
Genetic Programming

Jǐŕı Kubaĺık
Department of Cybernetics, CTU Prague

http://cw.felk.cvut.cz/doku.php/courses/a0m33eoa/start



pContents

� Genetic Programming introduction

� Initialization

� Crossover operators

� Automatically Defined Functions

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pGenetic Programming (GP)

:: GP shares with GA the philosophy of survival and reproduction of the fittest and the analogy

of naturally occurring genetic operators.

:: GP differs from GA in a representation, genetic operators and a scope of applications.

:: GP is extension of the conventional GA in which the structures undergoing adaptation

are trees of dynamically varying size and shape representing hierarchical computer programs.

:: Applications

� learning programs,

� learning decision trees,

� learning rules,

� learning strategies,

� . . .

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pGP: Representation

:: All possible trees are composed of functions (inner nodes) and terminals (leaf nodes)

appropriate to the problem domain

� Terminals – inputs to the programs (indepen-

dent variables), real, integer or logical constants,

actions.

� Functions

− arithmetic operators (+, -, *, / ),

− algebraic functions (sin, cos, exp, log),

− logical functions (AND, OR, NOT),

− conditional operators (If-Then-Else,

cond?true:false),

− and others.

Example: Tree representation of a LISP

S-expression 0.23 ∗ Z +X − 0.78

:: Closure – each of the functions should be able to accept, as its argument, any value that may

be returned by any function and any terminal.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pGP: Standard Crossover

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pGP: Subtree-Replacing Mutation

:: Mutation replaces selected subtree with a randomly generated new one.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pExample of GP in Action: Trigonometric Identity

:: Task is to find an equivalent expression to cos(2x).

:: GP implementation:

� Terminal set T = {x, 1.0}.

� Function set F = {+,−, ∗,%, sin}.

� Training cases: 20 pairs (xi, yi), where xi are values evenly distributed in interval (0, 2π).

� Fitness: Sum of absolute differences between desired yi and the values returned by generated

expressions.

� Stopping criterion: A solution found that gives the error less than 0.01.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pExample of GP in Action: Trigonometric Identity cont.

1. run, 13th generation

(−(−1(∗(sinx)(sinx))))(∗(sinx)(sinx)))

which equals (after editing) to 1− 2 ∗ sin2x

2. run, 34th generation
(−1(∗(∗(sinx)(sinx))2))

which is just another way of writing the same expression.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pExample of GP in Action: Trigonometric Identity cont.

1. run, 13th generation

(−(−1(∗(sinx)(sinx))))(∗(sinx)(sinx)))

which equals (after editing) to 1− 2 ∗ sin2x

2. run, 34th generation
(−1(∗(∗(sinx)(sinx))2))

which is just another way of writing the same expression.

3. run, 30th generation

(sin (−(−2(∗ x 2))

(sin(sin(sin(sin(sin(sin(∗(sin (sin 1))

(sin 1))

)))))))))

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pExample of GP in Action: Trigonometric Identity cont.

1. run, 13th generation

(−(−1(∗(sinx)(sinx))))(∗(sinx)(sinx)))

which equals (after editing) to 1− 2 ∗ sin2x

2. run, 34th generation
(−1(∗(∗(sinx)(sinx))2))

which is just another way of writing the same expression.

3. run, 30th generation

(sin (−(−2(∗ x 2))

(sin(sin(sin(sin(sin(sin(∗(sin (sin 1))

(sin 1))

)))))))))

The expression on the second and third row returns a value almost equal to π/2 so the discovered

identity is

cos(2x) = sin(π/2− 2x).

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pGP: Constant Creation

In many problems exact real-valued constants are required to be present in the correct solution

(evolved program tree) =⇒ GP must have the ability to create arbitrary real-valued constant.

Ephemeral random constant R – a special terminal.

� Initialization – whenever the ephemeral random constant R is chosen for any endpoint of the

tree during the creation of the initial population, a random number of a specified data type

in a specified range is generated and attached to the tree at that point.

