No Free Lunch.

Empirical comparisons of stochastic optimization algorithms

Petr Pošík

Substantial part of this material is based on slides provided with the book 'Stochastic Local Search: Foundations and Applications' by Holger H. Hoos and Thomas Stützle (Morgan Kaufmann, 2004) See www.sls-book.net for further information.

NI I	otiv	ati	nn

Motivation	3
NFL	4
Decision problems	
Optim. problems.	6
Scenarios	
MC vs LV	10
Theory vs practice	11
Empirical Comparisons	12
Seconds vs counts	13
Scenario 1	
Student's t-test.	15
MWUT	16
Scenario 2	17
S1 and S2 combined	18
RTD Analysis	19
RTD	20
RTD defintion	
RTD cross-sections	22
Measuring RTD	24
RTD comparisons	
Example	
	27
Learning outcomes	28

Contents

- No-Free-Lunch Theorem
- What is so hard about the comparison of stochastic methods?
- Simple statistical comparisons
- Comparisons based on running length distributions

P. Pošík © 2016

A0M33EOA: Evolutionary Optimization Algorithms - 2 / 28

Motivation

No-Free-Lunch Theorem

"There is no such thing as a free lunch."

- Refers to the nineteenth century practice in American bars of offering a "free lunch" with drinks.
- The meaning of the adage: *It is impossible to get something for nothing.*
- If something appears to be free, there is always a cost to the person or to society as a whole even though that cost may be hidden or distributed.

No-Free-Lunch theorem in search and optimization [WM97]

- Informally, for discrete spaces: "Any two (non-repeating) algorithms are equivalent when their performance is averaged across all possible problems."
- For a particular problem (or a particular class of problems), different search algorithms may obtain different results.
- If an algorithm achieves superior results on some problems, it must pay with inferiority on other problems.

It makes sense to study which algorithms are suitable for which kinds of problems!!!

[WM97] D. H. Wolpert and W. G. Macready. No free lunch theorems for optimization. IEEE Trans. on Evolutionary Computation, 1(1):67–82, 1997.

P. Pošík © 2016

A0M33EOA: Evolutionary Optimization Algorithms - 4 / 28

3 / 28

Runtime Behaviour for Decision Problems

Definitions:

- *A* is an algorithm for a class Π of decision problems.
- **R** $T_{A,\pi}$ is the runtime of algorithm *A* when applied to problem instance π ; random variable.

I $P_s(t) = P[RT_{A,\pi} \le t]$ is a probability that *A* finds a solution for a problem instance $\pi \in \Pi$ in time less than or equal to *t*.

Complete algorithm *A* can provably solve any solvable decision problem instance $\pi \in \Pi$ *after a finite time*, i.e. *A* is complete if and only if

$$\forall \pi \in \Pi, \ \exists t_{\max}: P_s(t_{\max}) = P[RT_{A,\pi} \leq t_{\max}] = 1.$$

Asymptotically complete algorithm *A* can solve any solvable problem instance $\pi \in \Pi$ with arbitrarily high probability *when allowed to run long enough,* i.e. *A* is asymptotically complete if and only if

 $\forall \pi \in \Pi : \lim_{t \to \infty} P_s(t) = \lim_{t \to \infty} P[RT_{A,\pi} \le t] = 1.$

Incomplete algorithm *A* cannot be guaranteed to find the solution even if allowed to run infinitely long, i.e. if it is not asymptotically complete, i.e. *A* is incomplete if and only if

 $\exists \text{ solvable } \pi \in \Pi : \lim_{t \to \infty} P_s\left(t\right) = \lim_{t \to \infty} P[RT_{A,\pi} \le t] < 1.$

P. Pošík © 2016

A0M33EOA: Evolutionary Optimization Algorithms - 5 / 28

(1)

(2)

(3)

(4)

(5)

(6)

Runtime Behaviour for Optimization Problems

Simple generalization based on transforming the optimization problem to related decision problem by setting the solution quality bound to $q = r \cdot q^*(\pi)$:

- *A* is an algorithm for a class Π of optimization problems.
- **R** $T_{A,\pi}$ is the runtime of algorithm *A* when applied to problem instance π ; random variable.
- SQ_{A, π} is the quality of the solution found by algorithm A when applied to problem instance π ; random variable.
- $P_s(t,q) = P[RT_{A,\pi} \le t, SQ_{A,\pi} \le q]$ is the probability that *A* finds a solution of quality better than or equal to *q* for a solvable problem instance $\pi \in \Pi$ in time less than or equal to *t*.
- $q^*(\pi)$ is the quality of optimal solution to problem π .
- $\quad \ \ \, r\geq 1,q>0.$

