at the same airport). On average, let’s

say there are about 2000 possible actions per state, so the search graph up to the depth of the

obvious solution has about 200041 nodes.

Clearly, even this relatively small problem instance is hopeless without an accurate

heuristic. Although many real-world applications of planning have relied on domain-specific

heuristics, it turns out (as we see in Section 10.2.3) that strong domain-independent heuristics

can be derived automatically; that is what makes forward search feasible.

10.2.2 Backward (regression) relevant-states search

In regression search we start at the goal and apply the actions backward until we find a

sequence of steps that reaches the initial state. It is called relevant-states search because weRELEVANT-STATES

only consider actions that are relevant to the goal (or current state). As in belief-state search

(Section 4.4), there is a set of relevant states to consider at each step, not just a single state.

We start with the goal, which is a conjunction of literals forming a description of a set of

states—for example, the goal ¬Poor ∧Famous describes those states in which Poor is false,

Famous is true, and any other fluent can have any value. If there are n ground fluents in a

domain, then there are 2n ground states (each fluent can be true or false), but 3n descriptions

of sets of goal states (each fluent can be positive, negative, or not mentioned).

In general, backward search works only when we know how to regress from a state

description to the predecessor state description. For example, it is hard to search backwards

for a solution to the n-queens problem because there is no easy way to describe the states that

are one move away from the goal. Happily, the PDDL representation was designed to make

it easy to regress actions—if a domain can be expressed in PDDL, then we can do regression

search on it. Given a ground goal description g and a ground action a, the regression from g
over a gives us a state description g′ defined by

g′ = (g − ADD(a))∪Precond (a) .

That is, the effects that were added by the action need not have been true before, and also

the preconditions must have held before, or else the action could not have been executed.

Note that DEL(a) does not appear in the formula; that’s because while we know the fluents

in DEL(a) are no longer true after the action, we don’t know whether or not they were true

before, so there’s nothing to be said about them.
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To get the full advantage of backward search, we need to deal with partially uninstanti-

ated actions and states, not just ground ones. For example, suppose the goal is to deliver a spe-

cific piece of cargo to SFO: At(C2,SFO). That suggests the action Unload (C2, p
′,SFO):

Action(Unload (C2, p
′,SFO),

PRECOND:In(C2, p
′) ∧ At(p′,SFO) ∧ Cargo(C2) ∧ Plane(p

′) ∧ Airport(SFO)
EFFECT:At(C2,SFO) ∧ ¬In(C2, p

′) .

(Note that we have standardized variable names (changing p to p′ in this case) so that there

will be no confusion between variable names if we happen to use the same action schema

twice in a plan. The same approach was used in Chapter 9 for first-order logical inference.)

This represents unloading the package from an unspecified plane at SFO; any plane will do,

but we need not say which one now. We can take advantage of the power of first-order

representations: a single description summarizes the possibility of using any of the planes by

implicitly quantifying over p′. The regressed state description is

g′ = In(C2, p
′) ∧ At(p′,SFO) ∧ Cargo(C2) ∧ Plane(p

′) ∧ Airport(SFO) .

The final issue is deciding which actions are candidates to regress over. In the forward direc-

tion we chose actions that were applicable—those actions that could be the next step in the

plan. In backward search we want actions that are relevant—those actions that could be theRELEVANCE

last step in a plan leading up to the current goal state.

For an action to be relevant to a goal it obviously must contribute to the goal: at least

one of the action’s effects (either positive or negative) must unify with an element of the goal.

What is less obvious is that the action must not have any effect (positive or negative) that

negates an element of the goal. Now, if the goal is A ∧ B ∧ C and an action has the effect

A∧B∧¬C then there is a colloquial sense in which that action is very relevant to the goal—it

gets us two-thirds of the way there. But it is not relevant in the technical sense defined here,

because this action could not be the final step of a solution—we would always need at least

one more step to achieve C .

Given the goal At(C2,SFO), several instantiations of Unload are relevant: we could

chose any specific plane to unload from, or we could leave the plane unspecified by using

the action Unload (C2, p
′,SFO). We can reduce the branching factor without ruling out any

solutions by always using the action formed by substituting the most general unifier into the

(standardized) action schema.

As another example, consider the goal Own(0136042597), given an initial state with

10 billion ISBNs, and the single action schema

A = Action(Buy(i), PRECOND:ISBN (i), EFFECT:Own(i)) .

As we mentioned before, forward search without a heuristic would have to start enumer-

ating the 10 billion ground Buy actions. But with backward search, we would unify the

goal Own(0136042597) with the (standardized) effect Own(i′), yielding the substitution

θ = {i′/0136042597}. Then we would regress over the action Subst(θ,A′) to yield the

predecessor state description ISBN (0136042597). This is part of, and thus entailed by, the

initial state, so we are done.
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We can make this more formal. Assume a goal description g which contains a goal

literal gi and an action schema A that is standardized to produce A′. If A′ has an effect literal

e′

j where Unify(gi, e
′

j)= θ and where we define a′ = SUBST(θ,A′) and if there is no effect

in a′ that is the negation of a literal in g, then a′ is a relevant action towards g.

Backward search keeps the branching factor lower than forward search, for most prob-

lem domains. However, the fact that backward search uses state sets rather than individual

states makes it harder to come up with good heuristics. That is the main reason why the

majority of current systems favor forward search.

10.2.3 Heuristics for planning

Neither forward nor backward search is efficient without a good heuristic function. Recall

from Chapter 3 that a heuristic function h(s) estimates the distance from a state s to the

goal and that if we can derive an admissible heuristic for this distance—one that does not

overestimate—then we can use A∗ search to find optimal solutions. An admissible heuristic

can be derived by defining a relaxed problem that is easier to solve. The exact cost of a

solution to this easier problem then becomes the heuristic for the original problem.

By definition, there is no way to analyze an atomic state, and thus it it requires some

ingenuity by a human analyst to define good domain-specific heuristics for search problems

with atomic states. Planning uses a factored representation for states and action schemas.

That makes it possible to define good domain-independent heuristics and for programs to

automatically apply a good domain-independent heuristic for a given problem.

Think of a search problem as a graph where the nodes are states and the edges are

actions. The problem is to find a path connecting the initial state to a goal state. There are

two ways we can relax this problem to make it easier: by adding more edges to the graph,

making it strictly easier to find a path, or by grouping multiple nodes together, forming an

abstraction of the state space that has fewer states, and thus is easier to search.

We look first at heuristics that add edges to the graph. For example, the ignore pre-

conditions heuristic drops all preconditions from actions. Every action becomes applicable
IGNORE

PRECONDITIONS

HEURISTIC

in every state, and any single goal fluent can be achieved in one step (if there is an applica-

ble action—if not, the problem is impossible). This almost implies that the number of steps

required to solve the relaxed problem is the number of unsatisfied goals—almost but not

quite, because (1) some action may achieve multiple goals and (2) some actions may undo

the effects of others. For many problems an accurate heuristic is obtained by considering (1)

and ignoring (2). First, we relax the actions by removing all preconditions and all effects

except those that are literals in the goal. Then, we count the minimum number of actions

required such that the union of those actions’ effects satisfies the goal. This is an instance

of the set-cover problem. There is one minor irritation: the set-cover problem is NP-hard.SET-COVER

PROBLEM

Fortunately a simple greedy algorithm is guaranteed to return a set covering whose size is

within a factor of log n of the true minimum covering, where n is the number of literals in

the goal. Unfortunately, the greedy algorithm loses the guarantee of admissibility.

It is also possible to ignore only selected preconditions of actions. Consider the sliding-

block puzzle (8-puzzle or 15-puzzle) from Section 3.2. We could encode this as a planning
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problem involving tiles with a single schema Slide:

Action(Slide(t, s1, s2),
PRECOND:On(t, s1) ∧ Tile(t) ∧ Blank (s2) ∧ Adjacent(s1, s2)
EFFECT:On(t, s2) ∧ Blank(s1) ∧ ¬On(t, s1) ∧ ¬Blank(s2))

As we saw in Section 3.6, if we remove the preconditions Blank (s2) ∧ Adjacent(s1, s2)
then any tile can move in one action to any space and we get the number-of-misplaced-tiles

heuristic. If we remove Blank(s2) then we get the Manhattan-distance heuristic. It is easy to

see how these heuristics could be derived automatically from the action schema description.

The ease of manipulating the schemas is the great advantage of the factored representation of

planning problems, as compared with the atomic representation of search problems.