Each occurrence of this terminal symbol invokes a generation of a unique value.

� Once these values are generated and inserted into initial program trees, these constants remain

fixed.

� The numerous different random constants will become embedded in various subtrees in evolving

trees.

Other constants can be further evolved by crossing the existing subtrees, such a process being

driven by the goal of achieving the highest fitness.

The pressure of fitness function determines both the directions and the magnitudes of the

adjustments in numerical constants.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pGP Initialisation: Common Methods

GP needs a good tree-creation algorithm to create trees for the initial population and subtrees for

subtree mutation.

Required characteristics:

� Light computationally complex; optimally linear in tree size.

� User control over expected tree size.

� User control over specific node appearance in trees.

GROW method (each branch has depth ≤ D):

� nodes at depth d < Dmax randomly chosen

from F ∪ T ,

� nodes at depth d = Dmax randomly chosen

from T .

FULL method (each branch has depth = D):

� nodes at depth d < D randomly chosen from

function set F ,

� nodes at depth d = D randomly chosen from

terminal set T .

GROW(depth d, max depth D)

Returns: a tree of depth ≤ D − d
1 if (d = D) return a random terminal

2 else

3 choose a random func or term f

4 if (f is terminal) return f

5 else

6 for each argument a of f

7 fill a with GROW(d + 1, D)

8 return f

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pGP Initialisation: Common Methods

Characteristics of GROW:

� does not have a size parameter – does not allow the user to create a desired size distribution,

� does not allow the user to define the expected probabilities of certain nodes appearing in trees,

� does not give the user much control over the tree structures generated.

� there is no appropriate way to create trees with either a fixed or average tree size or depth.

RAMPED HALF-AND-HALF – GROW & FULL method each deliver half of the initial population.

D is chosen between 2 to 6,

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pGP Initialization: Probabilistic Tree-Creation Method

Probabilistic tree-creation method:

� An expected desired tree size can be defined.

� Probabilities of occurrence for specific functions and terminals within the generated trees can

be defined.

� Fast – running in time near-linear in tree size.

Definitions:

� T denotes a newly generated tree.

� D is the maximal depth of a tree.

� Etree is the expected tree size of T.

� F is a function set divided into terminals T and nonterminals N .

� p is the probability that an algorithm will pick a nonterminal.

� b is the expected number of children to nonterminal nodes from N .

� g is the expected number of children to a newly generated node in T.

g = pb + (1− p)(0) = pb

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pGP Initialization: Probabilistic Tree-Creation Method 1

PTC1 is a modification of GROW that

� allows the user to define probabilities of appearance of functions within the tree,

� gives user a control over expected desired tree size, and guarantees that, on average, trees

will be of that size,

� does not give the user any control over the variance in tree sizes.

Given:

� maximum depth bound D

� function set F consisting of N and T

� computed probability of choosing a nonterminal p

� probabilities qt and qn for each t ∈ T and n ∈ N

� arities bn of all nonterminals n ∈ N

� probability p of choosing a nonterminal over a
terminal given the expected tree size Etree cal-

culated according to

p =
1− 1

Etree∑
n∈N qnbn

PTC1(depth d)

Returns: a tree of depth ≤ D − d
1 if(d = D) return a terminal from T

(by qt probabilities)

2 else if(rand < p)

3 choose a nonterminal n from N

(by qn probabilities)

4 for each argument a of n

5 fill a with PTC1(d + 1)

6 return n

7 else return a terminal from T

(by qt probabilities)

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pProbabilistic Tree-Creation Method PCT1: Proof of p

� The expected number of nodes at depth d is Ed = gd, for g ≥ 0 (the expected number of

children to a newly generated node).

� Etree is the sum of Ed over all levels of the tree, that is

Etree =

∞∑
d=0

Ed =

∞∑
d=0

gd

From the geometric series, for g ≥ 0

Etree =

{ 1
1−g , if g < 1

∞, if g ≥ 1.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pProbabilistic Tree-Creation Method PCT1: Proof of p

� The expected number of nodes at depth d is Ed = gd, for g ≥ 0 (the expected number of

children to a newly generated node).