Algorithm A is r-complete if and only if

 $\forall \pi \in \Pi, \exists t_{\max} : P_s(t_{\max}, r \cdot q^*(\pi)) = P[RT_{A,\pi} \leq t_{\max}, SQ_{A,\pi} \leq r \cdot q^*(\pi)] = 1.$

Algorithm A is asymptotically *r*-complete if and only if

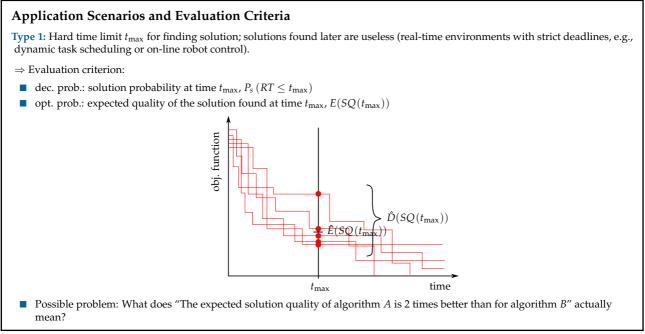
$$\forall \pi \in \Pi : \lim_{t \to \infty} P_s\left(t, r \cdot q^*(\pi)\right) = \lim_{t \to \infty} P[RT_{A,\pi} \le t, SQ_{A,\pi} \le r \cdot q^*(\pi)] = 1.$$

Algorithm *A* is *r*-incomplete if and only if

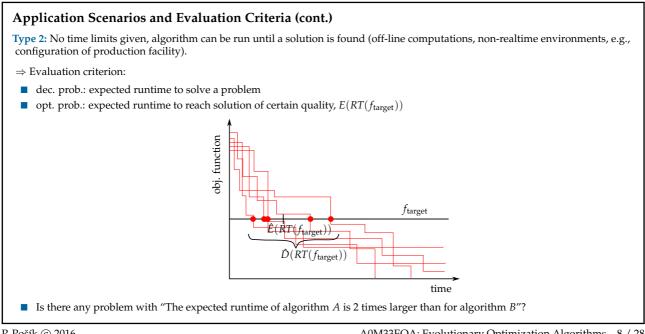
 $\exists \text{ solvable } \pi \in \Pi : \lim_{t \to \infty} P_s\left(t, r \cdot q^*(\pi)\right) = \lim_{t \to \infty} P[RT_{A,\pi} \le t, SQ_{A,\pi} \le r \cdot q^*(\pi)] < 1.$

P. Pošík © 2016

A0M33EOA: Evolutionary Optimization Algorithms - 6 / 28



P. Pošík © 2016



P. Pošík © 2016

A0M33EOA: Evolutionary Optimization Algorithms - 8 / 28

A0M33EOA: Evolutionary Optimization Algorithms - 7 / 28

Application Scenarios and Evaluation Criteria (cont.)

Type 3: Utility of solutions depends in more complex ways on the time required to find them; characterised by a utility function U:

- dec. prob.: $U : R^+ \mapsto (0, 1)$, where U(t) = utility of solution found at time *t*
- opt. prob.: $U : R^+ \times R^+ \mapsto (0, 1)$, where U(t, q) = utility of solution with quality q found at time t

Example: The direct benefit of a solution is invariant over time, but the cost of computing time diminishes the final payoff according to $U(t) = \max\{u_0 - c \cdot t, 0\}$ (constant discounting).

 \Rightarrow Evaluation criterion: utility-weighted solution probability

- dec. prob.: $\int_{0}^{\infty} U(t) \cdot P_{s}(t) dt$, or
- opt. prob.: $\int_0^\infty \int_{-\infty}^\infty U(t,q) \cdot P_s(t,q) \, dq \, dt$

requires detailed knowledge of $P_s(...)$ for arbitrary t (and arbitrary q).

P. Pošík © 2016

A0M33EOA: Evolutionary Optimization Algorithms - 9 / 28

Monte Carlo vs. Las Vegas Algorithms

An EOA may belong to the class of *Monte Carlo* or *Las Vegas algorithms* (LVAs):

- Monte Carlo algorithm (MCA): It always stops and provides a solution, but the solution may not be correct. The solution quality is a random variable. (Application scenario 1.)
- Las Vegas algorithm (LVA): It always produces a correct solution, but needs a priori unknown time to find it. The running time is a random variable. (Application scenario 2.)

How can we turn on type of algorithm into the other?

- LVA can be turned into MCA by bounding the allowed running time.
- MCA can be turned into LVA by restarting the algorithm from randomly chosen states.

