
Grammatical Evolution

Jǐŕı Kubaĺık
Department of Cybernetics, CTU Prague

http://cw.felk.cvut.cz/doku.php/courses/a0m33eoa/start

pContents

� GP and ”closure” problem

− Strongly-typed GP

� Grammatical Evolution

− Representation and genotype-phenotype mapping

− Crossover operators

− Automatically defined functions

− Examples: Symbolic regression, Artificial ant problem

� Grammatical Evolution

pGP and Closure Problem: Motivation Example

Closure - any non-terminal should be able to handle as an argument any data type and value

returned from a terminal or non-terminal.

Fuzzy-rule based classifier consists of fuzzy if-then rules of type

IF(x1 is medium) and (x3 is large) THEN class = 1 with cf = 0.73

where

� Linguistic terms – small, medium small, medium, medium large, large,

� Fuzzy membership functions – approximate the confidence in that the crisp value is represented

by the linguistic term.

� Grammatical Evolution

pGP and Closure Problem: Motivation Example

A syntactically correct tree representing a classifier as a disjunction of the three rules:

� IF(x1 is small) THEN class = 1 with cf = 0.67,

� IF(x2 is large) THEN class = 2 with cf = 0.89,

� IF(x1 is medium) and (x3 is large) THEN class = 1 with cf = 0.73.

� Grammatical Evolution

pGP and Closure Problem: Motivation Example

Using simple subtree-swapping crossover or subtree-regeneration mutation an invalid tree that

does not represent a syntactically correct rule base can be generated.

Obviously, this happens due to the fact that the closure constraint does not hold here.

Standard GP is not designed to handle a mixture of data types.

� Grammatical Evolution

pGP and Closure Problem: Motivation Example

Using simple subtree-swapping crossover or subtree-regeneration mutation an invalid tree that

does not represent a syntactically correct rule base can be generated.

Obviously, this happens due to the fact that the closure constraint does not hold here.

Standard GP is not designed to handle a mixture of data types.

What can we do to get around the problem with the closure constraint?

� Grammatical Evolution

pClosure with Avoiding Multiple Data Types

Example: Boolean data type

� Avoid using predicates such as FOOD-AHEAD, LESS-THAN, which return Boolean values.

� Instead, use branching constructs such as IF-FOOD-AHEAD or IF-LESS-THAN, which return

real values.

Real valued data are treated as Boolean considering a subset of the reals to be ”true” and its

complement to be ”false”.

For example, an IF-LESS-THAN construct evaluates and returns its second argument if the

first argument is less than zeroand evaluates and returns its third argument otherwise.

However, sometimes there is no way to avoid introducing multiple data types, because it might

not be possible to transform one data type to another.

� Grammatical Evolution

pClosure with Multiple Data Types

Dynamic typing - uses data types at program execution time to allow programs to handle data

differently based on their types.

1. Functions that perform different actions with different argument types.

Applicable when there are natural ways to cast any of the data types to any other.

Example: data types - real and complex

Again, often there are not natural ways to cast from one data type to another (for ex. 3D

vector and 4x2 matrix).

2. Functions that signal an error when the arguments are of inconsistent type and assign an

infinitely bad evaluation to this parse tree.

This can be terribly inefficient, spending most of the time evaluating illegal trees.

� Grammatical Evolution

pStrongly-Typed Genetic Programming

STGP - defines syntax of evolved tree structures by specifying the data types of each argument

of each non-terminal and the data types returned by each terminal and non-terminal.

� prevents generating illegal individuals,

� quite a big overhead =⇒ inefficient for manipulating large trees.

Any other elegant way to get around the closure constraint?

� Grammatical Evolution

pGrammatical Evolution

Grammatical Evolution (GE) – a grammatical-based GP system that can evolve complete
programs in an arbitrary language using a variable-length binary/integer strings.

� The evolutionary process is performed on variable-length binary strings.

� A genotype-phenotype mapping process is used to generate programs (expression trees)

in any language by using the binary strings to select production rules in a Backus-Naur form

(BNF) grammar definition.

� By the use of the mapping between linear chromosomes and programs the ”closure” problem

is overcome, only valid programs are generated.

The syntactically correct programs are evaluated by a fitness function.

� Grammatical Evolution

pGrammatical Evolution

Grammatical Evolution (GE) – a grammatical-based GP system that can evolve complete
programs in an arbitrary language using a variable-length binary/integer strings.

� The evolutionary process is performed on variable-length binary strings.

� A genotype-phenotype mapping process is used to generate programs (expression trees)

in any language by using the binary strings to select production rules in a Backus-Naur form

(BNF) grammar definition.

� By the use of the mapping between linear chromosomes and programs the ”closure” problem

is overcome, only valid programs are generated.

The syntactically correct programs are evaluated by a fitness function.

A user can specify and modify the grammar, whilst ignoring the task of designing
specific genetic search operators.