� Etree is the sum of Ed over all levels of the tree, that is

Etree =

∞∑
d=0

Ed =

∞∑
d=0

gd

From the geometric series, for g ≥ 0

Etree =

{ 1
1−g , if g < 1

∞, if g ≥ 1.

� The expected tree size Etree (we are interested in the case that Etree is finite) is determined

solely by g, the expected number of children of a newly generated node.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pProbabilistic Tree-Creation Method PCT1: Proof of p

� The expected number of nodes at depth d is Ed = gd, for g ≥ 0 (the expected number of

children to a newly generated node).

� Etree is the sum of Ed over all levels of the tree, that is

Etree =

∞∑
d=0

Ed =

∞∑
d=0

gd

From the geometric series, for g ≥ 0

Etree =

{ 1
1−g , if g < 1

∞, if g ≥ 1.

� The expected tree size Etree (we are interested in the case that Etree is finite) is determined

solely by g, the expected number of children of a newly generated node.

Since g = pb, given a constant, nonzero b (the expected number of children of a nonterminal

node from N), a p can be picked to produce any desired g.

Thus, a g (and hence a p) can be picked to determine any desired Etree.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pProbabilistic Tree-Creation Method PCT1: Proof of p

� From

Etree =
1

1− pb
we get

p =
1− 1

Etree

b

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pProbabilistic Tree-Creation Method PCT1: Proof of p

� From

Etree =
1

1− pb
we get

p =
1− 1

Etree

b

After substituting
∑

n∈N qnbn for b we get

p =
1− 1

Etree∑
n∈N qnbn

.

� User can bias typical bushiness of a tree by adjusting the occurrence probabilities of nonter-

minals with large fan-outs and small fan-outs, respectively.

Example: Nonterminal A has four children branches, nonterminal B has two children branches.

pA > pB pA < pB

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pGP: Selection

Commonly used are the fitness proportionate roulette wheel selection or the tournament selection.

Greedy over-selection is recommended for complex problems that require large populations

(> 1000) – the motivation is to increase efficiency by increasing the chance of being selected to

the fitter individuals in the population

� rank population by fitness and divide it into two groups:

− group I: the fittest individuals that together accounting for x% of the sum of fitness values

in the population,

− group II: remaining less fit individuals.

� 80% of the time an individual is selected from group I in proportion to its fitness; 20% of the

time, an individual is selected from group II.

� For population size = 1000, 2000, 4000, 8000, x = 32%, 16%, 8%, 4%.

%’s come from rule of thumb.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pGP: Selection

Commonly used are the fitness proportionate roulette wheel selection or the tournament selection.

Greedy over-selection is recommended for complex problems that require large populations

(> 1000) – the motivation is to increase efficiency by increasing the chance of being selected to

the fitter individuals in the population

� rank population by fitness and divide it into two groups:

− group I: the fittest individuals that together accounting for x% of the sum of fitness values

in the population,

− group II: remaining less fit individuals.

� 80% of the time an individual is selected from group I in proportion to its fitness; 20% of the

time, an individual is selected from group II.

� For population size = 1000, 2000, 4000, 8000, x = 32%, 16%, 8%, 4%.

%’s come from rule of thumb.

Example: Effect of greedy over-selection for the 6-multiplexer problem

Population size I(M,i,z) without over-selection I(M,i,z) with over-selection

1,000 343,000 33,000

2,000 294,000 18,000

4,000 160,000 24,000

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pGP: Crossover Operators

Standard crossover operators used in GP, like standard 1-point crossover, are designed to ensure

just the syntactic closure property.

� On the one hand, they produce syntactically valid children from syntactically valid parents.

� On the other hand, the only semantic guidance of the search is from the fitness measured by

the difference of behavior of evolving programs and the target programs.

This is very different from real programmers’ practice where any change to a program should

pay heavy attention to the change in semantics of the program.

