Introduction

AOMB3EOA:
EAs for Real-Parameter Optimization.
Differential Evolution. CMA-ES.

Petr Posik

Czech Technical University in Prague
Faculty of Electrical Engineering
Department of Cybernetics

Many parts adapted or taken from
Kubalik, J. Real-Parameter Evolutionary Algorithms.
Lecture slides for A4M33BIA course. 2016

REAl EAS. . ot e e
{03 4 =3 1

Binary EAs
Geno-Pheno Map
Bit-flip MUL. . . o
LD XOVT .

2P XOVET . o o oottt ettt e e et et e e e e e e e e e e e e e e

Summary

Real EAs
Ops for real EAs . .
Standard ops
Advanced ops. . ..

Generalized Generation Gap (G3) Algorithm

Summary

Evolution Strategies (ES)

Intro
Pipeline.
Gaussian Mutation

Issues

CMA-ES Code (1) .
CMA-ES Code (2) .
CMA-ES Code (3) .
CMA-ES Code. . ..
CMA-ES Summary
Relations.

Differential Evolution

Differential EVOIULIONttt ittt ettt e e ettt e e e e e e e

DE Variants

Summary
Learning outcomes

Introduction 2 /40

EAs for real-parameter optimization
Phenotype:

B Representation that the fitness function understands and is able to evaluate.
W Vector of real numbers.

Genotype?

B Representation to which the “genetic” operators are applied.

B Binary vector encoding the real numbers.
B Discretization. Finite space.
B Discretized problem is not the same as the original one.
B Can miss the real function optimum. Results depend on the chosen precision of discretization.
B Requires encoding and decoding process.

B Vector of real numbers (genotype = phenotype).
B [nfinite domain (theoretically), even for space with finite bounds.

B Opportunity to exploit graduality or continuity of the function (slight changes in variables result in slight changes of the
function value).

B No need for encoding/decoding.

P. Posik (© 2016 AOMB33EOA: Evolutionary Optimization Algorithms -3 / 40

Contents
Contents:
B Standard selecto-recombinative genetic algorithms with binary representation.
Standard selecto-recombinative genetic algorithms with real representation.

]
B Evolution strategies.
B Differential Evolution.

P. Posik (© 2016 AOMB33EOA: Evolutionary Optimization Algorithms -4 / 40

Standard EAs with Binary Encoding 5/ 40
Genotype-Phenotype Mapping
Mapping binary to real vector representation (2D example):
B 2D real domain, bound constraints [x;, x| X [y, yr].
B Using 7 bits to encode each parameter.
=M X ... Xu [Vi Y2 - Yn |
B How to compute phenotype from known genotype?
bin2int(xy, ..., x,) bin2int(y1, ..., ¥n)
YR = x,+(x,fx1)W" vi+(yr—wi) zny_l Yo
Where in the EA should we place the mapping?
Algorithm 1: Evolutionary Algorithm
1 begin
2 X < InitializePopulation()
3 f < Evaluate(X)
14 xBSF/fBSF <—UpdateBSF(X,f)
5 while not TerminationCondition() do
6 XN ¢ Breed(X, f) // using certain breeding pipeline
7 fNn ¢ Evaluate(Xy)
8 xBSF/fBSF (—UpdateBSF(XN,fN)
9 X, f + Join(X, f, XN, fn) // aka ‘‘replacement strategy’’
0 | return xBSF/fBSF
Algorithm 2: Evolutionary Algorithm with Genotype-Phenotype Mapping
1 begin
2 X < InitializePopulation()
3 f « MapAndEvaluate (X)
4 XBsE, fBsF ¢ UpdateBSF (X, f)
5 while not TerminationCondition() do
6 XN ¢ Breed(X, f) // using certain breeding pipeline
7 fN ¢ MapAndEvaluate (Xy)
8 xBSFrfBSF eUpdateBSF(XN,fN)
9 X, f < Join(X, f, Xy, fN) // aka ‘‘replacement strategy’’
10 | return Xgsr, fpsr
P. Posik (© 2016 AOMB33EOA: Evolutionary Optimization Algorithms —6 / 40

Effect of bit-flip mutation

The neighborhood of a point in the phenotype space generated by an operation applied on the genotype.
B Genotype: 10bit binary string.
B Phenotype: vector of 2 real numbers (in a discretized space).

B Operation: “bit-flin” mutation.

