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pParameter Control in Evolutionary Algorithms

An EA is a metaheuristic whose components need to be instantiated and properly tuned in order

to yield a fully functioning algorithm:

� components – representation, selection and replacement strategy, recombination and mutation

operators, ...

� strategy parameters – population size, probability of crossover and mutation, parameter of

selection, etc.

The values of these algorithms greatly determine whether the algorithm will find an optimal (or

near-optimal) solution, and whether it will find such a solution effectively.

Two major forms of setting the parameter values

� Parameter tuning – finding good values for the parameters before the run of the algorithm,

and then running the algorithm with these values, which remain fixed during the run.

� Parameter control – starts a run with initial parameter values that change during the run.

� � � � � � � � � � � � � � � � � � � � � � � � � � � Parameter Control



pParameter Tuning

Typically done by experimenting with different values and selecting the ones that give the best

results on the test problems at hand.

Technical drawbacks to parameter tuning:

� Parameters are not independent, but trying all different combinations systematically is practi-

cally impossible.

� It is heavily based on personal experience and is guided by a mixture of rules of thumb.

� The process of parameter tuning is time consuming, even if parameters are optimised one by

one, regardless of their interactions.

� For a given problem the selected parameter values are not necessarily optimal, even if the

effort made for setting them was significant.

� There are no generally good parameter settings since specific problems require specific setups

for satisfactory performance.

� � � � � � � � � � � � � � � � � � � � � � � � � � � Parameter Control



pParameter Tuning

Typically done by experimenting with different values and selecting the ones that give the best

results on the test problems at hand.

Technical drawbacks to parameter tuning:

� Parameters are not independent, but trying all different combinations systematically is practi-

cally impossible.

� It is heavily based on personal experience and is guided by a mixture of rules of thumb.

� The process of parameter tuning is time consuming, even if parameters are optimised one by

one, regardless of their interactions.

� For a given problem the selected parameter values are not necessarily optimal, even if the

effort made for setting them was significant.

� There are no generally good parameter settings since specific problems require specific setups

for satisfactory performance.

� A run of an EA is an intrinsically dynamic, adaptive process. Thus, different values of param-

eters might be optimal at different stages of the evolutionary process.

Ex.: Large mutation steps can be good in the early generations, helping the exploration.

Small mutation steps do better in the late generations fine-tuning the suboptimal solution.
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pParameter Tuning: F-Race

F-Race [Birattari02] – procedure that empirically evaluates a set of candidate configurations by

discarding bad ones as soon as statistically sufficient evidence is gathered against them.

� The process starts from a given finite pool of candidate configurations.

� If sufficient evidence is gathered that some candidate is inferior to at least another one, such

a candidate is dropped from the pool and the procedure is iterated over the remaining ones.

The methodology can be applied to repetitive problems – problems where many similar instances

appear over time.
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pF-Race: Formal Definition of the Configuration Problem

� Θ is the finite set of candidate configurations.

� I is the possibly infinite set of instances.

� PI is a probability measure over the set I of instances – indicates the probability that the

instance i is selected for being solved.

� t : I → R is a function associating to every instance the comput. time that is allocated to

it.

� c(θ, i) = c(θ, i, t(i)) is a random variable representing the cost of the best solution found by

running configuration θ on instance i for t(i) seconds.

� C ⊂ R is the range of c, that is, the possible values for the cost of the best solution found

in a run of a configuration θ ∈ Θ on an instance i ∈ I .

� PC is a probability measure over the set C: PC(c|θ, i) indicates the probability that c is the

cost of the best solution found by running for t(i) seconds configuration θ on instance i.

� C(θ) = C(θ|Θ, I, PI , PC, t) is the criterion that needs to be optimized with respect to θ.
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pF-Race: Formal Definition of the Configuration Problem

The configuration problem is formally described by the 6-tuple < Θ, I, PI , PC, t, C >.