To remedy this deficiency in GP genetic operators making use of the semantic information has

been introduced:

� Semantically Driven Crossover (SDC)
[Beadle08] Beadle, L., Johnson, C.G.: Semantically Driven Crossover in Genetic Programming, 2008.

� Semantic Aware Crossover (SAC)
[Nguyen09] Nguyen, Q.U. et al.: Semantic Aware Crossover for Genetic Programming: The Case for Real-Valued Function Regression, 2009.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pGP: Semantically Driven Crossover

� Applied to Boolean domains.

� The semantic equivalence between parents and their children is checked by transforming the

trees to reduced ordered binary decision diagrams (ROBDDs).

Eliminates two types of introns (code that does not contribute to the fitness of the program)

− Unreachable code – (IF A1 D0 (IF A1 (AND D0 D1 ) D1))

− Redundant code – AND A1 A1

Trees are considered semantically equivalent if and only if they reduce to the same ROBDDs.

� If the children are semantically equivalent to their parents then they are not copied to the next

generation – the crossover is repeated until semantically non-equivalent children are produced.

� This way the semantic diversity of the population is increased.

SDC was reported useful in increasing GP performance as well as reducing code bloat (compared

to GP with standard Koza’s crossover).

� SDC significantly reduces the depth of programs (smaller programs).

� SDC average maximum score is significantly higher than the standard GP.

� SDC significantly increases the standard deviation of score – SDC algorithm is performing

wider search, yielding better results.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pGP: Semantic Aware Crossover

� Applied to real-valued domains.

� Determining semantic equivalence between two real-valued expressions is NP-hard.

� Approximate semantics are calculated – the compared expressions are measured against a

random set of points sampled from the domain.

Two trees are considered semantically equivalent if the output of the two trees on the random

sample set are close enough – subject to a parameter ε called semantic sensitivity.

if (Abs(output(P1)− output(P2)) < ε)

then return "P1 is semantically equivalent to P2"

Equivalence checking is used both for individual trees and subtrees.

� Scenario for using the semantic information – motivation is to encourage individual trees to

exchange subtrees that have different semantics.

Constraint crossover:

− Crossover points at subtrees to be swapped are found at random in the two parental trees.

− If the two subtrees are semantically equivalent, the operator is forced to be executed on

two new crossover points.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pGP: Semantic Aware Crossover

Constraint crossover:

1 choose at random crossover points at Subtree1 in P1, and at Subtree2 in P2

2 if (Subtree1 is not equivalent with Subtree2) execute crossover

3 else

4 choose at random crossover points at Subtree1 in P1, and Subtree2 in P2

5 execute crossover

Semantic guidance on the crossover (SAC) was reported

� to improve GP in terms of the number of successful runs in solving a class of real-valued

symbolic regression problem,

� to increase the semantic diversity of population,

� to carry out much fewer semantically equivalent crossover events than standard GP,

Given that in almost all such cases the children have identical fitness with their parents, SAC

is more semantic exploratory than standard GP.

� to help reduce the crossover destructive effect.

SAC is more fitness constructive than standard GP – the percentage of crossover events

generating a better child from its parents is significantly higher in SAC.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pAutomatically Defined Functions: Motivation

Hierarchical problem-solving (”divide and conquer”) may be advantageous in solving large

and complex problems because the solution to an overall problem may be found by decomposing it

into smaller and more tractable subproblems in such a way that the solutions to the subproblems

are reused many times in assembling the solution to the overall problem.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pAutomatically Defined Functions: Motivation

Hierarchical problem-solving (”divide and conquer”) may be advantageous in solving large

and complex problems because the solution to an overall problem may be found by decomposing it

into smaller and more tractable subproblems in such a way that the solutions to the subproblems

are reused many times in assembling the solution to the overall problem.

Automatically Defined Functions (Koza94) – idea similar to reusable code represented by

subroutines in programming languages.
� Reuse eliminates the need to ”reinvent the wheel” on each occasion when a particular sequence

of steps may be useful.