� Grammatical Evolution

pBackus-Naur Form

Backus-Naur form (BNF) is a notation for expressing the grammar of a language in the form

of production rules.

BNF is represented by the tuple {N, T, P, S}, where

� T is a set of terminals – items that can appear in the language (+, -, X , ...),

� N is a set of nonterminals – items that can be further expanded into one or more terminals

or nonterminals,

� P is a set of production rules that map the elements of N to T ,

� S is a start symbol that is a member of N .

Remark: Do not mistake terminals/nonterminals used in GP for terminals/nonterminals used in

GP!

� Grammatical Evolution

pBNF: Arithmetical expressions

N = {expr, op, preop} P : <expr> ::= <expr><op><expr> (0)

T = {sin,+,−, /, ∗, X, 1.0, (,)} | (<expr><op><expr>) (1)

S = 〈expr〉 | <pre-op>(<expr>) (2)

| <var> (3)

<op> ::= + (0)

| - (1)

| / (2)

| ∗ (3)

<pre-op> ::= cos (0)

<var> ::= X (0)

| 1.0 (1)

Each nonterminal has one or more possible ways of expansion.

Example of a tree compliant with the BNF.

� Grammatical Evolution

pGenotype-Phenotype Mapping Process: Modulo Rule

Variable-length binary chromosomes

11011100|11110000|11011100|...|11100110

are transcribed to codons (a consecutive group of 8 bits encoding an integer number)

220|240|220|...|102.

The codons are used in a mapping function to select an appropriate production rule from

the BNF definition to expand a given nonterminal using the following mapping function

rule=(codon integer value)

modulo

(number of rules for the current nonterminal)

This implies that only syntactically correct programs can be generated!!!

� Grammatical Evolution

pGenotype-Phenotype Mapping Process: Modulo Rule

Example: Assume that a nonterminal <op> is to be expanded, and the codon being read produces

the integer 6.

There are four production rules to choose from

<op> ::= + (0)

| - (1)

| / (2)

| ∗ (3)

Then

6 modulo 4 = 2

would select rule (2).

� Grammatical Evolution

pGenotype-Phenotype Mapping Process: Wrapping

Mapping finishes when all of the nonterminals have been expanded.

During the genotype-phenotype mapping process it is possible for individuals to run out of codons

and in this case so called wrapping is used – the chromosome is being traverse multiple times,

so the codons are reused several times.

Each time the same codon is expressed

� it will always generate the same integer value,

� but depending on the current nonterminal to which it is being applied, it may result in the

selection of a different production rule.

The codon 240 can be read one time to expand the nonterminal <expr>, another time to

expand the nonterminal <pre-op>, etc.

chromosome: 220|240|220|...|102.

A maximum number of wrapping events is specified – if an incomplete mapping occurs after the

specified number of wrapping events, the individual is assigned the lowest possible fitness value.

� To reduce the number of invalid individuals in the population, a steady-state replacement is

used.

� Grammatical Evolution

pGenotype-Phenotype Mapping Process: Example

� Grammatical Evolution

pGrammatical Evolution: Genetic Code Degeneracy

Neutral mutations – mutations that have no effect on the phenotypic fitness of an individual.

� cause diversity within equally fit individuals in the search space.

Adaptive mutations – mutations that change the phenotype.

� explore the solution space.

Degenerate genetic code – a genetic code with redundancy.

� Each codon can represent a number of distinct integer values – many of these values can

represent the same production rule.

Various genotypes can represent the same phenotype, thus facilitating the mainte-

nance of genetic diversity within a population.

Example: Subtle changes in the genotype may have no effect on the phenotype.

A rule for operator selection:

<op> ::= + (0)

| - (1)

| / (2)

| ∗ (3)

If the current codon value were 8, then

8 modulo 4 = 2

would select rule (0); the same rule that would be

selected by codon value 4, 12, 16, etc.

� Grammatical Evolution

pGrammatical Evolution: 1-point Crossover

Ripple effect – a single crossover event can remove any number of subtrees to the right of the

crossover point.

� It is more exploratory than the subtree

crossover used in GP.

� It transmits on average half of the genetic

material for each parent,

� It is equally recombinative regardless of the

size of the individuals involved,

The subtree crossover exchanges less and less

genetic material as the trees are growing.

� It is less likely to get trapped in a local opti-

mum than the subtree crossover.

The head sequence of codons does not change its meaning, while the tale sequence may or may not

change its interpretation (the function of a gene depends on the genes that precede it) implying

a limited exploitation capability of the recombination operation.

� Grammatical Evolution

pGrammatical Evolution: Evolutionary Algorithm

Typically, the search is carried out by an EA. However, any search method with the ability to

operate over variable-length binary strings could be employed.

� Grammatical Differential Evolution,

� Grammatical Swarm.