30} 30f
X
25+ 25+
5 y 5
201 X 20+
ps Sxx X X 15
X X Sx X X
10F 10f
X
5t 5 y
o ‘ ‘ ‘ ‘ ‘ o ‘ ‘ ‘ ‘ ‘ ‘
0 5 10 15 20 25 0 5 10 15 20 25 30

A very common situation:

B Point which is locally optimal w.r.t. the phenotype is not locally optimal w.r.t. the genotype recombination operators. (

B Point which is locally optimal w.r.t. the genotype recombination operators is not locally optimal w.r.t. the phenotype. (BAD:
Even the best solutions found by EA do not have to correspond to the real optima we look for!)

P. Posik (© 2016 AOMB33EOA: Evolutionary Optimization Algorithms —7 / 40

Effect of 1-point crossover
The neighborhood of a point in the phenotype space generated by an operation applied on the genotype.
B Genotype: 10bit binary string.
B Phenotype: vector of 2 real numbers (in a discretized space).
B Operation: 1-point crossover.
30 x 30 X ®
25¢ 251
X
20¢ % 20t
15¢ X X xééx X X 15¢ ® X
X
10t 10}
X
5 st
0 ‘ ‘ % ‘ ‘ 0 ‘ ‘ ‘ ‘ ‘ ‘
0 5 10 i5 20 25 0 5 10 15 20 25 30
P. Posik (© 2016 AOMB33EOA: Evolutionary Optimization Algorithms —8 / 40

Effect of 2-point crossover

The neighborhood of a point in the phenotype space generated by an operation applied on the genotype.
B Genotype: 10bit binary string.
B Phenotype: vector of 2 real numbers (in a discretized space).
B Operation: 2-point crossover.

. XX XXX 30k
X
»s 5 X X X X 2
X X XXS
2 X X XX 2
15¢X X XXX XXX g g 15¢
XX X X
10 106 X X xx%xggg 2
gxx X X
5 51
X
A ‘NN o § xxx . x.
0 5 10 i5 20 25 0 5 10 15 20 25 30
P. Posik (© 2016 AOMB33EOA: Evolutionary Optimization Algorithms -9 / 40

Summary

Binary encoding for real-parameter optimization:

B Results depend on the chosen discretization.

B The neighborhoods generated by binary crossover and mutation operators do not fit well to the “usual structures” of
real-parameter functions.

B Can be useful for a rough exploration of the search space. (Then we can increase the resolution, or switch to real representation.)
B Using Gray code may help in certain situations, but does not solve the fundamental issues.

P. Posik © 2016 AOM33EOA: Evolutionary Optimization Algorithms - 10 / 40

Standard EAs with Real Encoding 11 / 40

Recombination Operators for ESs with Real Encoding

Genotype = Phenotype = Vector of real numbers!

Standard mutation operators:

B Gaussian mutation
B Cauchy mutation

Standard recombination operators:

B Simple (1-point) Crossover: same as for binary strings
Uniform Crossover: same as for binary strings
Average Crossover
Arithmetic Crossover
Flat Crossover
Blend Crossover BLX-(«)

Advanced recombination operators:
B Simplex Crossover (SPX)
B Unimodal Normal Distribution Crossover (UNDX)
B Parent-Centric Crossover (PCX)

P. Posik (© 2016 AOM33EOA: Evolutionary Optimization Algorithms —12 / 40

Standard Recombination Operators for Real EAs

Assume that x! = (x1,...,x}) and % = (x2,...,x2) are two parents.

B Simple (1-point) Crossover: a positioni € 1,2,...,n — 1 is randomly chosen, and two offspring chromosomes y! and y? are
built as follows:
X2

1 1.2 2
(X1, X X1, %)

1_
y =
2 2 2 .1 1
Yo = (X, X X, Xy)

X
B Average Crossover: an offspring y is created as and average of the parents:
X2

1
y= E(xl +%)

.
e
X
B Arithmetic Crossover: an offspring is created as a weighted average of the parents:
Xy
y=r-x'+(1—-r) 22
where r € (0,1) is a constant, or varies with regard to the
number of generations made, or is randomly chosen.
X1
P. Posik (© 2016 AOMB33EOA: Evolutionary Optimization Algorithms —13 / 40

Standard Recombination Operators for Real EAs (cont.)

B Flat Crossover: an offspring y = (y1,...,Y») is created such that each y; is sampled with uniform distribution from interval

X
y; € [min(x}, x?), max(x}, x?)).