Another possibility is the ignore delete lists heuristic. Assume for a moment that allIGNORE DELETE

LISTS

goals and preconditions contain only positive literals3 We want to create a relaxed version of

the original problem that will be easier to solve, and where the length of the solution will serve

as a good heuristic. We can do that by removing the delete lists from all actions (i.e., removing

all negative literals from effects). That makes it possible to make monotonic progress towards

the goal—no action will ever undo progress made by another action. It turns out it is still NP-

hard to find the optimal solution to this relaxed problem, but an approximate solution can be

found in polynomial time by hill-climbing. Figure 10.6 diagrams part of the state space for

two planning problems using the ignore-delete-lists heuristic. The dots represent states and

the edges actions, and the height of each dot above the bottom plane represents the heuristic

value. States on the bottom plane are solutions. In both these problems, there is a wide path

to the goal. There are no dead ends, so no need for backtracking; a simple hillclimbing search

will easily find a solution to these problems (although it may not be an optimal solution).

The relaxed problems leave us with a simplified—but still expensive—planning prob-

lem just to calculate the value of the heuristic function. Many planning problems have 10100

states or more, and relaxing the actions does nothing to reduce the number of states. There-

fore, we now look at relaxations that decrease the number of states by forming a state ab-

straction—a many-to-one mapping from states in the ground representation of the problemSTATE ABSTRACTION

to the abstract representation.

The easiest form of state abstraction is to ignore some fluents. For example, consider

an air cargo problem with 10 airports, 50 planes, and 200 pieces of cargo. Each plane can

be at one of 10 airports and each package can be either in one of the planes or unloaded at

one of the airports. So there are 5010 × 20050+10 ≈ 10155 states. Now consider a particular

problem in that domain in which it happens that all the packages are at just 5 of the airports,

and all packages at a given airport have the same destination. Then a useful abstraction of the

problem is to drop all the At fluents except for the ones involving one plane and one package

at each of the 5 airports. Now there are only 510 × 55+10 ≈ 1017 states. A solution in this

abstract state space will be shorter than a solution in the original space (and thus will be an

admissible heuristic), and the abstract solution is easy to extend to a solution to the original

problem (by adding additional Load and Unload actions).

3 Many problems are written with this convention. For problems that aren’t, replace every negative literal ¬P

in a goal or precondition with a new positive literal, P ′.
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Figure 10.6 Two state spaces from planning problems with the ignore-delete-lists heuris-

tic. The height above the bottom plane is the heuristic score of a state; states on the bottom

plane are goals. There are no local minima, so search for the goal is straightforward. From

Hoffmann (2005).

A key idea in defining heuristics is decomposition: dividing a problem into parts, solv-DECOMPOSITION

ing each part independently, and then combining the parts. The subgoal independence as-SUBGOAL

INDEPENDENCE

sumption is that the cost of solving a conjunction of subgoals is approximated by the sum

of the costs of solving each subgoal independently. The subgoal independence assumption

can be optimistic or pessimistic. It is optimistic when there are negative interactions between

the subplans for each subgoal—for example, when an action in one subplan deletes a goal

achieved by another subplan. It is pessimistic, and therefore inadmissible, when subplans

contain redundant actions—for instance, two actions that could be replaced by a single action

in the merged plan.

Suppose the goal is a set of fluents G, which we divide into disjoint subsets G1, . . . , Gn.

We then find plans P1, . . . , Pn that solve the respective subgoals. What is an estimate of the

cost of the plan for achieving all of G? We can think of each Cost(Pi) as a heuristic estimate,

and we know that if we combine estimates by taking their maximum value, we always get an

admissible heuristic. So maxi COST(Pi) is admissible, and sometimes it is exactly correct:

it could be that P1 serendipitously achieves all the Gi. But in most cases, in practice the

estimate is too low. Could we sum the costs instead? For many problems that is a reasonable

estimate, but it is not admissible. The best case is when we can determine that Gi and Gj are

independent. If the effects of Pi leave all the preconditions and goals of Pj unchanged, then

the estimate COST(Pi) + COST(Pj) is admissible, and more accurate than the max estimate.

We show in Section 10.3.1 that planning graphs can help provide better heuristic estimates.

It is clear that there is great potential for cutting down the search space by forming ab-

stractions. The trick is choosing the right abstractions and using them in a way that makes

the total cost—defining an abstraction, doing an abstract search, and mapping the abstraction

back to the original problem—less than the cost of solving the original problem. The tech-
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niques of pattern databases from Section 3.6.3 can be useful, because the cost of creating

the pattern database can be amortized over multiple problem instances.

An example of a system that makes use of effective heuristics is FF, or FASTFORWARD

(Hoffmann, 2005), a forward state-space searcher that uses the ignore-delete-lists heuristic,

estimating the heuristic with the help of a planning graph (see Section 10.3). FF then uses

hill-climbing search (modified to keep track of the plan) with the heuristic to find a solution.

When it hits a plateau or local maximum—when no action leads to a state with better heuristic

score—then FF uses iterative deepening search until it finds a state that is better, or it gives

up and restarts hill-climbing.

10.3 PLANNING GRAPHS

All of the heuristics we have suggested can suffer from inaccuracies. This section shows

how a special data structure called a planning graph can be used to give better heuristicPLANNING GRAPH

estimates. These heuristics can be applied to any of the search techniques we have seen so

far. Alternatively, we can search for a solution over the space formed by the planning graph,

using an algorithm called GRAPHPLAN.

A planning problem asks if we can reach a goal state from the initial state. Suppose we

are given a tree of all possible actions from the initial state to successor states, and their suc-

cessors, and so on. If we indexed this tree appropriately, we could answer the planning ques-

tion “can we reach state G from state S0” immediately, just by looking it up. Of course, the

tree is of exponential size, so this approach is impractical. A planning graph is polynomial-

size approximation to this tree that can be constructed quickly. The planning graph can’t

answer definitively whether G is reachable from S0, but it can estimate how many steps it

takes to reach G. The estimate is always correct when it reports the goal is not reachable, and

it never overestimates the number of steps, so it is an admissible heuristic.

A planning graph is a directed graph organized into levels: first a level S0 for the initialLEVEL

state, consisting of nodes representing each fluent that holds in S0; then a level A0 consisting

of nodes for each ground action that might be applicable in S0; then alternating levels Si
followed by Ai; until we reach a termination condition (to be discussed later).

Roughly speaking, Si contains all the literals that could hold at time i, depending on

the actions executed at preceding time steps. If it is possible that either P or ¬P could hold,

then both will be represented in Si. Also roughly speaking, Ai contains all the actions that

could have their preconditions satisfied at time i. We say “roughly speaking” because the

planning graph records only a restricted subset of the possible negative interactions among

actions; therefore, a literal might show up at level Sj when actually it could not be true until

a later level, if at all. (A literal will never show up too late.) Despite the possible error, the

level j at which a literal first appears is a good estimate of how difficult it is to achieve the

literal from the initial state.

Planning graphs work only for propositional planning problems—ones with no vari-

ables. As we mentioned on page 368, it is straightforward to propositionalize a set of ac-
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Init(Have(Cake))
Goal (Have(Cake) ∧ Eaten(Cake))
Action(Eat(Cake)

PRECOND: Have(Cake)
EFFECT: ¬ Have(Cake) ∧ Eaten(Cake))

Action(Bake(Cake)
PRECOND: ¬ Have(Cake)
EFFECT: Have(Cake))

Figure 10.7 The “have cake and eat cake too” problem.

Bake(Cake)

Eat(Cake)

Have(Cake)

S0 A0 S1 A1 S2

Have(Cake) Have(Cake) Have(Cake)

Have(Cake)

Eaten(Cake)

Eaten(Cake) Eaten(Cake)Eaten(Cake)

Eaten(Cake)

Eat(Cake)

¬

¬ ¬

¬

¬

Figure 10.8 The planning graph for the “have cake and eat cake too” problem up to level

S2. Rectangles indicate actions (small squares indicate persistence actions), and straight

lines indicate preconditions and effects. Mutex links are shown as curved gray lines. Not all

mutex links are shown, because the graph would be too cluttered. In general, if two literals

are mutex at Si, then the persistence actions for those literals will be mutex at Ai and we

need not draw that mutex link.

tion schemas. Despite the resulting increase in the size of the problem description, planning

graphs have proved to be effective tools for solving hard planning problems.

