# No Free Lunch.

# Empirical comparisons of stochastic optimization algorithms

## Petr Pošík

Substantial part of this material is based on slides provided with the book 'Stochastic Local Search: Foundations and Applications' by Holger H. Hoos and Thomas Stützle (Morgan Kaufmann, 2004) See www.sls-book.net for further information.

| NI I | otiv | ati | nn |
|------|------|-----|----|
|      |      |     |    |

| Motivation            | 3  |
|-----------------------|----|
| NFL                   | 4  |
| Decision problems     |    |
| Optim. problems.      | 6  |
| Scenarios             |    |
| MC vs LV              | 10 |
| Theory vs practice    | 11 |
| Empirical Comparisons | 12 |
| Seconds vs counts     | 13 |
| Scenario 1            |    |
| Student's t-test.     | 15 |
| MWUT                  | 16 |
| Scenario 2            | 17 |
| S1 and S2 combined    | 18 |
| RTD Analysis          | 19 |
| RTD                   | 20 |
| RTD defintion         |    |
| RTD cross-sections    | 22 |
| Measuring RTD         | 24 |
| RTD comparisons       |    |
| Example               |    |
|                       | 27 |
| Learning outcomes     | 28 |

### Contents

- No-Free-Lunch Theorem
- What is so hard about the comparison of stochastic methods?
- Simple statistical comparisons
- Comparisons based on running length distributions

P. Pošík © 2016

A0M33EOA: Evolutionary Optimization Algorithms - 2 / 28

### **Motivation**

#### **No-Free-Lunch Theorem**

"There is no such thing as a free lunch."

- Refers to the nineteenth century practice in American bars of offering a "free lunch" with drinks.
- The meaning of the adage: *It is impossible to get something for nothing.*
- If something appears to be free, there is always a cost to the person or to society as a whole even though that cost may be hidden or distributed.

### No-Free-Lunch theorem in search and optimization [WM97]

- Informally, for discrete spaces: "Any two (non-repeating) algorithms are equivalent when their performance is averaged across all possible problems."
- For a particular problem (or a particular class of problems), different search algorithms may obtain different results.
- If an algorithm achieves superior results on some problems, it must pay with inferiority on other problems.

#### It makes sense to study which algorithms are suitable for which kinds of problems!!!

[WM97] D. H. Wolpert and W. G. Macready. No free lunch theorems for optimization. IEEE Trans. on Evolutionary Computation, 1(1):67–82, 1997.

P. Pošík © 2016

A0M33EOA: Evolutionary Optimization Algorithms - 4 / 28

3 / 28

### **Runtime Behaviour for Decision Problems**

Definitions:

- *A* is an algorithm for a class  $\Pi$  of decision problems.
- **R** $T_{A,\pi}$  is the runtime of algorithm *A* when applied to problem instance  $\pi$ ; random variable.

**I**  $P_s(t) = P[RT_{A,\pi} \le t]$  is a probability that *A* finds a solution for a problem instance  $\pi \in \Pi$  in time less than or equal to *t*.

**Complete algorithm** *A* can provably solve any solvable decision problem instance  $\pi \in \Pi$  *after a finite time*, i.e. *A* is complete if and only if

$$\forall \pi \in \Pi, \ \exists t_{\max}: P_s(t_{\max}) = P[RT_{A,\pi} \leq t_{\max}] = 1.$$

**Asymptotically complete algorithm** *A* can solve any solvable problem instance  $\pi \in \Pi$  with arbitrarily high probability *when allowed to run long enough,* i.e. *A* is asymptotically complete if and only if

 $\forall \pi \in \Pi : \lim_{t \to \infty} P_s(t) = \lim_{t \to \infty} P[RT_{A,\pi} \le t] = 1.$ 

**Incomplete algorithm** *A* cannot be guaranteed to find the solution even if allowed to run infinitely long, i.e. if it is not asymptotically complete, i.e. *A* is incomplete if and only if