X
B Blend Crossover: an offspring y = (y1,...,Y») is created such that each y; is sampled with uniform distribution from interval
X2

Vi S [Cmin - Dd/ Cmax + tXI]r

. 1 .2 _ 1,2
where Cpin = mln(pi ,P;)s Cmax = maX(PwPi)s
I = Cmax — Cmin, and & > 0.

X1

Characteristics:

B Simple, and average crossovers are deterministic; arithmetic crossover does not introduce enough diversity either.
B Simple, flat, and blend crossovers are not rotationally invariant.

P. Posik (© 2016 AOMB33EOA: Evolutionary Optimization Algorithms —14 / 40

Advanced Operators
Simplex Crossover (SPX):

Unimodal Normal Distribution Crossover (SPX):

Parent-Centric Crossover (SPX):

Generates offspring around the mean of the y parents
with uniform distribution
in a simplex which is /p + 1 times bigger than the parent simplex.

Generates offspring around the mean of the y parents
with multivariate normal distribution.
Preserves the correlation among parameters well.

B Generates offspring around one of the parents
B with multivariate normal distribution.
B The distribution shape is determined by the relative positions of the parents.
B Similar to adaptive mutation.
P. Posik (© 2016 AOMB33EOA: Evolutionary Optimization Algorithms —15 / 40

Generalized Generation Gap (G3) Algorithm
G3 [Deb05]: Elite preserving, steady-state, computationally fast. Special breeding pipeline and replacement operator.

L s

Comparisons of UNDX, SPX and PCX with the G3 model on Ellipsoidal, Schwefel’s, and Generalized Rosenbrock’s functions for

From the population P(t), select the best parent and (u — 1) other parents randomly.
Generate A offspring from u parents using a recombination scheme.
Choose two parents at random from y parents.

Form a combined subpopulation of chosen two parents and A offspring, choose the best two solutions and replace the chosen
two parents with these solutions.

D = 20.

1e+06 F le+06 T T T F T T T T 1e+06

a
@
g 3 :
8 | z T
E 100000 E mmx\]
d g L 1%
B & 100000 B 100000 F
g g \—pcx g
o 10000 [) T -
: j d :
2
[g —3F E
PRI L L L L 10000 ——— - L = 10000 T R | TRy L L
W0 T T 0 0 e 10 w0 2 4 ¢ 200 30 10 300 2 4 10 20 50 100 300
8 A A
[Deb05] K. Deb. A population-based algorithm-generator for real-parameter optimization. Soft Computing, 9(4):236-253, April 2005.
P. Posik (© 2016 AOMB33EOA: Evolutionary Optimization Algorithms —16 / 40

Summary

Selecto-recombinative standard EAs with real encoding

B often use the same algorithm and breeding pipeline as binary EAs,
B although a specialized pipeline can be designed (e.g., G3).
B They use different mutation and crossover operators.

Operators for real encoding;:
B Much wider range of possibilities than in binary space.
B Generally, there is no single best operator for all problems.

B Operators resulting in normal distribution of offspring usually work better for practical problems.

P. Posik (© 2016 AOMB33EOA: Evolutionary Optimization Algorithms —17 / 40

Evolution Strategies (ES) 18 / 40

Evolution Strategies: Introduction
“The European branch of Evolutionary Computation.”
B Originated in Germany in 1960’s (Ingo Rechenberg and Hans-Paul Schwefel).
B ES use the natural representation of vectors in R” as “chromosomes”.
B ES originally relied on mutation and selection only; recombination was added later.
]

Mutation is performed by adding a random vector distributed according to multivariate Gaussian with covariance matrix o1,
diag(cy,...,0p), or general C.

B Special feature: built-in adaptation of mutation parameters!
Notation: (uTA)-ES

Wy is the population size (and number of parents),
B) is the number of offspring created each generation,
B + or, denote the replacement strategy:

W |, is generational strategy: old population is discarded, new population of j parents is chosen from the A generated offspring.

B+ is steady-state strategy: old population is joined with the new offspring, new population of y parents is chosen from the
joined y + A individuals.

Notation: (p/pTA)-ES
B Recombination (usually deterministic), choose p individuals out of y parents, u > p.

B Sometimes, subscript to p is used to denote the type of recombination, e.g., po; for intermediate recombination (average), or py
for weighted recombination (weighted average). Other recomb. ops from Real EAs can be used in principle.