Figure 10.7 shows a simple planning problem, and Figure 10.8 shows its planning

graph. Each action at level Ai is connected to its preconditions at Si and its effects at Si+1.
So a literal appears because an action caused it, but we also want to say that a literal can

persist if no action negates it. This is represented by a persistence action (sometimes calledPERSISTENCE

ACTION

a no-op). For every literal C , we add to the problem a persistence action with precondition C
and effect C . Level A0 in Figure 10.8 shows one “real” action, Eat(Cake), along with two

persistence actions drawn as small square boxes.

Level A0 contains all the actions that could occur in state S0, but just as important it

records conflicts between actions that would prevent them from occurring together. The gray

lines in Figure 10.8 indicate mutual exclusion (or mutex) links. For example, Eat(Cake) isMUTUAL EXCLUSION

MUTEX mutually exclusive with the persistence of either Have(Cake) or ¬Eaten(Cake). We shall

see shortly how mutex links are computed.

Level S1 contains all the literals that could result from picking any subset of the actions

in A0, as well as mutex links (gray lines) indicating literals that could not appear together,

regardless of the choice of actions. For example, Have(Cake) and Eaten(Cake) are mutex:
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depending on the choice of actions in A0, either, but not both, could be the result. In other

words, S1 represents a belief state: a set of possible states. The members of this set are all

subsets of the literals such that there is no mutex link between any members of the subset.

We continue in this way, alternating between state level Si and action level Ai until we

reach a point where two consecutive levels are identical. At this point, we say that the graph

has leveled off. The graph in Figure 10.8 levels off at S2.LEVELED OFF

What we end up with is a structure where every Ai level contains all the actions that are

applicable in Si, along with constraints saying that two actions cannot both be executed at the

same level. Every Si level contains all the literals that could result from any possible choice

of actions in Ai−1, along with constraints saying which pairs of literals are not possible.

It is important to note that the process of constructing the planning graph does not require

choosing among actions, which would entail combinatorial search. Instead, it just records the

impossibility of certain choices using mutex links.

We now define mutex links for both actions and literals. A mutex relation holds between

two actions at a given level if any of the following three conditions holds:

• Inconsistent effects: one action negates an effect of the other. For example, Eat(Cake)
and the persistence of Have(Cake) have inconsistent effects because they disagree on

the effect Have(Cake).

• Interference: one of the effects of one action is the negation of a precondition of the

other. For example Eat(Cake) interferes with the persistence of Have(Cake) by negat-

ing its precondition.

• Competing needs: one of the preconditions of one action is mutually exclusive with a

precondition of the other. For example, Bake(Cake) and Eat(Cake) are mutex because

they compete on the value of the Have(Cake) precondition.

A mutex relation holds between two literals at the same level if one is the negation of the other

or if each possible pair of actions that could achieve the two literals is mutually exclusive.

This condition is called inconsistent support. For example, Have(Cake) and Eaten(Cake)
are mutex in S1 because the only way of achieving Have(Cake), the persistence action, is

mutex with the only way of achieving Eaten(Cake), namely Eat(Cake). In S2 the two

literals are not mutex, because there are new ways of achieving them, such as Bake(Cake)
and the persistence of Eaten(Cake), that are not mutex.

A planning graph is polynomial in the size of the planning problem. For a planning

problem with l literals and a actions, each Si has no more than l nodes and l2 mutex links,

and each Ai has no more than a + l nodes (including the no-ops), (a + l)2 mutex links, and

2(al + l) precondition and effect links. Thus, an entire graph with n levels has a size of

O(n(a+ l)2). The time to build the graph has the same complexity.

10.3.1 Planning graphs for heuristic estimation

A planning graph, once constructed, is a rich source of information about the problem. First,

if any goal literal fails to appear in the final level of the graph, then the problem is unsolvable.

Second, we can estimate the cost of achieving any goal literal gi from state s as the level at

which gi first appears in the planning graph constructed from initial state s. We call this the
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level cost of gi. In Figure 10.8, Have(Cake) has level cost 0 and Eaten(Cake) has level costLEVEL COST

1. It is easy to show (Exercise 10.10) that these estimates are admissible for the individual

goals. The estimate might not always be accurate, however, because planning graphs allow

several actions at each level, whereas the heuristic counts just the level and not the number

of actions. For this reason, it is common to use a serial planning graph for computingSERIAL PLANNING

GRAPH

heuristics. A serial graph insists that only one action can actually occur at any given time

step; this is done by adding mutex links between every pair of nonpersistence actions. Level

costs extracted from serial graphs are often quite reasonable estimates of actual costs.

To estimate the cost of a conjunction of goals, there are three simple approaches. The

max-level heuristic simply takes the maximum level cost of any of the goals; this is admissi-MAX-LEVEL

ble, but not necessarily accurate.

The level sum heuristic, following the subgoal independence assumption, returns theLEVEL SUM

sum of the level costs of the goals; this can be inadmissible but works well in practice

for problems that are largely decomposable. It is much more accurate than the number-

of-unsatisfied-goals heuristic from Section 10.2. For our problem, the level-sum heuristic

estimate for the conjunctive goal Have(Cake) ∧ Eaten(Cake) will be 0 + 1 = 1, whereas

the correct answer is 2, achieved by the plan [Eat(Cake),Bake(Cake)]. That doesn’t seem

so bad. A more serious error is that if Bake(Cake) were not in the set of actions, then the

estimate would still be 1, when in fact the conjunctive goal would be impossible.

Finally, the set-level heuristic finds the level at which all the literals in the conjunctiveSET-LEVEL

goal appear in the planning graph without any pair of them being mutually exclusive. This

heuristic gives the correct values of 2 for our original problem and infinity for the problem

without Bake(Cake). It is admissible, it dominates the max-level heuristic, and it works

extremely well on tasks in which there is a good deal of interaction among subplans. It is not

perfect, of course; for example, it ignores interactions among three or more literals.

As a tool for generating accurate heuristics, we can view the planning graph as a relaxed

problem that is efficiently solvable. To understand the nature of the relaxed problem, we

need to understand exactly what it means for a literal g to appear at level Si in the planning

graph. Ideally, we would like it to be a guarantee that there exists a plan with i action levels

that achieves g, and also that if g does not appear, there is no such plan. Unfortunately,

making that guarantee is as difficult as solving the original planning problem. So the planning

graph makes the second half of the guarantee (if g does not appear, there is no plan), but

if g does appear, then all the planning graph promises is that there is a plan that possibly

achieves g and has no “obvious” flaws. An obvious flaw is defined as a flaw that can be

detected by considering two actions or two literals at a time—in other words, by looking at

the mutex relations. There could be more subtle flaws involving three, four, or more actions,

but experience has shown that it is not worth the computational effort to keep track of these

possible flaws. This is similar to a lesson learned from constraint satisfaction problems—that

it is often worthwhile to compute 2-consistency before searching for a solution, but less often

worthwhile to compute 3-consistency or higher. (See page 211.)

One example of an unsolvable problem that cannot be recognized as such by a planning

graph is the blocks-world problem where the goal is to get block A on B, B on C , and C on

A. This is an impossible goal; a tower with the bottom on top of the top. But a planning graph
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cannot detect the impossibility, because any two of the three subgoals are achievable. There

are no mutexes between any pair of literals, only between the three as a whole. To detect that

this problem is impossible, we would have to search over the planning graph.

10.3.2 The GRAPHPLAN algorithm

This subsection shows how to extract a plan directly from the planning graph, rather than just

using the graph to provide a heuristic. The GRAPHPLAN algorithm (Figure 10.9) repeatedly

adds a level to a planning graph with EXPAND-GRAPH. Once all the goals show up as non-

mutex in the graph, GRAPHPLAN calls EXTRACT-SOLUTION to search for a plan that solves

the problem. If that fails, it expands another level and tries again, terminating with failure

when there is no reason to go on.

function GRAPHPLAN(problem) returns solution or failure

graph← INITIAL-PLANNING-GRAPH(problem)

goals←CONJUNCTS(problem .GOAL)

nogoods← an empty hash table

for tl = 0 to ∞ do

if goals all non-mutex in St of graph then

solution←EXTRACT-SOLUTION(graph , goals , NUMLEVELS(graph), nogoods)

if solution )= failure then return solution

if graph and nogoods have both leveled off then return failure

graph← EXPAND-GRAPH(graph , problem)

Figure 10.9 The GRAPHPLAN algorithm. GRAPHPLAN calls EXPAND-GRAPH to add a

level until either a solution is found by EXTRACT-SOLUTION, or no solution is possible.

Let us now trace the operation of GRAPHPLAN on the spare tire problem from page 370.