 $\exists \text{ solvable } \pi \in \Pi : \lim_{t \to \infty} P_s\left(t\right) = \lim_{t \to \infty} P[RT_{A,\pi} \le t] < 1.$ 

P. Pošík © 2016

A0M33EOA: Evolutionary Optimization Algorithms - 5 / 28

(1)

(2)

(3)

(4)

(5)

(6)

### **Runtime Behaviour for Optimization Problems**

Simple generalization based on transforming the optimization problem to related decision problem by setting the solution quality bound to  $q = r \cdot q^*(\pi)$ :

- *A* is an algorithm for a class  $\Pi$  of optimization problems.
- **R** $T_{A,\pi}$  is the runtime of algorithm *A* when applied to problem instance  $\pi$ ; random variable.
- SQ<sub>A, $\pi$ </sub> is the quality of the solution found by algorithm A when applied to problem instance  $\pi$ ; random variable.
- $P_s(t,q) = P[RT_{A,\pi} \le t, SQ_{A,\pi} \le q]$  is the probability that *A* finds a solution of quality better than or equal to *q* for a solvable problem instance  $\pi \in \Pi$  in time less than or equal to *t*.
- $q^*(\pi)$  is the quality of optimal solution to problem  $\pi$ .
- $\quad \ \ \, r\geq 1,q>0.$

Algorithm A is r-complete if and only if

 $\forall \pi \in \Pi, \exists t_{\max} : P_s(t_{\max}, r \cdot q^*(\pi)) = P[RT_{A,\pi} \leq t_{\max}, SQ_{A,\pi} \leq r \cdot q^*(\pi)] = 1.$ 

Algorithm A is asymptotically *r*-complete if and only if

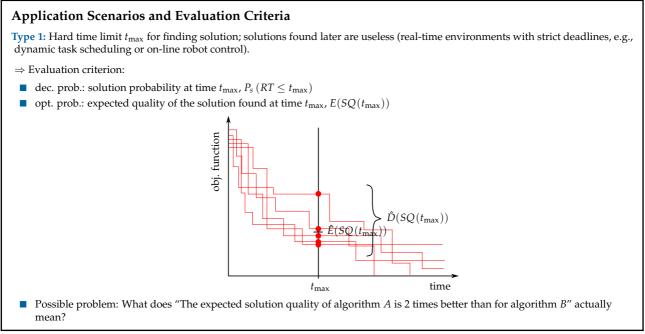
$$\forall \pi \in \Pi : \lim_{t \to \infty} P_s\left(t, r \cdot q^*(\pi)\right) = \lim_{t \to \infty} P[RT_{A,\pi} \le t, SQ_{A,\pi} \le r \cdot q^*(\pi)] = 1.$$

Algorithm *A* is *r*-incomplete if and only if

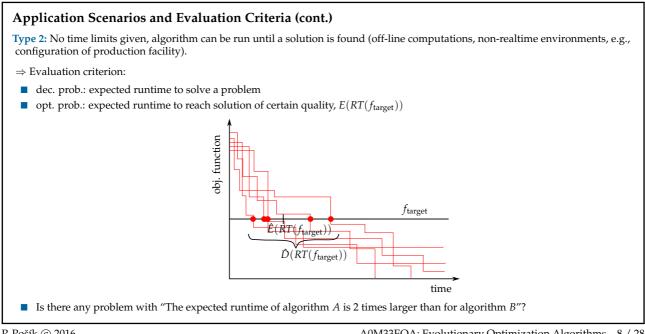
 $\exists \text{ solvable } \pi \in \Pi : \lim_{t \to \infty} P_s\left(t, r \cdot q^*(\pi)\right) = \lim_{t \to \infty} P[RT_{A,\pi} \le t, SQ_{A,\pi} \le r \cdot q^*(\pi)] < 1.$ 

P. Pošík © 2016

A0M33EOA: Evolutionary Optimization Algorithms - 6 / 28



P. Pošík © 2016



P. Pošík © 2016

A0M33EOA: Evolutionary Optimization Algorithms - 8 / 28

A0M33EOA: Evolutionary Optimization Algorithms - 7 / 28

### Application Scenarios and Evaluation Criteria (cont.)

Type 3: Utility of solutions depends in more complex ways on the time required to find them; characterised by a utility function U:

- dec. prob.:  $U : R^+ \mapsto (0, 1)$ , where U(t) = utility of solution found at time *t*
- opt. prob.:  $U : R^+ \times R^+ \mapsto (0, 1)$ , where U(t, q) = utility of solution with quality q found at time t

Example: The direct benefit of a solution is invariant over time, but the cost of computing time diminishes the final payoff according to  $U(t) = \max\{u_0 - c \cdot t, 0\}$  (constant discounting).

 $\Rightarrow$  Evaluation criterion: utility-weighted solution probability

- dec. prob.:  $\int_{0}^{\infty} U(t) \cdot P_{s}(t) dt$ , or
- opt. prob.:  $\int_0^\infty \int_{-\infty}^\infty U(t,q) \cdot P_s(t,q) \, dq \, dt$

requires detailed knowledge of  $P_s(...)$  for arbitrary t (and arbitrary q).

P. Pošík © 2016

A0M33EOA: Evolutionary Optimization Algorithms - 9 / 28

### Monte Carlo vs. Las Vegas Algorithms

An EOA may belong to the class of *Monte Carlo* or *Las Vegas algorithms* (LVAs):

- Monte Carlo algorithm (MCA): It always stops and provides a solution, but the solution may not be correct. The solution quality is a random variable. (Application scenario 1.)
- Las Vegas algorithm (LVA): It always produces a correct solution, but needs a priori unknown time to find it. The running time is a random variable. (Application scenario 2.)

How can we turn on type of algorithm into the other?

- LVA can be turned into MCA by bounding the allowed running time.
- MCA can be turned into LVA by restarting the algorithm from randomly chosen states.

P. Pošík © 2016

A0M33EOA: Evolutionary Optimization Algorithms – 10 / 28

### Theoretical vs. Empirical Analysis of LVAs

- Practically relevant Las Vegas algorithms are typically difficult to analyse theoretically.
- Cases in which theoretical results are available are often of limited practical relevance, because they
  - rely on idealised assumptions that do not apply to practical situations,
  - apply to worst-case or highly idealised average-case behaviour only, or
  - **c**apture only asymptotic behaviour and do not reflect actual behaviour with sufficient accuracy.

Therefore, analyse the behaviour of LVAs using empirical methodology, ideally based on the scientific method:

- make observations
- formulate hypothesis/hypotheses (model)
- While not satisfied with model (and deadline not exceeded):
  - 1. design computational experiment to test model
  - 2. conduct computational experiment
  - 3. analyse experimental results
  - 4. revise model based on results

P. Pošík © 2016

A0M33EOA: Evolutionary Optimization Algorithms - 11 / 28

### **Empirical Algorithm Comparison**

12 / 28

### **CPU Runtime vs Operation Counts**

Remark: Is it better to measure the time in *seconds* or e.g. in *function evaluations*?

- Results of experiments should be **comparable**.
- Results of experiments should be **reproducible**.

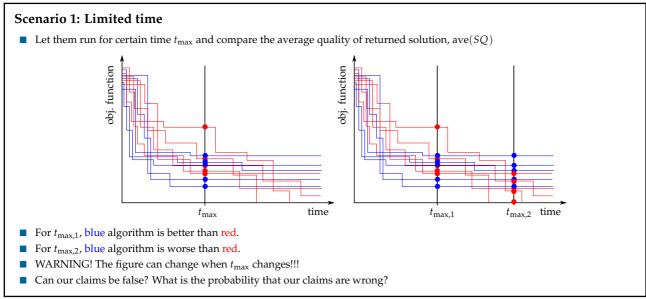
Wall-clock time

- depends on the machine configuration, computer language, and on the operating system used to run the experiments (the results are neither comparable, nor reproducible);
- produces the (disastrous) incentive to invest a long time into implementation details, because they have a huge effect on this performance measure.