The solution of this problem is the configuration θ∗ such that:

θ∗ = argminCθ(θ)

Here, the optimization of the expected value of the cost c(θ, i) is considered:

C(θ) = EI,C [c(θ, i)] =

∫
I

∫
C

c(θ, i)dPC(c|θ, i)dPI(i)

where the expectation is considered with respect to both PI and PC .
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pF-Race: Formal Definition of the Configuration Problem

The configuration problem is formally described by the 6-tuple < Θ, I, PI , PC, t, C >.

The solution of this problem is the configuration θ∗ such that:

θ∗ = argminCθ(θ)

Here, the optimization of the expected value of the cost c(θ, i) is considered:

C(θ) = EI,C [c(θ, i)] =

∫
I

∫
C

c(θ, i)dPC(c|θ, i)dPI(i)

where the expectation is considered with respect to both PI and PC .

� The analytical solution of the integrals is not possible since the measures of PI and PC are

not explicitly available.

� The integrals will be estimated in a Monte Carlo fashion on the basis of a training set of

instances.
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pIdea of Racing Algorithms

Brute force approach – estimate the quantities PC and PI by means of a sufficiently large

number of runs of each candidate on a sufficiently large set of training instances.

� The training set must be defined prior the computation

– how large?

� How many runs of each configuration on each instance

should be performed?

� The same computational resources are allocated to

each configuration – wasting time on poor configs!

Racing algorithm – provides a better allocation of computational resources among candidate

configurations and allows for a clean solution to the problems with fixing the number of instances

and the number of runs to be considered.

� Sequentially evaluates candidate configs and discards poor ones as soon as statistically suffi-

cient evidence is gathered against them.

� Elimination of the inferior candidates speeds up the procedure and allows to evaluate the

promising ones on more instances.

� As the evaluation proceeds, the race focuses more and more on the promising configurations.
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pF-Race: Algorithm

� k is the current step of the race process and n = |Θk−1| configurations are still in the race.

� i is a random sequence of training instances; ik is drawn from I according to PI , independently

for each k.

� ck(θ, i) is an array of k terms; c(θ, il) is the cost of the best solution found by configuration

θ on instance il.

For a given θ, the array ck of length k can be obtained from ck−1 by appending the cost

concerning the k-th instance in i.

� A block is n-variate random variable

(ck(θ1, il),c
k(θ2, il),. . . ,c

k(θn, il)) that cor-

responds to the computational results on

instance il for each configuration in the race

at step k.

� Null hypothesis – all possible rankings of the candidates within each block are equally likely.
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pF-Race: Algorithm

The optimization problem is tackled by generating a sequence Θ0 = Θ ⊇ Θ1 ⊇ Θ2 ⊇ . . .

The step from a set Θk−1 to Θk is realized as follows

1. At step k, a new instance ik is considered; each candidate θ ∈ Θk−1 still in the race is executed

on ik and each observed cost c(θ, ik) is appended to its ck−1(θ, i).

2. An aggregate comparison of the arrays ck(θ, i) for all θ ∈ Θk−1 is carried out by a statistical

test – non-parametric Friedman 2-way analysis of variance by ranks.

The null hypothesis being that all possible rankings of the candidates within each block are

equally likely.

3. If the null hypothesis is rejected, pairwise comparisons between the best candidate and each

other one are carried out by means of the t-test. All candidates that result significantly worse

than the best one are discarded.

Otherwise, all candidates in Θk−1 pass to Θk.
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pClassification of Control Techniques

The main criteria for classifying methods controlling the EA’s strategy parameters are

� What component/parameter is changed – representation, evaluation function, variation oper-

ators, selection, replacement, etc.

� How is the change made

− deterministic heuristic – the strategy parameter is modified in a fixed way without using

any feedback from the search. Typically, a time-varying rule is used that is activated at

predefined generations.

− feedback-based heuristic – some form of feedback from the search is used to trigger the

change of the strategy parameter and to specify the direction and magnitude of the change.

The updating mechanism is externally supplied. Example is the covariance matrix adapta-

tion in CMA-ES.

− self-adaptive – based on the idea of the evolution of evolution. The parameters to be

adapted are encoded in the chromosomes and are subject to crossover and mutation.