P. Pošík © 2016

A0M33EOA: Evolutionary Optimization Algorithms – 10 / 28

Theoretical vs. Empirical Analysis of LVAs

- Practically relevant Las Vegas algorithms are typically difficult to analyse theoretically.
- Cases in which theoretical results are available are often of limited practical relevance, because they
 - rely on idealised assumptions that do not apply to practical situations,
 - apply to worst-case or highly idealised average-case behaviour only, or
 - **c**apture only asymptotic behaviour and do not reflect actual behaviour with sufficient accuracy.

Therefore, analyse the behaviour of LVAs using empirical methodology, ideally based on the scientific method:

- make observations
- formulate hypothesis/hypotheses (model)
- While not satisfied with model (and deadline not exceeded):
 - 1. design computational experiment to test model
 - 2. conduct computational experiment
 - 3. analyse experimental results
 - 4. revise model based on results

P. Pošík © 2016

A0M33EOA: Evolutionary Optimization Algorithms - 11 / 28

Empirical Algorithm Comparison

12 / 28

CPU Runtime vs Operation Counts

Remark: Is it better to measure the time in *seconds* or e.g. in *function evaluations*?

- Results of experiments should be **comparable**.
- Results of experiments should be **reproducible**.

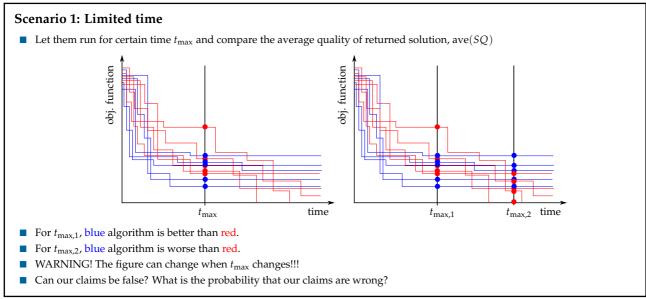
Wall-clock time

- depends on the machine configuration, computer language, and on the operating system used to run the experiments (the results are neither comparable, nor reproducible);
- produces the (disastrous) incentive to invest a long time into implementation details, because they have a huge effect on this performance measure.

Since the objective function is often the most time-consuming operation in the optimization cycle, many authors use the **number of objective function evaluations** as the primary measure of "time".

P. Pošík © 2016

A0M33EOA: Evolutionary Optimization Algorithms - 13 / 28



P. Pošík © 2016

A0M33EOA: Evolutionary Optimization Algorithms - 14 / 28

Student's t-test

Independent two-sample t-test:

- Statistical method used to test if the means of 2 normally distributed populations are equal.
- The larger the difference between means, the higher the probability the means are different.
- The lower the variance inside the populations, the higher the probability the means are different.
- For details, see e.g. [Luk09, sec. 11.1.2].
- Implemented in most mathematical and statistical software, e.g. in MATLAB.
- Can be easily implemented in any language.

Assumptions:

- Both populations should have normal distribution.
- Almost never fulfilled with the populations of solution qualities.

Remedy: a non-parametric test!

[Luk09] Sean Luke. Essentials of Metaheuristics. 2009. available at http://cs.gmu.edu/~sean/book/metaheuristics/.

P. Pošík © 2016

A0M33EOA: Evolutionary Optimization Algorithms - 15 / 28

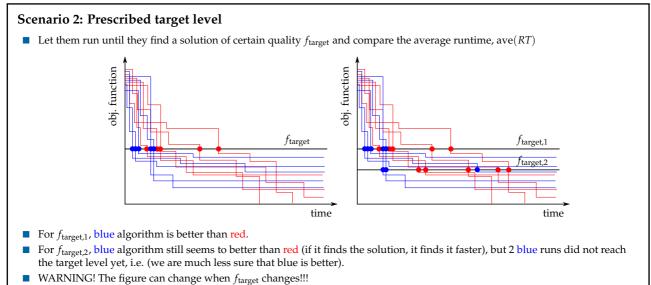
Mann-Whitney U test

Non-parametric test assessing whether two independent samples of observations have equally large values.

- Virtually identical to:
 - combine both samples (for each observation, remember its original group),
 - sort the values,
 - replace the values by ranks,
 - use the ranks with ordinary parametric two-sample t-test.
 - The measurements must be at least ordinal:
 - We must be able to sort them.
 - This allows us to merge results from runs which reached the target level with the results of runs which did not.