Since the objective function is often the most time-consuming operation in the optimization cycle, many authors use the **number of objective function evaluations** as the primary measure of "time".

P. Pošík © 2016

A0M33EOA: Evolutionary Optimization Algorithms - 13 / 28



#### P. Pošík © 2016

A0M33EOA: Evolutionary Optimization Algorithms - 14 / 28

### Student's t-test

Independent two-sample t-test:

- Statistical method used to test if the means of 2 normally distributed populations are equal.
- The larger the difference between means, the higher the probability the means are different.
- The lower the variance inside the populations, the higher the probability the means are different.
- For details, see e.g. [Luk09, sec. 11.1.2].
- Implemented in most mathematical and statistical software, e.g. in MATLAB.
- Can be easily implemented in any language.

Assumptions:

- Both populations should have normal distribution.
- Almost never fulfilled with the populations of solution qualities.

Remedy: a non-parametric test!

[Luk09] Sean Luke. Essentials of Metaheuristics. 2009. available at http://cs.gmu.edu/~sean/book/metaheuristics/.

P. Pošík © 2016

A0M33EOA: Evolutionary Optimization Algorithms - 15 / 28

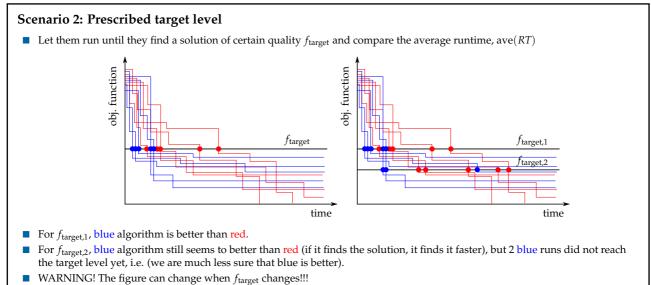
# Mann-Whitney U test

Non-parametric test assessing whether two independent samples of observations have equally large values.

- Virtually identical to:
  - combine both samples (for each observation, remember its original group),
  - sort the values,
  - replace the values by ranks,
  - use the ranks with ordinary parametric two-sample t-test.
  - The measurements must be at least ordinal:
    - We must be able to sort them.
    - This allows us to merge results from runs which reached the target level with the results of runs which did not.

P. Pošík © 2016

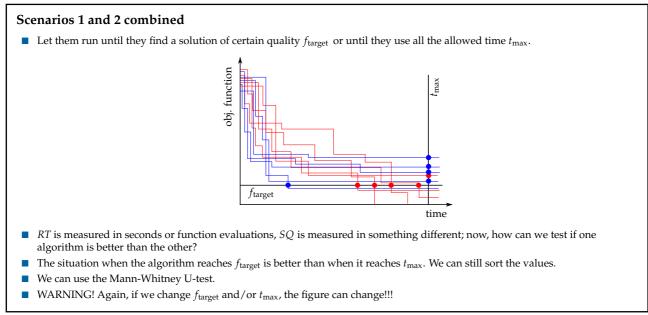
A0M33EOA: Evolutionary Optimization Algorithms - 16 / 28



The same statistical tests as for scenario 1 can be used.

P. Pošík © 2016

A0M33EOA: Evolutionary Optimization Algorithms - 17 / 28



P. Pošík © 2016

A0M33EOA: Evolutionary Optimization Algorithms - 18 / 28

# Analysis based on runtime distribution

19 / 28

### **Runtime distributions**

LVAs are often designed and evaluated without apriori knowledge of the application scenario:

- Assume the most general scenario type 3 with a utility function (which is often, however, unknown as well).
- Evaluate based on solution probabilities  $P_s(t, q) = P[RT \le t, SQ \le q]$  for arbitrary runtimes *t* and solution qualities *q*.

Study distributions of *random variables* characterising runtime and solution quality of an algorithm for the given problem instance.