P. Posik (© 2016 AOM33EOA: Evolutionary Optimization Algorithms —19 / 40

Evolution Strategy Algorithm
ES use ordinary EA template (see lecture 1), with only slightly changed pipeline:

Algorithm 3: ES Breeding Pipeline

Input: Population X of i individuals, with their fitness in f.
Number of parents p. Number of offspring A.
Output: Population Xy of A offspring.
1 begin
XN @
fori+1,...,Ado
Xg < SelectParents(X, f) // p parents
XR < Recombine(Xs) // usually only single offspring
XN < Mutate(xp)
XN — Xy U {xN}

return Xy

N o w R W oN

®

B The join() operation then formes new population for the next generation by choosing the best y individuals either from Xy
(comma strategy) or from X U Xy (plus strategy).

W Very often p = y, resulting in (u/puFA) — ES. All offspring are then centered around a single vector xg. Lines 4 and 5 can thus
be removed from the for-loop and placed before it.

P. Posik © 2016 AOM33EOA: Evolutionary Optimization Algorithms —20 / 40

Gaussian Mutation

Gaussian mutation: the mutated offspring y are distributed around the original individual x as
y ~ N(x,C) ~x+N(0,C) ~ x+ CIN(0,I),

where N(y, C) is a multivariate Gaussian distribution with probability density function in RP

1 1
xu,C)= —---—exp| —=(x— Te 1 (x— >
ol €)= oo (5 wC e
Parameters:
Bz location of the distribution. When used for o 4 ; 4

mutation, # = 0 to prevent bias.

B C: Covariance matrix; determines the shape of the
distribution:

B Isotropic: C = 0?1

B Axis-parallel: C = diag(c?,...,03) i . 1. / oA
B General: C positive definite o . \ v -‘C,/
How many degrees of freedom (free parameters) do —4 —4 B =4
these have? P S— 5 R 5 " 5
How to set up the parameters of covariance matrix?
P. Posik © 2016 AOMB33EOA: Evolutionary Optimization Algorithms —21 / 40

10

Adaptation of Mutation Parameters

Adaptation of mutation parameters is key to ES design!
Example: (14 1)-ES (hill-climber) with isotropic mutation on Sphere function: f = ¥; x?

B Random search vs
B (1+ 1)-ES with constant ¢ = 1072 vs
B (1+1)-ESwith o adapted using i-rule with oy = 10~

10° e random search 1® Eomes
*‘\M =
s | /™ —_ 2 | T
p— f = -1
= 10’3,,,,, T A L | 8— 10 &
o / e
P / S
2 " | = 10 k
E 10 _..I(. -E
% ‘ © :
/ N 10°%
| : : e i
107 : : : 2 4 6
0 500 1000 1500 1 _ 10 10
function evaluations

function evaluations

B Random search: inefficient.
B Constant 0 initially too small value, appropriate value between 600 and 800 evals, too large value at the end.

B Adaptive o: near-optimal value during (almost) the whole run!

P. Posik © 2016 AOMB33EOA: Evolutionary Optimization Algorithms —22 / 40

1/5 Success Rule

Progress rate ¢: a ratio of the distance covered towards the optimum and the number of evaluations required to reach this distance.

Rechenberg analyzed the behavior of (1+1)-ES on 2 simple functions:
m Corridor function: f(x) = x7 if |x;| < 1fori € (2,...,D, otherwise fi(x) = oo

B Sphere function: f>(x) = ¥; x?
Findings:
B In both cases, the optimal step size ¢°?! is inversely proportional to the dimension of the space D (number of variables).
B The maximum progress rate ¢"* is also inversely proportional to D.
B For the optimal step sizes, the following probabilities of a successful mutation were obtained:
B oY) =1/(2) ~0.184
B pyfy ~ 0270
1/5 success rule: To obtain nearly optimal (local) performance of the (1+1)-ES in real-valued search spaces, tune the mutation step in such a way
that the (measured) success rate is about 1/5.
B If it is greater than 1/5, increase the mutation step o; if it is less, decrease o
In practice, the 1/5 success rule has been mostly superseded by more sophisticated methods. However, its conceptual insight remain

remarkably valuable.