� Subroutines are reused with different instantiation of dummy variables.

� Reuse makes it possible to exploit a problem’s modularities, symmetries and regularities.

� Code encapsulation – protection from crossover and mutation.

� Simplification – less complex code, easier to evolve.

� Efficiency – acceleration of the problem-solving process (i.e. the evolution).

[Koza94] Genetic Programming II: Automatic Discovery of Reusable Programs, 1994

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pAutomatically Defined Functions: Structure of Programs with ADFs

Function defining branches (ADFs) – each ADF resides in a separate function-defining branch.

Each ADF

� can posses zero, one or more formal parame-

ters (dummy variables),

� belongs to a particular individual (program)

in the population,

� may be called by the program’s result-

producing branch(es) or other ADFs.

Typically, the ADFs are invoked with different

instantiations of their dummy variables.

Result-producing branch (RPB) – ”main” program (Can be one or more).

The RPBs and ADFs can have different function and terminal sets.

ADFs as well as RPBs undergo the evolution through the crossover and mutation operations.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pADF: Tree Example for Symbolic Regression of Real-valued Functions

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pADF: Symbolic Regression of Even-Parity Functions

Even-n-parity function of n Boolean arguments returns true if the number of false arguments

is even and returns false otherwise.

� function is uniquely specified by the value of the function for each of the 2n possible combi-

nations of its n arguments.

Even-3-parity – the truth table has 23 = 8 rows.

D2 D1 D0 Output

0 0 0 0 1

1 0 0 1 0

2 0 1 0 0

3 0 1 1 1

4 1 0 0 0

5 1 0 1 1

6 1 1 0 1

7 1 1 1 0

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pEven-3-Parity Function: Blind Search vs. Simple GP

Experimental setup:

� Function set: F = {AND, OR, NAND, NOR}

� The number of internal nodes fixed to 20.

� Blind search – randomly samples 10,000,000 trees

� GP without ADFs

− Population size M = 50.

− Number of generations G = 25.

− A run is terminated as soon as it produces a correct solution.

− Total number of trees generated 10,000,000.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pEven-3-Parity Function: Blind Search vs. Simple GP

Experimental setup:

� Function set: F = {AND, OR, NAND, NOR}

� The number of internal nodes fixed to 20.

� Blind search – randomly samples 10,000,000 trees

� GP without ADFs

− Population size M = 50.

− Number of generations G = 25.

− A run is terminated as soon as it produces a correct solution.

− Total number of trees generated 10,000,000.

Results – number of times the correct function appeared in 10,000,000 generated trees:

Blind search 0

GP without ADFs 2

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pEven-3-Parity Function: Blind Search vs. Simple GP

Log-log scale graph of the number of trees that must be processed per correct solution for blind

search vs. GP for 80 Boolean functions with three arguments.

Points below the 45◦ line represent functions solved easily by GP than by blind search.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pEven-3-Parity Function: Blind Search vs. Simple GP

Log-log scale graph of the number of trees that must be processed per correct solution for blind

search vs. GP for 80 Boolean functions with three arguments.

Effect of using larger populations in GP.

� M = 50: 999,750 processed ind. per solution

� M = 100: 665,923

� M = 200: 379,876

� M = 500: 122,754

� M = 1000: 20,285

Conclusion: The performance advantage of GP over blind search increases for larger population

sizes – again, it demonstrates the importance of a proper choice of the population size.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pComparison of GP without and with ADFs: Even-4-Parity Function

Common experimental setup:

� Function set: F = {AND, OR, NAND,

NOR}

� Population size: 4000

� Number of generations: 51

� Number of independent runs: 60 ∼ 80

Setup of the GP with ADFs:

� ADF0 branch

− Function set: F={AND, OR, NAND, NOR}
− Terminal set: A2 = {ARG0, ARG1}

� ADF1 branch

− Function set: F = {AND, OR, NAND, NOR}
− Terminal set: A3 = {ARG0, ARG1, ARG2}

� Value-producing branch

− Function set: F={AND, OR, NAND, NOR,

ADF0, ADF1}
− Terminal set: T4 = {D0, D1, D2, D3}

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pObserved GP Performance Parameters

Performance parameters:

� P (M, i) – cumulative probability of success for all the generations between generation 0 and

i, where M is the population size.