� Grammatical Evolution

pGrammatical Evolution for Symbolic Regression

The grammar used

N = {expr, op, preop} P : <expr> ::= <expr><op><expr> (0)

T = {sin, cos, exp, log, | (<expr><op><expr>) (1)

+,−, /, ∗, X, 1.0, (,)} | <pre-op>(<expr>) (2)

S = 〈expr〉 | <var> (3)

<op> ::= + (0)

| - (1)

| / (2)

| ∗ (3)

<pre-op> ::= sin (0)

| cos (1)

| exp (2)

| log (3)

<var> ::= X (0)

| 1.0 (1)

� Grammatical Evolution

pGrammatical Evolution for Symbolic Regression

Experimental setup:

� Grammatical Evolution

pGrammatical Evolution for Symbolic Regression

Results: GE compared to standard GP.

� GE successfully found the target function.

� GP slightly outperforms GE – this might be attributed to more ”careful” initialization of the

initial population in the GP.

� Grammatical Evolution

pGrammatical Evolution for Artificial Ant Problem

Ant capabilities

� detection of the food right in front of him in

direction he faces.

� actions observable from outside

− MOVE – makes a step and eats a food piece

if there is some,

− LEFT – turns left,

− RIGHT – turns right,

− NOP – no operation.

Goal is to find a strategy that would navigate an ant through the grid so that it finds all the food

pieces in the given time (600 time steps).

Santa Fe trail

� 32× 32 toroidal grid with 89 food pieces.

� Obstacles: 1×, 2× strait; 1×, 2×, 3× right/left.

� Grammatical Evolution

pGrammatical Evolution for Artificial Ant Problem

The grammar used

N = {code, line, if -statement, op} P : <code> ::= <line> (0)

T = {left(), right(),move(), | <code><line> (1)

food ahead, else, if, {, }, (,), ; } <line> | <if-statement> (0)

S = 〈code〉 | <op> (1)

<if-statement> ::= if (food ahead()) (0)

{<line>}
else

{<line>}
<op> ::= left() (0)

| right() (1)

| move() (2).

� Grammatical Evolution

pGrammatical Evolution for Artificial Ant Problem

Experimental setup:

� Grammatical Evolution

pGrammatical Evolution for Artificial Ant Problem

GE was successful at finding a solution to the Santa Fe trail.

� Solutions have a form of a multiline code.

GE outperforms GP:

� The left side figure shows the performance of the GP using so-

lution length and the number of food pieces eaten in the fitness.

� The right side figure shows the performance of the GP using just

the number of food pieces eaten in the fitness measure.

move();

left();

if(food ahead())

left();

else

right();

right();

if(food ahead())

move();

else

left();

Each solution is executed in a

loop until the number of time

steps allowed is reached.

� Grammatical Evolution

pGrammatical Evolution and Automatically Defined Functions

Three approaches illustrating the possibilities to adopt the principles of automatically capturing

modularity from GP

1. Grammatical Evolution by Grammatical Evolution or meta-Grammar GE (GE)2

� the input grammar is used to specify the construction of another syntactically correct

grammar, which is then used in a mapping process to construct a solution.

2. GE grammar with the ability to define one ADF.

3. GE grammar with the ability to define any number of ADFs.

� Grammatical Evolution

pGrammatical Evolution by Grammatical Evolution

(GE)2 is a variant of GE which evolves the input grammar itself, thus it has an ability to auto-

matically define and evolve a number of ADFs.

� The meta grammar dictates the construction of the solution grammar.

� Two separate, variable-length binary chromosomes are used

− Solution grammar chromos. – to generate the solution grammar from the meta grammar.

− Solution structure chromosome – to generate the solution itself.

� Crossover operates between homol-

ogous chromosomes.

� The solution grammar and the

structure of the solution are evolved

simultaneously.

� Grammatical Evolution

pGrammatical Evolution by Grammatical Evolution

Example: Meta grammar for the artificial ant problem.

� adf ? () is a function call to a defined function.

A codon from the solution chromosome is used to select which function is called.

In a solution grammar the multiple defined ADFs are post-proceed to make each function signature

unique.

� Grammatical Evolution

pGE Grammar with one ADF

A header of a single ADF, adf0(), is defined so only a body of this particular ADF can be

generated using the chromosome.

� Grammatical Evolution

pGE Grammar with Multiple ADFs

A number of ADFs can be generated via the non-terminal <adfs> using the chromosome.

adf() is expanded to enumerate all the allowed ADFs.

� Grammatical Evolution

pGE with ADFs: Results on Santa Fe Ant Trail

Irrespective of the ADF representation, the presence of ADFs alone is sufficient to significantly

improve performance of the GE.

� Grammatical Evolution

pReading

� Poli, R., Langdon, W., McPhee, N.F.: A Field Guide to Genetic Programming, 2008

http://www.gp-field-guide.org.uk/

� O’Neill, M., Ryan, C.: Grammatical Evolution. IEEE Transactions on Evolutionary Computa-

tion, VOL. 5, NO. 4, AUGUST 2001

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=942529

� Grammatical-Evolution.org

http://www.grammatical-evolution.org/pubs.html

� Grammatical Evolution