The graph is shown in Figure 10.10. The first line of GRAPHPLAN initializes the planning

graph to a one-level (S0) graph representing the initial state. The positive fluents from the

problem description’s initial state are shown, as are the relevant negative fluents. Not shown

are the unchanging positive literals (such as Tire(Spare)) and the irrelevant negative literals.

The goal At(Spare ,Axle) is not present in S0, so we need not call EXTRACT-SOLUTION—

we are certain that there is no solution yet. Instead, EXPAND-GRAPH adds into A0 the three

actions whose preconditions exist at level S0 (i.e., all the actions except PutOn(Spare ,Axle)),
along with persistence actions for all the literals in S0. The effects of the actions are added at

level S1. EXPAND-GRAPH then looks for mutex relations and adds them to the graph.

At(Spare ,Axle) is still not present in S1, so again we do not call EXTRACT-SOLUTION .

We call EXPAND-GRAPH again, adding A1 and S1 and giving us the planning graph shown

in Figure 10.10. Now that we have the full complement of actions, it is worthwhile to look at

some of the examples of mutex relations and their causes:

• Inconsistent effects: Remove(Spare ,Trunk ) is mutex with LeaveOvernight because

one has the effect At(Spare ,Ground) and the other has its negation.
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S0 A1 S2

At(Spare,Trunk)

At(Spare,Trunk)

At(Flat,Axle)

At(Flat,Axle)

At(Spare,Axle)

At(Flat,Ground)

At(Flat,Ground)

At(Spare,Ground)

At(Spare,Ground)

At(Spare,Trunk)

At(Spare,Trunk)

At(Flat,Axle)

At(Flat,Axle)

At(Spare,Axle)

At(Flat,Ground)

At(Flat,Ground)

At(Spare,Ground)

At(Spare,Ground)

At(Spare,Axle)

At(Spare,Trunk)

At(Flat,Axle)

At(Spare,Axle)

At(Flat,Ground)

At(Spare,Ground)

PutOn(Spare,Axle)

LeaveOvernight

Remove(Flat,Axle)

Remove(Spare,Trunk)

Remove(Spare,Trunk)

Remove(Flat,Axle)

LeaveOvernight

¬

¬

¬

¬

¬

¬

¬

¬

¬

¬

¬

¬

¬

A0 S1

Figure 10.10 The planning graph for the spare tire problem after expansion to level S2.

Mutex links are shown as gray lines. Not all links are shown, because the graph would be too

cluttered if we showed them all. The solution is indicated by bold lines and outlines.

• Interference: Remove(Flat ,Axle) is mutex with LeaveOvernight because one has the

precondition At(Flat ,Axle) and the other has its negation as an effect.

• Competing needs: PutOn(Spare ,Axle) is mutex with Remove(Flat ,Axle) because

one has At(Flat ,Axle) as a precondition and the other has its negation.

• Inconsistent support: At(Spare ,Axle) is mutex with At(Flat ,Axle) in S2 because the

only way of achieving At(Spare ,Axle) is by PutOn(Spare ,Axle), and that is mutex

with the persistence action that is the only way of achieving At(Flat ,Axle). Thus, the

mutex relations detect the immediate conflict that arises from trying to put two objects

in the same place at the same time.

This time, when we go back to the start of the loop, all the literals from the goal are present

in S2, and none of them is mutex with any other. That means that a solution might exist,

and EXTRACT-SOLUTION will try to find it. We can formulate EXTRACT-SOLUTION as a

Boolean constraint satisfaction problem (CSP) where the variables are the actions at each

level, the values for each variable are in or out of the plan, and the constraints are the mutexes

and the need to satisfy each goal and precondition.

Alternatively, we can define EXTRACT-SOLUTION as a backward search problem, where

each state in the search contains a pointer to a level in the planning graph and a set of unsat-

isfied goals. We define this search problem as follows:

• The initial state is the last level of the planning graph, Sn, along with the set of goals

from the planning problem.

• The actions available in a state at level Si are to select any conflict-free subset of the

actions in Ai−1 whose effects cover the goals in the state. The resulting state has level

Si−1 and has as its set of goals the preconditions for the selected set of actions. By

“conflict free,” we mean a set of actions such that no two of them are mutex and no two

of their preconditions are mutex.
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• The goal is to reach a state at level S0 such that all the goals are satisfied.

• The cost of each action is 1.

For this particular problem, we start at S2 with the goal At(Spare ,Axle). The only choice we

have for achieving the goal set is PutOn(Spare ,Axle). That brings us to a search state at S1
with goals At(Spare ,Ground) and ¬At(Flat ,Axle). The former can be achieved only by

Remove(Spare ,Trunk), and the latter by either Remove(Flat ,Axle) or LeaveOvernight .

But LeaveOvernight is mutex withRemove(Spare ,Trunk ), so the only solution is to choose

Remove(Spare ,Trunk) andRemove(Flat ,Axle). That brings us to a search state at S0 with

the goals At(Spare ,Trunk) and At(Flat ,Axle). Both of these are present in the state, so

we have a solution: the actions Remove(Spare , Trunk) and Remove(Flat , Axle) in level

A0, followed by PutOn(Spare , Axle) in A1.
In the case where EXTRACT-SOLUTION fails to find a solution for a set of goals at

a given level, we record the (level , goals) pair as a no-good, just as we did in constraint

learning for CSPs (page 220). Whenever EXTRACT-SOLUTION is called again with the same

level and goals, we can find the recorded no-good and immediately return failure rather than

searching again. We see shortly that no-goods are also used in the termination test.

We know that planning is PSPACE-complete and that constructing the planning graph

takes polynomial time, so it must be the case that solution extraction is intractable in the worst

case. Therefore, we will need some heuristic guidance for choosing among actions during the

backward search. One approach that works well in practice is a greedy algorithm based on

the level cost of the literals. For any set of goals, we proceed in the following order:

1. Pick first the literal with the highest level cost.

2. To achieve that literal, prefer actions with easier preconditions. That is, choose an action

such that the sum (or maximum) of the level costs of its preconditions is smallest.

10.3.3 Termination of GRAPHPLAN

So far, we have skated over the question of termination. Here we show that GRAPHPLAN will

in fact terminate and return failure when there is no solution.

The first thing to understand is why we can’t stop expanding the graph as soon as it has

leveled off. Consider an air cargo domain with one plane and n pieces of cargo at airport

A, all of which have airport B as their destination. In this version of the problem, only one

piece of cargo can fit in the plane at a time. The graph will level off at level 4, reflecting the

fact that for any single piece of cargo, we can load it, fly it, and unload it at the destination in

three steps. But that does not mean that a solution can be extracted from the graph at level 4;

in fact a solution will require 4n − 1 steps: for each piece of cargo we load, fly, and unload,

and for all but the last piece we need to fly back to airport A to get the next piece.

How long do we have to keep expanding after the graph has leveled off? If the function

EXTRACT-SOLUTION fails to find a solution, then there must have been at least one set of

goals that were not achievable and were marked as a no-good. So if it is possible that there

might be fewer no-goods in the next level, then we should continue. As soon as the graph

itself and the no-goods have both leveled off, with no solution found, we can terminate with

failure because there is no possibility of a subsequent change that could add a solution.
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Now all we have to do is prove that the graph and the no-goods will always level off. The

key to this proof is that certain properties of planning graphs are monotonically increasing or

decreasing. “X increases monotonically” means that the set of Xs at level i+ 1 is a superset

(not necessarily proper) of the set at level i. The properties are as follows:

• Literals increase monotonically: Once a literal appears at a given level, it will appear

at all subsequent levels. This is because of the persistence actions; once a literal shows

up, persistence actions cause it to stay forever.

• Actions increase monotonically: Once an action appears at a given level, it will appear

at all subsequent levels. This is a consequence of the monotonic increase of literals; if

the preconditions of an action appear at one level, they will appear at subsequent levels,

and thus so will the action.

• Mutexes decrease monotonically: If two actions are mutex at a given level Ai, then they

will also be mutex for all previous levels at which they both appear. The same holds for

mutexes between literals. It might not always appear that way in the figures, because

the figures have a simplification: they display neither literals that cannot hold at level

Si nor actions that cannot be executed at level Ai. We can see that “mutexes decrease

monotonically” is true if you consider that these invisible literals and actions are mutex

with everything.