P. Posik (© 2016 AOMB33EOA: Evolutionary Optimization Algorithms —23 / 40

11

(1+1)-ES with 1/5 rule

Algorithm 4: (1+1)-ES with 1/5 rule

Input: De N*,d~ /D +1
1 begin

2 x < Initialize()

3 while not TerminationCondition() do

4 xn — x+0oN(0,1) // mutation/perturbation

5 b < BetterThan(xy, x) // Mutation successful?
1

6 0<—L7<exp (Il(b)—%))d // 1/5 rule

7 if b then

8 | x<ay

B 1(b) is an indicator function:

1 iff bis true,
ﬂ(b)—{ 0 iff bis false.

B Other implementations are possible.

P. Posik (© 2016 AOMB33EOA: Evolutionary Optimization Algorithms —24 / 40

Self-adaptation
Self-adaptation:

B Strategy parameters are part of the chromosome! x = (x1,...,Xp,04,...,0p)
B Parameters undergo evolution together with the decision variables.
B Each individual holds information how it shall be mutated.

Example: assuming axis-parallel normal distribution is used,
B mutation of x = (x1,...,xp,01,...,0p) creates an offspring individual
¥ = (¥1,...,Xp, 01+, 0D)
by mutating each part in a different way:
o] « oi-exp(T-N(0,1)) xj < x;+0] - N(0,1)

B Intuition: a “bad” ¢’ probably generates bad x” and is eliminated by selection.

Remarks:

B An algorithm can adapt a global step size o and coordinate-wise step sizes separately, such that the resulting coordinate-wise st.
dev. is given as ¢ - 0;.

B The global step size may be adapted e.g. by the 1/5-rule.

P. Posik (© 2016 AOMB33EOA: Evolutionary Optimization Algorithms —25 / 40

12

Generalizations and issues

Generalizing from
B axis-parallel mutation distributions with D strategy parameters to

B general normal mutation distributions with full cov. matrix requires adaptation of } D(D + 1) strategy parameters!

Issues with self-adaptation: selection noise (the more parameters, the worse)!

B The intuition from the previous slide does not work much!

B A good offspring may be generated with poor strategy parameter settings (poor setting survives), or a bad offspring may be
generated with good parameter settings (good setting is eliminated).

Solutions: derandomization via

B reducing the number of mutation distribution: (1,A)-ES, (u/u, A)-ES, and
B accumulating info in time (evolution paths).

P. Posik (© 2016 AOMB33EOA: Evolutionary Optimization Algorithms —26 / 40

CMA-ES

Evolutionary strategy with covariance matrix adaptation [HOO01]:
B Currently, de facto standard in real-parameter optimization.
B (u/pw, A)-ES: recombinative, mean-centric
B Offspring is created by sampling from a single normal distribution.

B Successful mutation steps are used to adapt the mean x and the covariance matrix C of the distribution.
B Accumulates the successful steps over many generations.

-1

[HOO1] Nikolaus Hansen and Andreas Ostermeier. Completely derandomized self-adaptation in evolution strategies. Evolutionary Computation, 9(2):159-195, 2001.

P. Posik (© 2016 AOMB33EOA: Evolutionary Optimization Algorithms —27 / 40

13

CMA-ES Demo
CMA-ES on the Rosenbrock function:

3,

P. Posik © 2016

AOMB33EOA: Evolutionary Optimization Algorithms —28 / 40

CMA-ES Code (1)
CMA-ES is a complex, but carefully designed and tuned algorithm!

Really? It does not seem so from the pseudocode below...

Algorithm 5: CMA-ES

1 begin

2 Initialize: x € RP, o € IRE,C =1

3 while not TerminationCondition() do

4 M ¢+ SampleDistribution(A, N(x,0?C))
5 P < SelectBest (j1, M)

6 (x,0,C) + UpdateModel(x,c,C, P)

7 return x

Hm, ok, how is the Normal distribution actually sampled?

P. Pogik © 2016

14

AOMB33EOA: Evolutionary Optimization Algorithms —29 / 40

CMA-ES Code (2)
CMA-ES with the distribution sampling step expanded:

Algorithm 6: CMA-ES

1 begin

2 Initialize: x € RP,c e R?,C = 1I.

3 while not TerminationCondition() do
4 forkel,...Ado

5

L Zy F/\[(O,I)

1
X <~ x+0C2 X zi

P <+ SelectBest (jt, {zx, f(x))|1 <k <A}

(x,0,C) «+ UpdateModel(x, o, C,P)

return x

Remarks:

OK, that’s not that complex. What about the model update?