� I(M, i, z) – number of individuals that need to be processed in order to yield a solution with

probability z (here z = 99%).

For the desired probability z of finding a solution by generation i at least once in R runs the

following holds

z = 1− [1− P (M, i)]R.

Thus, the number R(z) of independent runs required to satisfy the success predicate by

generation i with probability z = 1− ε is

R(z) = [
log ε

log(1− P (M, i))
].

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pGP without ADFs: Even-4-Parity Function

GP without ADFs is able to solve the even-3-parity function by generation 21 in all of the 66

independent runs.

GP without ADFs on even-4-parity problem (based on 60 independent runs)

� Cumulative probability of success, P (M, i),

is 35% and 45% by generation 28 and 50,

respectively.

� The most efficient is to run GP up to the

generation 28 – if the problem is run through

to generation 28, processing a total of

4,000 × 29 gener × 11 runs = 1,276,000

individuals is sufficient to yield a solution with

99% probability.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pGP without ADFs: Even-4-Parity Function

An example of solution with 149 nodes.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pGP with ADFs: Even-4-Parity Function

GP with ADFs on even-4-parity problem (based on 168 independent runs)

� Cumulative probability of success, P (M, i),

is 93% and 99% by generation 9 and 50, re-

spectively.

� If the problem is run through to generation

9, processing a total of

4,000 × 10 gener × 2 runs = 80,000

individuals is sufficient to yield a solution with

99% probability.

This is a considerable improvement in performance compared to the performance of GP without

ADFs.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pGP with ADFs: Even-4-Parity Function

An example of solution with 74 nodes.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pGP with ADFs: Even-4-Parity Function

An example of solution with 74 nodes.

� ADF0 defined in the first branch implements two-

argument XOR function (odd-2-parity function).

� Second branch defines three-argument ADF1. It has

no effect on the performance of the program since it is

not called by the value-producing branch.

� VPB implements a function equivalent to

ADF0 (ADF0 D0 D2) (EQV D3 D1)

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pGP with Hierarchical ADFs

Hierarchical form of automatic function definition – any function can call upon any other already-

defined function.

� Hierarchy of function definitions where any function can be defined in terms of any combination

of already-defined functions.

� All ADFs have the same number of dummy arguments. Not all of them have to be used in a

particular function definition.

� VPB has access to all of the already defined functions.

Setup of the GP with hierarchical ADFs:

� ADF0 branch

Functions: F={AND, OR, NAND, NOR}, Terminals: A2 = {ARG0, ARG1, ARG2}

� ADF1 branch

Functions: F = {AND, OR, NAND, NOR, ADF0}, Terminals: A3 = {ARG0, ARG1, ARG2}

� Value-producing branch

Functions: F={AND, OR, NAND, NOR, ADF0, ADF1}, Terminals: T4 = {D0, D1, D2, D3}

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pGP with Hierarchical ADFs: Even-4-Parity Function

An example of solution with 45 nodes.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pGP with Hierarchical ADFs: Even-4-Parity Function

An example of solution with 45 nodes.

� ADF0 defines a two-argument XOR function of vari-

ables ARG0 and ARG2 (it ignores ARG1).

� ADF1 defines a three-argument function that reduces

to the two-argument equivalence function of the form

(NOT (ADF0 ARG2 ARG0))

� VPB reduces to

(ADF0 (ADF1 D1 D0) (ADF0 D3 D2))
Value-producing branch

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming



pReading

� Poli, R., Langdon, W., McPhee, N.F.: A Field Guide to Genetic Programming, 2008,

http://www.gp-field-guide.org.uk/

� Koza, J.: Genetic Programming: On the Programming of Computers by Means of Natural

Selection, MIT Press, 1992.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Genetic Programming