The proof can be handled by cases: if actions A and B are mutex at level Ai, it

must be because of one of the three types of mutex. The first two, inconsistent effects

and interference, are properties of the actions themselves, so if the actions are mutex

at Ai, they will be mutex at every level. The third case, competing needs, depends on

conditions at level Si: that level must contain a precondition of A that is mutex with

a precondition of B. Now, these two preconditions can be mutex if they are negations

of each other (in which case they would be mutex in every level) or if all actions for

achieving one are mutex with all actions for achieving the other. But we already know

that the available actions are increasing monotonically, so, by induction, the mutexes

must be decreasing.

• No-goods decrease monotonically: If a set of goals is not achievable at a given level,

then they are not achievable in any previous level. The proof is by contradiction: if they

were achievable at some previous level, then we could just add persistence actions to

make them achievable at a subsequent level.

Because the actions and literals increase monotonically and because there are only a finite

number of actions and literals, there must come a level that has the same number of actions

and literals as the previous level. Because mutexes and no-goods decrease, and because there

can never be fewer than zero mutexes or no-goods, there must come a level that has the

same number of mutexes and no-goods as the previous level. Once a graph has reached this

state, then if one of the goals is missing or is mutex with another goal, then we can stop the

GRAPHPLAN algorithm and return failure. That concludes a sketch of the proof; for more

details see Ghallab et al. (2004).
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Year Track Winning Systems (approaches)

2008 Optimal GAMER (model checking, bidirectional search)

2008 Satisficing LAMA (fast downward search with FF heuristic)

2006 Optimal SATPLAN, MAXPLAN (Boolean satisfiability)

2006 Satisficing SGPLAN (forward search; partitions into independent subproblems)

2004 Optimal SATPLAN (Boolean satisfiability)

2004 Satisficing FAST DIAGONALLY DOWNWARD (forward search with causal graph)

2002 Automated LPG (local search, planning graphs converted to CSPs)

2002 Hand-coded TLPLAN (temporal action logic with control rules for forward search)

2000 Automated FF (forward search)

2000 Hand-coded TALPLANNER (temporal action logic with control rules for forward search)

1998 Automated IPP (planning graphs); HSP (forward search)

Figure 10.11 Some of the top-performing systems in the International Planning Compe-

tition. Each year there are various tracks: “Optimal” means the planners must produce the

shortest possible plan, while “Satisficing” means nonoptimal solutions are accepted. “Hand-

coded” means domain-specific heuristics are allowed; “Automated” means they are not.

10.4 OTHER CLASSICAL PLANNING APPROACHES

Currently the most popular and effective approaches to fully automated planning are:

• Translating to a Boolean satisfiability (SAT) problem

• Forward state-space search with carefully crafted heuristics (Section 10.2)

• Search using a planning graph (Section 10.3)

These three approaches are not the only ones tried in the 40-year history of automated plan-

ning. Figure 10.11 shows some of the top systems in the International Planning Competitions,

which have been held every even year since 1998. In this section we first describe the transla-

tion to a satisfiability problem and then describe three other influential approaches: planning

as first-order logical deduction; as constraint satisfaction; and as plan refinement.

10.4.1 Classical planning as Boolean satisfiability

In Section 7.7.4 we saw how SATPLAN solves planning problems that are expressed in propo-

sitional logic. Here we show how to translate a PDDL description into a form that can be

processed by SATPLAN. The translation is a series of straightforward steps:

• Propositionalize the actions: replace each action schema with a set of ground actions

formed by substituting constants for each of the variables. These ground actions are not

part of the translation, but will be used in subsequent steps.

• Define the initial state: assert F 0 for every fluent F in the problem’s initial state, and

¬F for every fluent not mentioned in the initial state.

• Propositionalize the goal: for every variable in the goal, replace the literals that contain

the variable with a disjunction over constants. For example, the goal of having block A
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on another block, On(A,x) ∧ Block(x) in a world with objects A,B and C , would be

replaced by the goal

(On(A,A) ∧ Block (A)) ∨ (On(A,B) ∧ Block (B)) ∨ (On(A,C) ∧ Block (C)) .

• Add successor-state axioms: For each fluent F , add an axiom of the form

F t+1 ⇔ ActionCausesF t ∨ (F t ∧ ¬ActionCausesNotF t) ,

where ActionCausesF is a disjunction of all the ground actions that have F in their

add list, and ActionCausesNotF is a disjunction of all the ground actions that have F
in their delete list.

• Add precondition axioms: For each ground action A, add the axiom At ⇒ PRE(A)t,
that is, if an action is taken at time t, then the preconditions must have been true.

• Add action exclusion axioms: say that every action is distinct from every other action.

The resulting translation is in the form that we can hand to SATPLAN to find a solution.

10.4.2 Planning as first-order logical deduction: Situation calculus

PDDL is a language that carefully balances the expressiveness of the language with the com-

plexity of the algorithms that operate on it. But some problems remain difficult to express in

PDDL. For example, we can’t express the goal “move all the cargo from A to B regardless

of how many pieces of cargo there are” in PDDL, but we can do it in first-order logic, using a

universal quantifier. Likewise, first-order logic can concisely express global constraints such

as “no more than four robots can be in the same place at the same time.” PDDL can only say

this with repetitious preconditions on every possible action that involves a move.

The propositional logic representation of planning problems also has limitations, such

as the fact that the notion of time is tied directly to fluents. For example, South2 means

“the agent is facing south at time 2.” With that representation, there is no way to say “the

agent would be facing south at time 2 if it executed a right turn at time 1; otherwise it would

be facing east.” First-order logic lets us get around this limitation by replacing the notion

of linear time with a notion of branching situations, using a representation called situation

calculus that works like this:SITUATION

CALCULUS

• The initial state is called a situation. If s is a situation and a is an action, thenSITUATION

RESULT(s, a) is also a situation. There are no other situations. Thus, a situation cor-

responds to a sequence, or history, of actions. You can also think of a situation as the

result of applying the actions, but note that two situations are the same only if their start

and actions are the same: (RESULT(s, a) = RESULT(s′, a′)) ⇔ (s = s′ ∧ a = a′).
Some examples of actions and situations are shown in Figure 10.12.

• A function or relation that can vary from one situation to the next is a fluent. By conven-

tion, the situation s is always the last argument to the fluent, for example At(x, l, s) is a

relational fluent that is true when object x is at location l in situation s, and Location is a

functional fluent such that Location(x, s) = l holds in the same situations asAt(x, l, s).

• Each action’s preconditions are described with a possibility axiom that says when thePOSSIBILITY AXIOM

action can be taken. It has the form Φ(s) ⇒ Poss(a, s) where Φ(s) is some formula
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Result(S0, Forward)

Result(Result(S0, Forward),

Turn(Right))

Turn(Right)

Figure 10.12 Situations as the results of actions in the wumpus world.

involving s that describes the preconditions. An example from the wumpus world says

that it is possible to shoot if the agent is alive and has an arrow:

Alive(Agent , s) ∧ Have(Agent ,Arrow , s) ⇒ Poss(Shoot , s)

• Each fluent is described with a successor-state axiom that says what happens to the

fluent, depending on what action is taken. This is similar to the approach we took for

propositional logic. The axiom has the form

Action is possible ⇒
(Fluent is true in result state ⇔ Action’s effect made it true

∨ It was true before and action left it alone) .

For example, the axiom for the relational fluent Holding says that the agent is holding

some gold g after executing a possible action if and only if the action was a Grab of g
or if the agent was already holding g and the action was not releasing it:

Poss(a, s) ⇒
(Holding(Agent , g,Result (a, s)) ⇔

a=Grab(g) ∨ (Holding(Agent , g, s) ∧ a )= Release(g))) .

• We need unique action axioms so that the agent can deduce that, for example, a )=UNIQUE ACTION

AXIOMS

Release(g). For each distinct pair of action names Ai and Aj we have an axiom that

says the actions are different:

Ai(x, . . .) )= Aj(y, . . .)
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and for each action name Ai we have an axiom that says two uses of that action name

are equal if and only if all their arguments are equal:

Ai(x1, . . . , xn)=Ai(y1, . . . , yn) ⇔ x1= y1 ∧ . . . ∧ xn= yn .

• A solution is a situation (and hence a sequence of actions) that satisfies the goal.

Work in situation calculus has done a lot to define the formal semantics of planning and to

open up new areas of investigation. But so far there have not been any practical large-scale

planning programs based on logical deduction over the situation calculus. This is in part

because of the difficulty of doing efficient inference in FOL, but is mainly because the field

has not yet developed effective heuristics for planning with situation calculus.