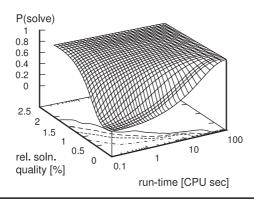
P. Pošík © 2016

A0M33EOA: Evolutionary Optimization Algorithms - 20 / 28

### **RTD** definiton

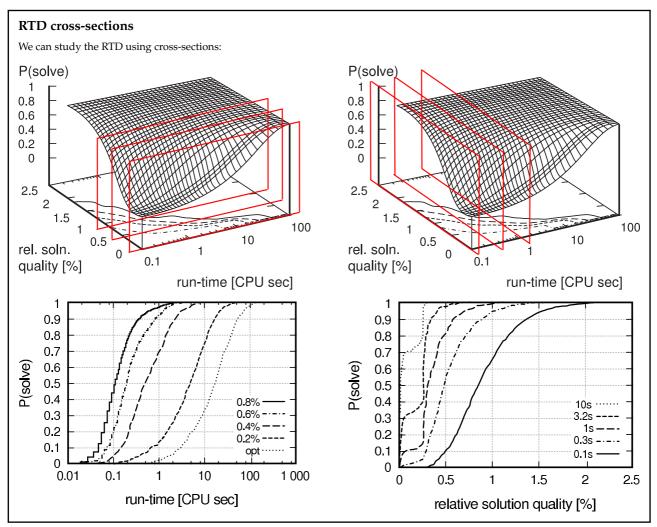
Given a Las Vegas alg. *A* for optimization problem  $\pi$ :

- The *success probability*  $P_s(t,q) = P[RT_{A,\pi} \le t, SQ_{A,\pi} \le q]$  is the probability that *A* finds a solution for a solvable instance  $\pi \in \Pi$  of quality  $\le q$  in time  $\le t$ .
- The *run-time distribution* (RTD) of *A* on  $\pi$  is the probability distribution of the bivariate random variable ( $RT_{A,\pi}$ ,  $SQ_{A,\pi}$ ).
- The *runtime distribution function rtd* :  $R^+ \times R^+ \rightarrow [0,1]$  is defined as  $rtd(t,q) = P_s(t,q)$ , completely characterises the RTD of A on  $\pi$ .



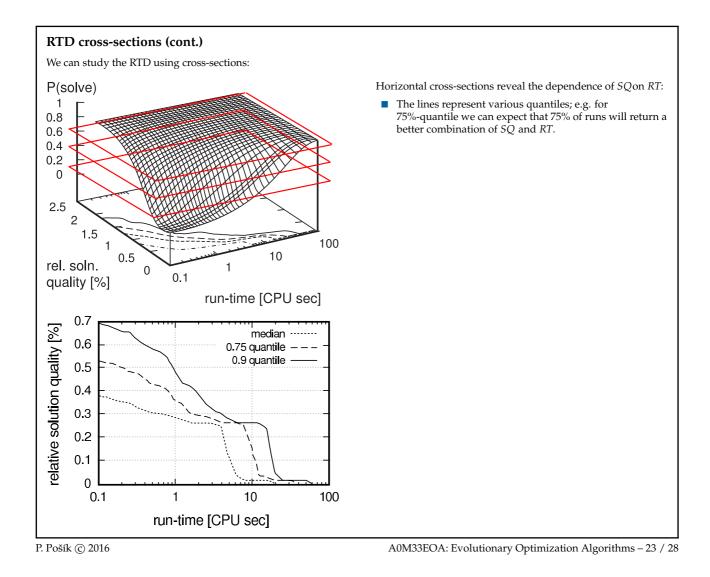
P. Pošík © 2016







A0M33EOA: Evolutionary Optimization Algorithms - 22 / 28



### **Empirical measurement of RTDs**

Empirical estimation of  $P[RT \le t, SQ \le q]$ :