B All individuals exist in 2 “versions”: z; distributed as NV (0, I), and x; distributed as N (x, 02C).
B x; are used just as an intermediate step for evaluation!
B z; are used for model update via the population of selected parents P.

P. Posik © 2016

AOMB33EOA: Evolutionary Optimization Algorithms —30 / 40

CMA-ES Code (3)
CMA-ES with the model update step expanded:

Algorithm 7: CMA-ES

10

11

12

13

return x

1 begin

2 Initialize: x € RP,c € R?,C =1,s, = 0,5, = 0.
3 while not TerminationCondition() do

4 forkel,...Ado

5

Zg N(O,I)
X — x+¢7C% X Zp
P < SelectBest (i, {z, f(x))|1 <k <A})

se < (1—co)se +/co(2—co)/llw Y, wizk

z}€P

1
Se < (1 —ce)se +hor/cc(2 — co)\/Hw Z wiC2 zy

0 0 -expa/d <7HSVH 71>
P EWVO] o
C+ (1—c1+cp—cu)C+erses! +cy Z W C2z (C2)"

2} €P

2} €P

1
x4 x+cu0C2 Z Wk Zk

2z €P

// search path for o

// search path for C

// update o

// update C

// update x

And what are all those ¢y, ¢y, ¢y, ... ?

Remark: Two search paths, s, and s, are part of the algorithm state, together with x, ¢, and C. They accumulate the algorithm
moves accross iterations.

P. Posik (© 2016

15

AOMB33EOA: Evolutionary Optimization Algorithms — 31 / 40

CMA-ES Code
The full CMA-ES pseudocode:
Algorithm 8: CMA-ES

Given: D € Ny, A >5,u~ A/2, wy = w’(k)/):;:zl w' (k), w' (k) = log(A/2 4+ 1/2) — logrank(f (xx)), pw = 1/):;(;1 w%, co ~ pw/ (D + pw), d =1+ \/pw/D,
cc ™ (4+pw/D)/ (D +4+ 210 /D), c; =2/ (D?+ piw), ey = pwo/ (D* + i), cm = 1.

1 begin
2 Initialize: x € RP, 0 €]RQ,C =1I,50 =0,s, =0.
3 while not TerminationCondition() do
4 forkel,.../ A do
5 zp + N(0,I)
1
6 X x+0C2 Xz
7 P « SelectBest (i1, {z, f(x))|1 <k <A}
8 s¢ (1 —co)se + /o (2 —co)\/Tw Z Wy zg // search path for o
z}€P
1
9 sc + (1 —cc)se +hov/ec(2—ce) /1w Z wC2 zp // search path for C
z3€P
10 0 o-expo/d (&—1) // update o
P EWwve D
T Y cEanT

1 Ce (I—cy+cy —cu)CHoeysest +cu Y wC2z(C2z) // update C

z}€P

1
12 X x+cuoC2 Y wyzg // update x
L z3€P

13 | returnx

1 1 1
14 where hy = 1(||s¢|[2/D < 2+4/(D +1)), ¢, = c1(1 = h2)ec(2 — ¢¢), and C2 is the unique symmetric positive definite matrix obeying C2 x C2 = C. All c-coeficients are
<1

P. Posik (© 2016 AOMB33EOA: Evolutionary Optimization Algorithms —32 / 40

CMA-ES Summary
CMA-ES is quasi parameter-free:

B It has a lot of internal parameters, but almost all of them are carefully set by the algorithm itself.
B The user has to specify only

B initial solution x,
B initial step size o, and
B the number of offspring A (but even that can be set based on the search space dimension).
CMA-ES Variants:
B Reducing the local search character of CMA-ES:
B IPOP-CMA-ES: Restart CMA-ES several times, making the population twice as large each time.

B BIPOP-CMA-ES: Restart CMA-ES many times in 2 regimes: IPOP, and small-pop (spend similar number of evaluations in
IPOP and small-pop modes.

B Reducing the number of parameters to be adapted:
B L-CMA-ES: Smaller memory requirements, suitable for high-dimensional spaces, limited adaptation.
B Learning from unsuccessful mutations:

B Active CMA-ES: negative weights allowed during covariance update. Gotcha: C may lose positive definiteness!

P. Posik (© 2016 AOMB33EOA: Evolutionary Optimization Algorithms —33 / 40

16

Relations to other algorithms

Estimation of Distribution Algorithms (EDA):
B CMA-ES can be considered an instance of EDA.
B EDAs template: sample from probabilistic model, and update model based on good individuals (i.e., the same as CMA-ES uses).