10.4.3 Planning as constraint satisfaction

We have seen that constraint satisfaction has a lot in common with Boolean satisfiability, and

we have seen that CSP techniques are effective for scheduling problems, so it is not surprising

that it is possible to encode a bounded planning problem (i.e., the problem of finding a plan of

length k) as a constraint satisfaction problem (CSP). The encoding is similar to the encoding

to a SAT problem (Section 10.4.1), with one important simplification: at each time step we

need only a single variable, Actiont, whose domain is the set of possible actions. We no

longer need one variable for every action, and we don’t need the action exclusion axioms. It

is also possible to encode a planning graph into a CSP. This is the approach taken by GP-CSP

(Do and Kambhampati, 2003).

10.4.4 Planning as refinement of partially ordered plans

All the approaches we have seen so far construct totally ordered plans consisting of a strictly

linear sequences of actions. This representation ignores the fact that many subproblems are

independent. A solution to an air cargo problem consists of a totally ordered sequence of

actions, yet if 30 packages are being loaded onto one plane in one airport and 50 packages are

being loaded onto another at another airport, it seems pointless to come up with a strict linear

ordering of 80 load actions; the two subsets of actions should be thought of independently.

An alternative is to represent plans as partially ordered structures: a plan is a set of

actions and a set of constraints of the form Before(ai, aj) saying that one action occurs

before another. In the bottom of Figure 10.13, we see a partially ordered plan that is a solution

to the spare tire problem. Actions are boxes and ordering constraints are arrows. Note that

Remove(Spare ,Trunk) and Remove(Flat ,Axle) can be done in either order as long as they

are both completed before the PutOn(Spare ,Axle) action.

Partially ordered plans are created by a search through the space of plans rather than

through the state space. We start with the empty plan consisting of just the initial state and

the goal, with no actions in between, as in the top of Figure 10.13. The search procedure then

looks for a flaw in the plan, and makes an addition to the plan to correct the flaw (or if noFLAW

correction can be made, the search backtracks and tries something else). A flaw is anything

that keeps the partial plan from being a solution. For example, one flaw in the empty plan is

that no action achieves At(Spare ,Axle). One way to correct the flaw is to insert into the plan
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FinishAt(Spare,Axle)Start
At(Flat,Axle)

At(Spare,Trunk)

(a)

Remove(Spare,Trunk)At(Spare,Trunk)
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At(Spare,Ground)

At(Flat,Axle)
FinishAt(Spare,Axle)Start

At(Flat,Axle)

At(Spare,Trunk)

¬

(b)

Start

Remove(Spare,Trunk)At(Spare,Trunk)

Remove(Flat,Axle)At(Flat,Axle)

PutOn(Spare,Axle)
At(Spare,Ground)

At(Flat,Axle)
FinishAt(Spare,Axle)

At(Flat,Axle)

At(Spare,Trunk)

¬

(c)

Figure 10.13 (a) the tire problem expressed as an empty plan. (b) an incomplete partially

ordered plan for the tire problem. Boxes represent actions and arrows indicate that one action

must occur before another. (c) a complete partially-ordered solution.

the action PutOn(Spare ,Axle). Of course that introduces some new flaws: the preconditions

of the new action are not achieved. The search keeps adding to the plan (backtracking if

necessary) until all flaws are resolved, as in the bottom of Figure 10.13. At every step, we

make the least commitment possible to fix the flaw. For example, in adding the actionLEAST COMMITMENT

Remove(Spare ,Trunk) we need to commit to having it occur before PutOn(Spare ,Axle),
but we make no other commitment that places it before or after other actions. If there were a

variable in the action schema that could be left unbound, we would do so.

In the 1980s and 90s, partial-order planning was seen as the best way to handle plan-

ning problems with independent subproblems—after all, it was the only approach that ex-

plicitly represents independent branches of a plan. On the other hand, it has the disadvantage

of not having an explicit representation of states in the state-transition model. That makes

some computations cumbersome. By 2000, forward-search planners had developed excellent

heuristics that allowed them to efficiently discover the independent subproblems that partial-

order planning was designed for. As a result, partial-order planners are not competitive on

fully automated classical planning problems.

However, partial-order planning remains an important part of the field. For some spe-

cific tasks, such as operations scheduling, partial-order planning with domain specific heuris-

tics is the technology of choice. Many of these systems use libraries of high-level plans, as

described in Section 11.2. Partial-order planning is also often used in domains where it is im-

portant for humans to understand the plans. Operational plans for spacecraft and Mars rovers

are generated by partial-order planners and are then checked by human operators before being

uploaded to the vehicles for execution. The plan refinement approach makes it easier for the

humans to understand what the planning algorithms are doing and verify that they are correct.
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10.5 ANALYSIS OF PLANNING APPROACHES

Planning combines the two major areas of AI we have covered so far: search and logic. A

planner can be seen either as a program that searches for a solution or as one that (construc-

tively) proves the existence of a solution. The cross-fertilization of ideas from the two areas

has led both to improvements in performance amounting to several orders of magnitude in

the last decade and to an increased use of planners in industrial applications. Unfortunately,

we do not yet have a clear understanding of which techniques work best on which kinds of

problems. Quite possibly, new techniques will emerge that dominate existing methods.

Planning is foremost an exercise in controlling combinatorial explosion. If there are n
propositions in a domain, then there are 2n states. As we have seen, planning is PSPACE-

hard. Against such pessimism, the identification of independent subproblems can be a pow-

erful weapon. In the best case—full decomposability of the problem—we get an exponential

speedup. Decomposability is destroyed, however, by negative interactions between actions.

GRAPHPLAN records mutexes to point out where the difficult interactions are. SATPLAN rep-

resents a similar range of mutex relations, but does so by using the general CNF form rather

than a specific data structure. Forward search addresses the problem heuristically by trying

to find patterns (subsets of propositions) that cover the independent subproblems. Since this

approach is heuristic, it can work even when the subproblems are not completely independent.

Sometimes it is possible to solve a problem efficiently by recognizing that negative

interactions can be ruled out. We say that a problem has serializable subgoals if there existsSERIALIZABLE

SUBGOAL

an order of subgoals such that the planner can achieve them in that order without having to

undo any of the previously achieved subgoals. For example, in the blocks world, if the goal

is to build a tower (e.g., A on B, which in turn is on C , which in turn is on the Table , as in

Figure 10.4 on page 371), then the subgoals are serializable bottom to top: if we first achieve

C on Table , we will never have to undo it while we are achieving the other subgoals. A

planner that uses the bottom-to-top trick can solve any problem in the blocks world without

backtracking (although it might not always find the shortest plan).

As a more complex example, for the Remote Agent planner that commanded NASA’s

Deep Space One spacecraft, it was determined that the propositions involved in command-

ing a spacecraft are serializable. This is perhaps not too surprising, because a spacecraft is

designed by its engineers to be as easy as possible to control (subject to other constraints).

Taking advantage of the serialized ordering of goals, the Remote Agent planner was able to

eliminate most of the search. This meant that it was fast enough to control the spacecraft in

real time, something previously considered impossible.

Planners such as GRAPHPLAN, SATPLAN, and FF have moved the field of planning

forward, by raising the level of performance of planning systems, by clarifying the repre-

sentational and combinatorial issues involved, and by the development of useful heuristics.

However, there is a question of how far these techniques will scale. It seems likely that further

progress on larger problems cannot rely only on factored and propositional representations,

and will require some kind of synthesis of first-order and hierarchical representations with

the efficient heuristics currently in use.
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10.6 SUMMARY

In this chapter, we defined the problem of planning in deterministic, fully observable, static

environments. We described the PDDL representation for planning problems and several

algorithmic approaches for solving them. The points to remember:

• Planning systems are problem-solving algorithms that operate on explicit propositional

or relational representations of states and actions. These representations make possi-

ble the derivation of effective heuristics and the development of powerful and flexible

algorithms for solving problems.

• PDDL, the Planning Domain Definition Language, describes the initial and goal states

as conjunctions of literals, and actions in terms of their preconditions and effects.

• State-space search can operate in the forward direction (progression) or the backward

direction (regression). Effective heuristics can be derived by subgoal independence

assumptions and by various relaxations of the planning problem.

• A planning graph can be constructed incrementally, starting from the initial state. Each

layer contains a superset of all the literals or actions that could occur at that time step

and encodes mutual exclusion (mutex) relations among literals or actions that cannot co-

occur. Planning graphs yield useful heuristics for state-space and partial-order planners

and can be used directly in the GRAPHPLAN algorithm.

• Other approaches include first-order deduction over situation calculus axioms; encoding

a planning problem as a Boolean satisfiability problem or as a constraint satisfaction

problem; and explicitly searching through the space of partially ordered plans.