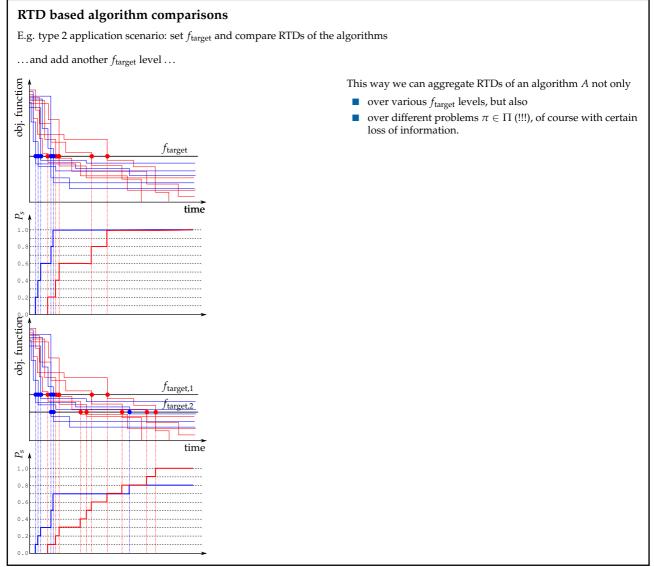
- Perform *N* independent runs of *A* on problem  $\pi$ .
- For  $n^{\text{th}}$  run,  $n \in 1, ..., N$ , store the so-called *solution quality trace*, i.e.  $t_{n,i}$  and  $q_{n,i}$  each time the quality is improved.
- $\hat{P}_s(t,q) = \frac{n_s(t,q)}{N}$ , where  $n_s(t,q)$  is the number of runs which provided at least one solution with  $t_i \le t$  and  $q_i \le q$ .

Empirical RTDs are approximations of an algorithm's true RTD:

■ The larger the *N*, the better the approximation.

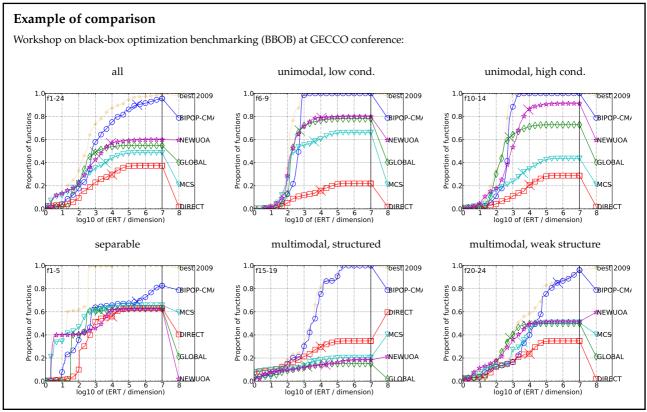
P. Pošík © 2016

A0M33EOA: Evolutionary Optimization Algorithms - 24 / 28



P. Pošík © 2016

A0M33EOA: Evolutionary Optimization Algorithms – 25 / 28



P. Pošík © 2016

A0M33EOA: Evolutionary Optimization Algorithms - 26 / 28

### Learning outcomes

After this lecture, a student shall be able to

- explain No Free Lunch Theorem, and its consequences;
- explain the concepts of success probability, runtime distribution, solution quality, and their relationship;
- define *r*-complete, asymptotically *r*-complete, and *r*-incomplete algorithms;
- describe 3 usual scenarios of applying an algorithm to an optimizaton problem, and explain their differences;
- explain differences between Monte Carlo and Las Vegas algorithms;
- name the advantages and disadvantages of measuring time in seconds vs measuring time in the number of performed operations;
- explain what errorneous conclusions can be drawn from the results of an experiment when comparing algorithms using a single time limit, and/or a single required target level;
- know a few statistical test that can be used to compare 2 algorithms;
- exemplify what kind of characteristics we can get when taking cross-sections of the runtime distribution function;
- explain how the runtime distributions can be aggregated over different target levels, different problem instances and different problems;
- derive valid conclusions when presented with runtime distributions of two or more algorithms.

P. Pošík © 2016

A0M33EOA: Evolutionary Optimization Algorithms - 28 / 28