Example is the self-adaptation of mutation parameters in Evolution Strategies.

� Which evidence is used to make the change – monitoring performance of operators, diversity

of the population, etc.
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pParameter-less Genetic Algorithm: Motivation

Motivation – to make the EA an algorithm that is robust, efficient and easy-to-use.

� Typically, the EAs require quite a bit of expertise in order to make them work well for a

particular application.

� The user is not interested in tuning and fiddling the EA’s parameters for each single application.

He would be happy if he could get around somehow.

Parameter-less GA [Harik99] eliminates the following parameters when applying the algorithm

to a particular problem:

� population size,

� selection rate s – the amount of bias towards better individuals; usually expressed by a ratio

of sampling rates of individuals with the best and average fitness in the population.

� crossover probability pc – the amount of mixing.
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pParameter-less GA: Getting Rid of Selection Rate and Crossover Prob.

� Schema S – a template, which defines set of solutions from the search space with certain

specific similarities. The schema consists of 0s, 1s and wildcard symbols * (any value).

Schema properties – defining length, order, and fitness.

Example: schema S ={11*0*} covers strings 11000, 11001, 11100, and 11101

� A simplified growth ratio of schema S at generation t, considering only φ(S, t) the

effect of the selection operator on schema S at generation t and ǫ(S, t) the disruption factor

on schema S due to the crossover operator is

φ(S, t) · [1− ǫ(S, t)]

Under the conservative hypothesis that a schema is destroyed during the crossover we get

s(1− pc)

� Schema theorem: Short, low-order, above-average schemata receive exponentially increas-

ing trials in subsequent generations of a genetic algorithm.

We just need to ensure that the GA will obey the schema theorem and the growth ratio of building

blocks will be greater than 1.

� Setting s = 4 and pc = 0.5 gives a net growth ratio of 2.
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pStandard GA: Population Sizing

Whether the building blocks will mix efficiently in a single optimal solution is now a matter of

having an adequate population size

There are theoretical models for population sizing concluding that the population size should

be proportional to problem length and building blocks’s signal-to-noise ratios.

� For compact building blocks the required population size is reasonable.

� If the building blocks are not compact, then the population sizing requirements can be ex-

tremely large.

The models are difficult to apply in practice because they rely on parameters that are usually

unknown and are hard to estimate for real world problems.

Effects of improperly set population size

� Too small population size ⇒ quality penalty:

The GA will converge to sub-optimal solu-

tions.

� Too large population size ⇒ time penalty:

The GA will spend unnecessary computa-

tional resources.
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pParameter-less GA: Getting Rid of Population Sizing

The idea is to let the algorithm do the experimentation with population sizes automatically by

establishing a race among multiple populations of various sizes in a single GA’s run:

� Each population k > 1 is twice as large as the population k − 1.

� The smaller populations are given more function evaluations, thus the different populations

are at different stages of evolution.

� As time goes on, The smaller populations are eliminated and larger populations are created

automatically based on observed average average fitness of the populations.

If at any point in time, a larger population has an average fitness greater than that of a smaller

population, then the smaller population is destroyed.

− The rational for doing this is that in this situation it is very unlikely that the smaller

population will produce a fitter individual than the larger one.

� The coordination of the array of populations is implemented with a counter of base m, which

determines the proportion of fitness evaluations given to each of the simulated runs.
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pParameter-less GA: Coordination of Populations

� At each generation, the counter of base m =

4 is incremented, and the position of the

most significant digit changed during the in-

crement operation is noted. That position

indicates which population should be run.

� Since each population k is on the one hand

half as large as the population k + 1 and on

the other hand is allowed 4 times more gener-

ations than population k + 1 the population

k is allowed to spend twice the number of

fitness evaluations of population k + 1.

� When some population converges or its av-

erage fitness is less than the average fitness

of a larger population (due to a genetic drift

– a population does not converges due to an

insufficient selection pressure), it is removed

together with all of the smaller populations.

The counter is reset.
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