• Each of the major approaches to planning has its adherents, and there is as yet no con-

sensus on which is best. Competition and cross-fertilization among the approaches have

resulted in significant gains in efficiency for planning systems.

BIBLIOGRAPHICAL AND HISTORICAL NOTES

AI planning arose from investigations into state-space search, theorem proving, and control

theory and from the practical needs of robotics, scheduling, and other domains. STRIPS (Fikes

and Nilsson, 1971), the first major planning system, illustrates the interaction of these influ-

ences. STRIPS was designed as the planning component of the software for the Shakey robot

project at SRI. Its overall control structure was modeled on that of GPS, the General Problem

Solver (Newell and Simon, 1961), a state-space search system that used means–ends anal-

ysis. Bylander (1992) shows simple STRIPS planning to be PSPACE-complete. Fikes and

Nilsson (1993) give a historical retrospective on the STRIPS project and its relationship to

more recent planning efforts.

The representation language used by STRIPS has been far more influential than its al-

gorithmic approach; what we call the “classical” language is close to what STRIPS used.
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The Action Description Language, or ADL (Pednault, 1986), relaxed some of the STRIPS

restrictions and made it possible to encode more realistic problems. Nebel (2000) explores

schemes for compiling ADL into STRIPS. The Problem Domain Description Language, or

PDDL (Ghallab et al., 1998), was introduced as a computer-parsable, standardized syntax for

representing planning problems and has been used as the standard language for the Interna-

tional Planning Competition since 1998. There have been several extensions; the most recent

version, PDDL 3.0, includes plan constraints and preferences (Gerevini and Long, 2005).

Planners in the early 1970s generally considered totally ordered action sequences. Prob-

lem decomposition was achieved by computing a subplan for each subgoal and then stringing

the subplans together in some order. This approach, called linear planning by SacerdotiLINEAR PLANNING

(1975), was soon discovered to be incomplete. It cannot solve some very simple problems,

such as the Sussman anomaly (see Exercise 10.7), found by Allen Brown during experimen-

tation with the HACKER system (Sussman, 1975). A complete planner must allow for inter-

leaving of actions from different subplans within a single sequence. The notion of serializableINTERLEAVING

subgoals (Korf, 1987) corresponds exactly to the set of problems for which noninterleaved

planners are complete.

One solution to the interleaving problem was goal-regression planning, a technique in

which steps in a totally ordered plan are reordered so as to avoid conflict between subgoals.

This was introduced by Waldinger (1975) and also used by Warren’s (1974) WARPLAN.

WARPLAN is also notable in that it was the first planner to be written in a logic program-

ming language (Prolog) and is one of the best examples of the remarkable economy that can

sometimes be gained with logic programming: WARPLAN is only 100 lines of code, a small

fraction of the size of comparable planners of the time.

The ideas underlying partial-order planning include the detection of conflicts (Tate,

1975a) and the protection of achieved conditions from interference (Sussman, 1975). The

construction of partially ordered plans (then called task networks) was pioneered by the

NOAH planner (Sacerdoti, 1975, 1977) and by Tate’s (1975b, 1977) NONLIN system.

Partial-order planning dominated the next 20 years of research, yet the first clear for-

mal exposition was TWEAK (Chapman, 1987), a planner that was simple enough to allow

proofs of completeness and intractability (NP-hardness and undecidability) of various plan-

ning problems. Chapman’s work led to a straightforward description of a complete partial-

order planner (McAllester and Rosenblitt, 1991), then to the widely distributed implementa-

tions SNLP (Soderland and Weld, 1991) and UCPOP (Penberthy and Weld, 1992). Partial-

order planning fell out of favor in the late 1990s as faster methods emerged. Nguyen and

Kambhampati (2001) suggest that a reconsideration is merited: with accurate heuristics de-

rived from a planning graph, their REPOP planner scales up much better than GRAPHPLAN

in parallelizable domains and is competitive with the fastest state-space planners.

The resurgence of interest in state-space planning was pioneered by Drew McDer-

mott’s UNPOP program (1996), which was the first to suggest the ignore-delete-list heuristic,

The name UNPOP was a reaction to the overwhelming concentration on partial-order plan-

ning at the time; McDermott suspected that other approaches were not getting the attention

they deserved. Bonet and Geffner’s Heuristic Search Planner (HSP) and its later deriva-

tives (Bonet and Geffner, 1999; Haslum et al., 2005; Haslum, 2006) were the first to make
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state-space search practical for large planning problems. HSP searches in the forward di-

rection while HSPR (Bonet and Geffner, 1999) searches backward. The most successful

state-space searcher to date is FF (Hoffmann, 2001; Hoffmann and Nebel, 2001; Hoffmann,

2005), winner of the AIPS 2000 planning competition. FASTDOWNWARD (Helmert, 2006)

is a forward state-space search planner that preprocesses the action schemas into an alter-

native representation which makes some of the constraints more explicit. FASTDOWNWARD

(Helmert and Richter, 2004; Helmert, 2006) won the 2004 planning competition, and LAMA

(Richter and Westphal, 2008), a planner based on FASTDOWNWARD with improved heuris-

tics, won the 2008 competition.

Bylander (1994) and Ghallab et al. (2004) discuss the computational complexity of

several variants of the planning problem. Helmert (2003) proves complexity bounds for many

of the standard benchmark problems, and Hoffmann (2005) analyzes the search space of the

ignore-delete-list heuristic. Heuristics for the set-covering problem are discussed by Caprara

et al. (1995) for scheduling operations of the Italian railway. Edelkamp (2009) and Haslum

et al. (2007) describe how to construct pattern databases for planning heuristics. As we

mentioned in Chapter 3, Felner et al. (2004) show encouraging results using pattern databases

for sliding blocks puzzles, which can be thought of as a planning domain, but Hoffmann et al.

(2006) show some limitations of abstraction for classical planning problems.

Avrim Blum and Merrick Furst (1995, 1997) revitalized the field of planning with their

GRAPHPLAN system, which was orders of magnitude faster than the partial-order planners of

the time. Other graph-planning systems, such as IPP (Koehler et al., 1997), STAN (Fox and

Long, 1998), and SGP (Weld et al., 1998), soon followed. A data structure closely resembling

the planning graph had been developed slightly earlier by Ghallab and Laruelle (1994), whose

IXTET partial-order planner used it to derive accurate heuristics to guide searches. Nguyen

et al. (2001) thoroughly analyze heuristics derived from planning graphs. Our discussion of

planning graphs is based partly on this work and on lecture notes and articles by Subbarao

Kambhampati (Bryce and Kambhampati, 2007). As mentioned in the chapter, a planning

graph can be used in many different ways to guide the search for a solution. The winner

of the 2002 AIPS planning competition, LPG (Gerevini and Serina, 2002, 2003), searched

planning graphs using a local search technique inspired by WALKSAT.

The situation calculus approach to planning was introduced by John McCarthy (1963).

The version we show here was proposed by Ray Reiter (1991, 2001).

Kautz et al. (1996) investigated various ways to propositionalize action schemas, find-

ing that the most compact forms did not necessarily lead to the fastest solution times. A

systematic analysis was carried out by Ernst et al. (1997), who also developed an auto-

matic “compiler” for generating propositional representations from PDDL problems. The

BLACKBOX planner, which combines ideas from GRAPHPLAN and SATPLAN, was devel-

oped by Kautz and Selman (1998). CPLAN, a planner based on constraint satisfaction, was

described by van Beek and Chen (1999).

Most recently, there has been interest in the representation of plans as binary decision

diagrams, compact data structures for Boolean expressions widely studied in the hardwareBINARY DECISION

DIAGRAM

verification community (Clarke and Grumberg, 1987; McMillan, 1993). There are techniques

for proving properties of binary decision diagrams, including the property of being a solution
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to a planning problem. Cimatti et al. (1998) present a planner based on this approach. Other

representations have also been used; for example, Vossen et al. (2001) survey the use of

integer programming for planning.

The jury is still out, but there are now some interesting comparisons of the various

approaches to planning. Helmert (2001) analyzes several classes of planning problems, and

shows that constraint-based approaches such as GRAPHPLAN and SATPLAN are best for NP-

hard domains, while search-based approaches do better in domains where feasible solutions

can be found without backtracking. GRAPHPLAN and SATPLAN have trouble in domains

with many objects because that means they must create many actions. In some cases the

problem can be delayed or avoided by generating the propositionalized actions dynamically,

only as needed, rather than instantiating them all before the search begins.