Natural Evolution Strategies (NES):

B Idea: the update of all distribution parameters should be based on the same fundamental principle.
B NES proposed as more principled alternative to CMA-ES.
B Later it was found that CMA-ES actually implements the underlying NES principle.

Information Geometric Optimization (IGO):

B Framework unifying many successful algorithms from discrete and continuous domains.
B CMA-ES and NES can be derived as special instances of IGO.

P. Posik (© 2016 AOMB33EOA: Evolutionary Optimization Algorithms —34 / 40

Differential Evolution 35/ 40

Differential Evolution
Developed by Storn and Price [SP97].

B Simple algorithm, easy to implement.
B Unusual breeding pipeline.

Algorithm 9: DE Breeding Pipeline

Input: Population X with fitness in f.
Output: Offspring population Xy.

1 begin

2 XN — @

3 foreach x € X do

4 (xl,xz,x3) %Select(X,f,x)
5 u < Mutate(x, x1,x2)

6 XN < Recombine (1, x3)

7 XN + XnUBetter0f (x, xy)

8 return Xy

B Vectors x, x1, X2, x3 shall all be different, x1, x5, x3 chosen uniformly.
B For each population member x, an offspring x is created.
B xy replaces x in population if it is better.

[SP97] Rainer Storn and Kenneth Price. Differential evolution — a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 11(4):341-359, December 1997.

P. Posik (© 2016 AOMB33EOA: Evolutionary Optimization Algorithms —36 / 40

17

DE Mutation and Recombination
B Mutation and recombination:

u+x1+F(x;—x3), Fe(0,2)

g d iff rand; < CRord = Iang
N, x4q iffrand; > CRand d # Lang

B rand; ~ U(0,1), different for each dimension
B [,q is a random index of the dimension that is always copied from u
B 2D — 1 possible candidate points y

O S NUND W
: O
USRS SO S ST SO S SO
1 0 1 2 3 4 5 6 7
P. Posik © 2016 AOMB33EOA: Evolutionary Optimization Algorithms —37 / 40

DE Variants

Small variations of the base algorithm:

B DE/rand vs DE/best: the “best” variant variant uses the best of 4 parent vectors in place of x when generating the offspring.
B DE/./n: nis the number of difference vectors taken into account during mutation.
B DE/././binvs DE/././exp: binomial recombination (described above), exponential recombination (not described here)

Many adaptive variants: SaDE, JADE, ...

P. Posik (© 2016 AOMB33EOA: Evolutionary Optimization Algorithms —38 / 40

18

Summary 39 /40

Learning outcomes

After this lecture, a student shall be able to

B perform the mapping of chromosomes from binary to real space when using binary encoding for real-parameter optimization;

B describe and exemplify the effects of such a genotype-phenotype mapping on the neighborhood structures induced by mutation
and crossover;

B give examples and describe some mutation and crossover operators designed for spaces of real number vectors;

B explain the main features of ES and differences to GAs;

B explain the notation (/p}A)-ES;

B describe the differences between mutation with isotropic, axis-parallel, and general Gaussian distribution, including the relation
to the form of the covariance matrix, and the number of parameters that must be set/adapted for each of them;

B explain and use two simple methods of mutation step size adaptation (1/5 rule and self-adaptation);

B write a high-level pseudocode of CMA-ES and describe CMA-ES in the (y/pFA) notation;

B implement DE algorithm;

B explain the basic forms of DE mutation and crossover.

P. Posik (© 2016 AOMB33EOA: Evolutionary Optimization Algorithms —40 / 40

19

	Introduction
	Real EAs
	Contents

	Geno-Pheno Map
	Bit-flip mut.
	1p xover
	2p xover
	Summary
	Operators for real EAs
	Standard operators
	Advanced operators
	Generalized Generation Gap (G3) Algorithm
	Summary
	Evolution Strategies (ES)
	Intro
	Pipeline
	Gaussian Mutation
	Adaptive Mutation
	1/5 rule
	Self-adaptation
	Issues
	CMA-ES
	CMA-ES Demo
	CMA-ES Code (1)
	CMA-ES Code (2)
	CMA-ES Code (3)
	CMA-ES Code
	CMA-ES Summary
	Relations

	Differential Evolution
	Differential Evolution
	DE Variants

	Summary
	Learning outcomes