P. Pošík © 2016

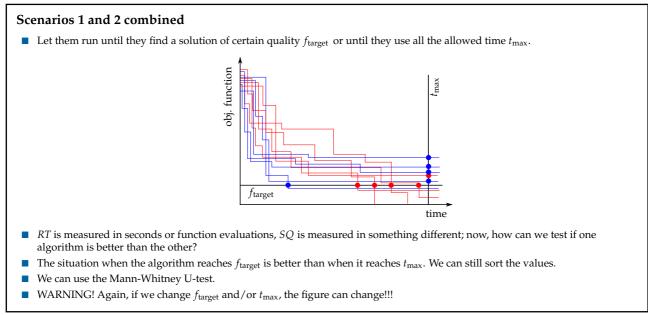
A0M33EOA: Evolutionary Optimization Algorithms - 16 / 28



The same statistical tests as for scenario 1 can be used.

P. Pošík © 2016

A0M33EOA: Evolutionary Optimization Algorithms - 17 / 28



P. Pošík © 2016

A0M33EOA: Evolutionary Optimization Algorithms - 18 / 28

Analysis based on runtime distribution

19 / 28

Runtime distributions

LVAs are often designed and evaluated without apriori knowledge of the application scenario:

- Assume the most general scenario type 3 with a utility function (which is often, however, unknown as well).
- Evaluate based on solution probabilities $P_s(t, q) = P[RT \le t, SQ \le q]$ for arbitrary runtimes *t* and solution qualities *q*.

Study distributions of *random variables* characterising runtime and solution quality of an algorithm for the given problem instance.

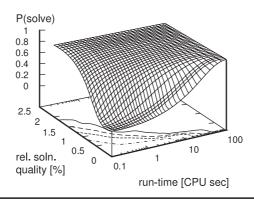
P. Pošík © 2016

A0M33EOA: Evolutionary Optimization Algorithms - 20 / 28

RTD definiton

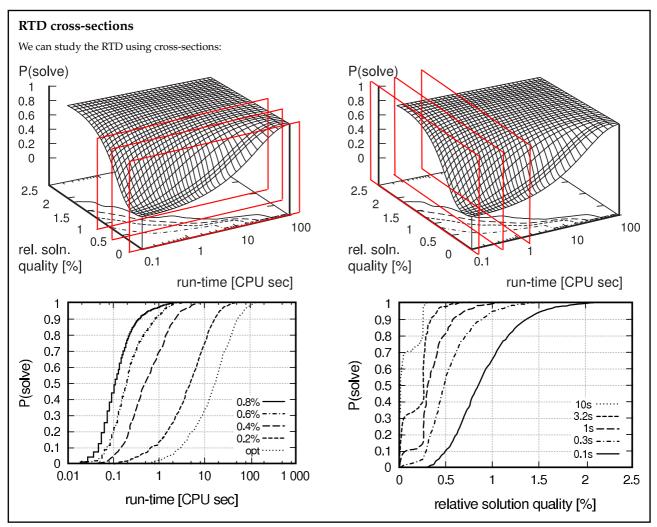
Given a Las Vegas alg. *A* for optimization problem π :

- The *success probability* $P_s(t,q) = P[RT_{A,\pi} \le t, SQ_{A,\pi} \le q]$ is the probability that *A* finds a solution for a solvable instance $\pi \in \Pi$ of quality $\le q$ in time $\le t$.
- The *run-time distribution* (RTD) of *A* on π is the probability distribution of the bivariate random variable ($RT_{A,\pi}$, $SQ_{A,\pi}$).
- The *runtime distribution function rtd* : $R^+ \times R^+ \rightarrow [0,1]$ is defined as $rtd(t,q) = P_s(t,q)$, completely characterises the RTD of A on π .

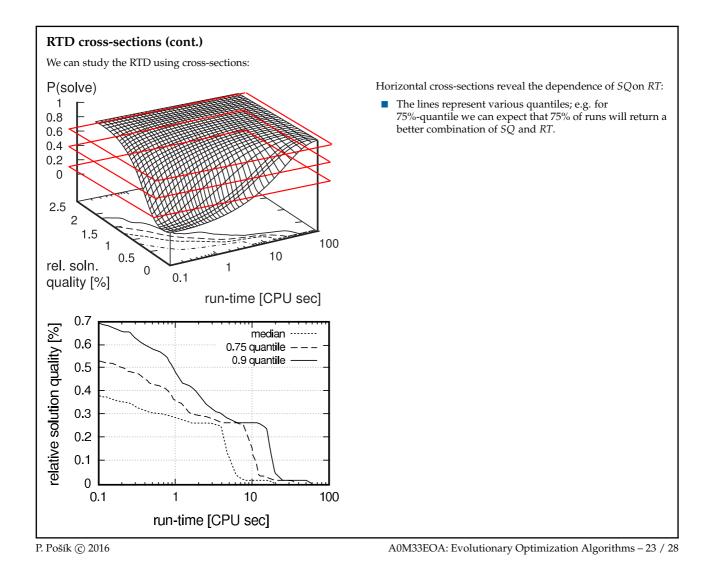


P. Pošík © 2016





A0M33EOA: Evolutionary Optimization Algorithms - 22 / 28



Empirical measurement of RTDs

Empirical estimation of $P[RT \le t, SQ \le q]$:

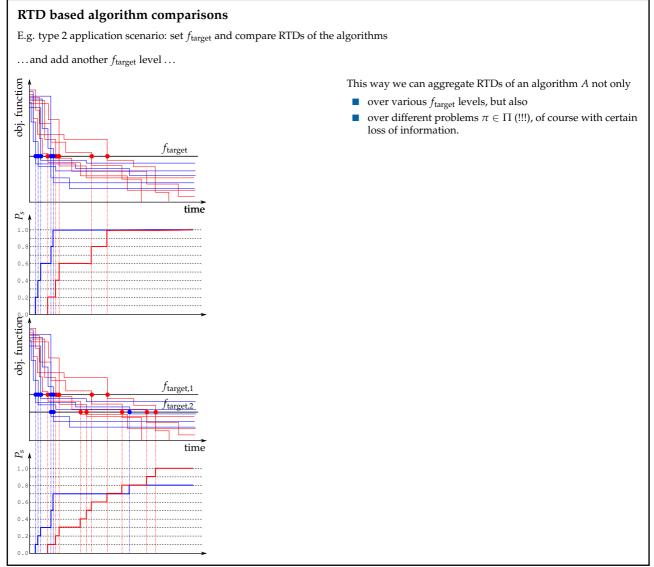
- Perform *N* independent runs of *A* on problem π .
- For n^{th} run, $n \in 1, ..., N$, store the so-called *solution quality trace*, i.e. $t_{n,i}$ and $q_{n,i}$ each time the quality is improved.
- $\hat{P}_s(t,q) = \frac{n_s(t,q)}{N}$, where $n_s(t,q)$ is the number of runs which provided at least one solution with $t_i \le t$ and $q_i \le q$.

Empirical RTDs are approximations of an algorithm's true RTD:

■ The larger the *N*, the better the approximation.

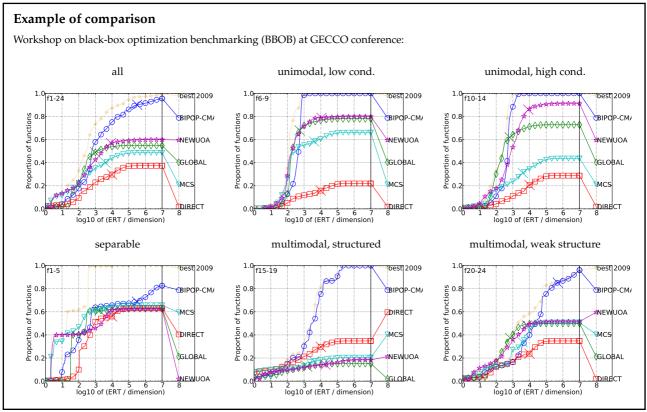
P. Pošík © 2016

A0M33EOA: Evolutionary Optimization Algorithms - 24 / 28



P. Pošík © 2016

A0M33EOA: Evolutionary Optimization Algorithms – 25 / 28



P. Pošík © 2016

A0M33EOA: Evolutionary Optimization Algorithms - 26 / 28

Learning outcomes

After this lecture, a student shall be able to

- explain No Free Lunch Theorem, and its consequences;
- explain the concepts of success probability, runtime distribution, solution quality, and their relationship;
- define *r*-complete, asymptotically *r*-complete, and *r*-incomplete algorithms;
- describe 3 usual scenarios of applying an algorithm to an optimizaton problem, and explain their differences;
- explain differences between Monte Carlo and Las Vegas algorithms;
- name the advantages and disadvantages of measuring time in seconds vs measuring time in the number of performed operations;
- explain what errorneous conclusions can be drawn from the results of an experiment when comparing algorithms using a single time limit, and/or a single required target level;
- know a few statistical test that can be used to compare 2 algorithms;
- exemplify what kind of characteristics we can get when taking cross-sections of the runtime distribution function;
- explain how the runtime distributions can be aggregated over different target levels, different problem instances and different problems;
- derive valid conclusions when presented with runtime distributions of two or more algorithms.

P. Pošík © 2016

A0M33EOA: Evolutionary Optimization Algorithms - 28 / 28