Readings in Planning (Allen et al., 1990) is a comprehensive anthology of early work

in the field. Weld (1994, 1999) provides two excellent surveys of planning algorithms of

the 1990s. It is interesting to see the change in the five years between the two surveys:

the first concentrates on partial-order planning, and the second introduces GRAPHPLAN and

SATPLAN. Automated Planning (Ghallab et al., 2004) is an excellent textbook on all aspects

of planning. LaValle’s text Planning Algorithms (2006) covers both classical and stochastic

planning, with extensive coverage of robot motion planning.

Planning research has been central to AI since its inception, and papers on planning are

a staple of mainstream AI journals and conferences. There are also specialized conferences

such as the International Conference on AI Planning Systems, the International Workshop on

Planning and Scheduling for Space, and the European Conference on Planning.

EXERCISES

10.1 Describe the differences and similarities between problem solving and planning.

10.2 Given the action schemas and initial state from Figure 10.1, what are all the applicable

concrete instances of Fly(p, from , to) in the state described by

At(P1, JFK ) ∧At(P2,SFO) ∧ Plane(P1) ∧ Plane(P2)
∧ Airport(JFK ) ∧ Airport(SFO) ?

10.3 The monkey-and-bananas problem is faced by a monkey in a laboratory with some

bananas hanging out of reach from the ceiling. A box is available that will enable the monkey

to reach the bananas if he climbs on it. Initially, the monkey is at A, the bananas at B, and the

box at C . The monkey and box have height Low , but if the monkey climbs onto the box he

will have height High, the same as the bananas. The actions available to the monkey include

Go from one place to another, Push an object from one place to another, ClimbUp onto or

ClimbDown from an object, and Grasp or Ungrasp an object. The result of a Grasp is that

the monkey holds the object if the monkey and object are in the same place at the same height.

a. Write down the initial state description.
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Room 4

Room 3

Room 2

Room 1
Door 1

Door 2

Door 3

Door 4

Box 1

Box 2
Box 3

Shakey

Switch 1

Switch 2

Switch 3

Switch 4

Box 4

Corridor

Figure 10.14 Shakey’s world. Shakey can move between landmarks within a room, can

pass through the door between rooms, can climb climbable objects and push pushable objects,

and can flip light switches.

b. Write the six action schemas.

c. Suppose the monkey wants to fool the scientists, who are off to tea, by grabbing the

bananas, but leaving the box in its original place. Write this as a general goal (i.e., not

assuming that the box is necessarily at C) in the language of situation calculus. Can this

goal be solved by a classical planning system?

d. Your schema for pushing is probably incorrect, because if the object is too heavy, its

position will remain the same when the Push schema is applied. Fix your action schema

to account for heavy objects.

10.4 The original STRIPS planner was designed to control Shakey the robot. Figure 10.14

shows a version of Shakey’s world consisting of four rooms lined up along a corridor, where

each room has a door and a light switch. The actions in Shakey’s world include moving from

place to place, pushing movable objects (such as boxes), climbing onto and down from rigid
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objects (such as boxes), and turning light switches on and off. The robot itself could not climb

on a box or toggle a switch, but the planner was capable of finding and printing out plans that

were beyond the robot’s abilities. Shakey’s six actions are the following:

• Go(x, y, r), which requires that Shakey be At x and that x and y are locations In the

same room r. By convention a door between two rooms is in both of them.

• Push a box b from location x to location y within the same room: Push(b, x, y, r). You

will need the predicate Box and constants for the boxes.

• Climb onto a box from position x: ClimbUp(x, b); climb down from a box to position

x: ClimbDown(b, x). We will need the predicate On and the constant Floor .

• Turn a light switch on or off: TurnOn(s, b); TurnOff (s, b). To turn a light on or off,

Shakey must be on top of a box at the light switch’s location.

Write PDDL sentences for Shakey’s six actions and the initial state from Figure 10.14. Con-

struct a plan for Shakey to get Box 2 into Room2.

10.5 A finite Turing machine has a finite one-dimensional tape of cells, each cell containing

one of a finite number of symbols. One cell has a read and write head above it. There is a

finite set of states the machine can be in, one of which is the accept state. At each time step,

depending on the symbol on the cell under the head and the machine’s current state, there are

a set of actions we can choose from. Each action involves writing a symbol to the cell under

the head, transitioning the machine to a state, and optionally moving the head left or right.

The mapping that determines which actions are allowed is the Turing machine’s program.

Your goal is to control the machine into the accept state.

Represent the Turing machine acceptance problem as a planning problem. If you can

do this, it demonstrates that determining whether a planning problem has a solution is at least

as hard as the Turing acceptance problem, which is PSPACE-hard.

10.6 Explain why dropping negative effects from every action schema in a planning prob-

lem results in a relaxed problem.

10.7 Figure 10.4 (page 371) shows a blocks-world problem that is known as the Sussman

anomaly. The problem was considered anomalous because the noninterleaved planners ofSUSSMAN ANOMALY

the early 1970s could not solve it. Write a definition of the problem and solve it, either by

hand or with a planning program. A noninterleaved planner is a planner that, when given two

subgoals G1 and G2, produces either a plan for G1 concatenated with a plan for G2, or vice

versa. Explain why a noninterleaved planner cannot solve this problem.

10.8 Prove that backward search with PDDL problems is complete.

10.9 Construct levels 0, 1, and 2 of the planning graph for the problem in Figure 10.1.

10.10 Prove the following assertions about planning graphs:

a. A literal that does not appear in the final level of the graph cannot be achieved.
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b. The level cost of a literal in a serial graph is no greater than the actual cost of an optimal

plan for achieving it.

10.11 The set-level heuristic (see page 382) uses a planning graph to estimate the cost of

achieving a conjunctive goal from the current state. What relaxed problem is the set-level

heuristic the solution to?

10.12 Examine the definition of bidirectional search in Chapter 3.

a. Would bidirectional state-space search be a good idea for planning?

b. What about bidirectional search in the space of partial-order plans?

c. Devise a version of partial-order planning in which an action can be added to a plan if its

preconditions can be achieved by the effects of actions already in the plan. Explain how

to deal with conflicts and ordering constraints. Is the algorithm essentially identical to

forward state-space search?

10.13 We contrasted forward and backward state-space searchers with partial-order plan-

ners, saying that the latter is a plan-space searcher. Explain how forward and backward state-

space search can also be considered plan-space searchers, and say what the plan refinement

operators are.

10.14 Up to now we have assumed that the plans we create always make sure that an action’s

preconditions are satisfied. Let us now investigate what propositional successor-state axioms

such as HaveArrow t+1 ⇔ (HaveArrow t ∧ ¬Shoot t) have to say about actions whose

preconditions are not satisfied.

a. Show that the axioms predict that nothing will happen when an action is executed in a

state where its preconditions are not satisfied.

b. Consider a plan p that contains the actions required to achieve a goal but also includes

illegal actions. Is it the case that

initial state ∧ successor-state axioms ∧ p |= goal ?

c. With first-order successor-state axioms in situation calculus, is it possible to prove that

a plan containing illegal actions will achieve the goal?

10.15 Consider how to translate a set of action schemas into the successor-state axioms of

situation calculus.

a. Consider the schema for Fly(p, from , to). Write a logical definition for the predicate

Poss(Fly(p, from, to), s), which is true if the preconditions for Fly(p, from , to) are

satisfied in situation s.

b. Next, assuming that Fly(p, from , to) is the only action schema available to the agent,

write down a successor-state axiom for At(p, x, s) that captures the same information

as the action schema.
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c. Now suppose there is an additional method of travel: Teleport(p, from , to). It has

the additional precondition ¬Warped(p) and the additional effect Warped(p). Explain

how the situation calculus knowledge base must be modified.

d. Finally, develop a general and precisely specified procedure for carrying out the trans-

lation from a set of action schemas to a set of successor-state axioms.

10.16 In the SATPLAN algorithm in Figure 7.22 (page 272), each call to the satisfiabil-

ity algorithm asserts a goal gT , where T ranges from 0 to Tmax. Suppose instead that the

satisfiability algorithm is called only once, with the goal g0 ∨ g1 ∨ · · · ∨ gTmax .

a. Will this always return a plan if one exists with length less than or equal to Tmax?

b. Does this approach introduce any new spurious “solutions”?

c. Discuss how one might modify a satisfiability algorithm such as WALKSAT so that it

finds short solutions (if they exist) when given a disjunctive goal of this form.


