
Parameter Control in Evolutionary Algorithms

Jǐŕı Kubaĺık

Department of Cybernetics, CTU Prague

http://cw.felk.cvut.cz/doku.php/courses/a0m33eoa/start

pAlgorithm Configuration: Motivation

Often, finding performance-optimizing parameter configurations of heuristic algorithms

requires considerable effort. In many cases, this task is performed manually in an ad-hoc

way.

Automating this task is of high practical relevance in several contexts:

� Development of complex algorithms - setting the parameters of a heuristic algorithm is

a highly labour-intensive task, and indeed can consume a large fraction of overall development

time. The use of automated algorithm configuration methods can lead to significant time

savings and potentially achieve better results than manual, ad-hoc methods.

� Empirical studies, evaluations, and comparisons of algorithms - a central question

in comparing heuristic algorithms is whether one algorithm outperforms another because it is

fundamentally superior, or because its developers more successfully optimized its parameters.

Automatic algorithm configuration methods can mitigate this problem of unfair comparisons

and thus facilitate more meaningful comparative studies.

� Practical use of algorithms - the ability of complex heuristic algorithms to solve large and

hard problem instances often depends critically on the use of suitable parameter settings. End

users often have little or no knowledge about the impact of an algorithm’s parameter settings

on its performance, and thus simply use default settings. Automatic algorithm configuration

methods can be used to improve performance in a principled and convenient way.

� � ParamILS

pParameter Tuning

Typically done by experimenting with different values and selecting the ones that give the best

results on the test problems at hand.

Technical drawbacks to parameter tuning:

� Parameters are not independent, but trying all different combinations systematically is practi-

cally impossible.

� It is heavily based on personal experience and is guided by a mixture of rules of thumb.

� The process of parameter tuning is time consuming, even if parameters are optimised one by

one, regardless of their interactions.

� For a given problem the selected parameter values are not necessarily optimal, even if the

effort made for setting them was significant.

� There are no generally good parameter settings since specific problems require specific setups

for satisfactory performance.

� Parameter Control

pParameter Tuning

Typically done by experimenting with different values and selecting the ones that give the best

results on the test problems at hand.

Technical drawbacks to parameter tuning:

� Parameters are not independent, but trying all different combinations systematically is practi-

cally impossible.

� It is heavily based on personal experience and is guided by a mixture of rules of thumb.

� The process of parameter tuning is time consuming, even if parameters are optimised one by

one, regardless of their interactions.

� For a given problem the selected parameter values are not necessarily optimal, even if the

effort made for setting them was significant.

� There are no generally good parameter settings since specific problems require specific setups

for satisfactory performance.

� A run of an EA is an intrinsically dynamic, adaptive process. Thus, different values of param-

eters might be optimal at different stages of the evolutionary process.

Ex.: Large mutation steps can be good in the early generations, helping the exploration.

Small mutation steps do better in the late generations fine-tuning the suboptimal solution.

� Parameter Control

pParameter Control in Evolutionary Algorithms

An EA is a metaheuristic whose components need to be instantiated and properly tuned in order

to yield a fully functioning algorithm:

� components – representation, selection and replacement strategy, recombination and mutation

operators, ...

� strategy parameters – population size, probability of crossover and mutation, parameter of

selection, etc.

The values of these algorithms greatly determine whether the algorithm will find an optimal (or

near-optimal) solution, and whether it will find such a solution effectively.

Two major forms of setting the parameter values

� Parameter tuning – finding good values for the parameters before the run of the algorithm,

and then running the algorithm with these values, which remain fixed during the run.

� Parameter control – starts a run with initial parameter values that change during the run.

� Parameter Control

pParameter Tuning: F-Race

F-Race [Birattari02] – procedure that empirically evaluates a set of candidate configurations by

discarding bad ones as soon as statistically sufficient evidence is gathered against them.

� The process starts from a given finite pool of candidate configurations.

� If sufficient evidence is gathered that some candidate is inferior to at least another one, such

a candidate is dropped from the pool and the procedure is iterated over the remaining ones.

The methodology can be applied to repetitive problems – problems where many similar instances

appear over time.

� Parameter Control

pAutomatic Algorithm Configuration and Parameter Tuning

� Θ is the finite set of candidate configurations.

� I is the possibly infinite set of instances.

� PI is a probability measure over the set I of instances – indicates the probability that the

instance i is selected for being solved.

� t : I −→ R is a function associating to every instance the computational time allocated to

it.

� c(θ, i) = c(θ, i, t(i)) is a random variable representing the cost of the best solution found by

running configuration θ on instance i for t(i) seconds.

� C ⊂ R is the range of c, that is, the possible values for the cost of the best solution found

in a run of a configuration θ ∈ Θ on an instance i ∈ I .

� PC is a probability measure over the set C: PC(c|θ, i) indicates the probability that c is the

cost of the best solution found by running configuration θ on instance i for t(i) seconds.

� C(θ) = C(θ|Θ, I, PI , PC, t) is the criterion that needs to be optimized with respect to θ.

− PI and PC are unknown,

− we can only estimate them.

� Parameter Control

pIdea of Racing Algorithms

Brute force approach – estimate the quantities PC and PI by means of a sufficiently large

number of runs of each candidate on a sufficiently large set of training instances.

� The training set must be defined prior the computation

– how large?

� How many runs of each configuration on each instance

should be performed?

� The same computational resources are allocated to

each configuration – wasting time on poor configs!

Racing algorithm – provides a better allocation of computational resources among candidate

configurations and allows for a clean solution to the problems with fixing the number of instances

and the number of runs to be considered.

� Sequentially evaluates candidate configs and discards poor ones as soon as statistically suffi-

cient evidence is gathered against them.

� Elimination of the inferior candidates speeds up the procedure and allows to evaluate the

promising ones on more instances.

� As the evaluation proceeds, the race focuses more and more on the promising configurations.

� Parameter Control

pF-Race: Algorithm

� k is the current step of the race process and n = |Θk−1| configurations are still in the race.

� i is a random sequence of training instances; ik is drawn from I according to PI , independently

for each k.

� ck(θ, i) is an array of k terms; c(θ, il) is the cost of the best solution found by configuration

θ on instance il.

For a given θ, the array ck of length k can be obtained from ck−1 by appending the cost

concerning the k-th instance in i.

� A block is n-variate random variable

(ck(θ1, il),c
k(θ2, il),. . . ,c

k(θn, il)) that cor-

responds to the computational results on

instance il for each configuration in the race

at step k.

� Null hypothesis – all possible rankings of the candidates within each block are equally likely.

� Parameter Control

pF-Race: Algorithm

The optimization problem is tackled by generating a sequence Θ0 = Θ ⊇ Θ1 ⊇ Θ2 ⊇ . . .

The step from a set Θk−1 to Θk is realized as follows

1. At step k, a new instance ik is considered; each candidate θ ∈ Θk−1 still in the race is executed

on ik and each observed cost c(θ, ik) is appended to its ck−1(θ, i).

2. An aggregate comparison of the arrays ck(θ, i) for all θ ∈ Θk−1 is carried out by a statistical

test – non-parametric Friedman 2-way analysis of variance by ranks.

The null hypothesis being that all possible rankings of the candidates within each block are

equally likely.

3. If the null hypothesis is rejected, pairwise comparisons between the best candidate and each

other one are carried out by means of the t-test. All candidates that result significantly worse

than the best one are discarded.

Otherwise, all candidates in Θk−1 pass to Θk.

� Parameter Control

pF-Race: Algorithm

Θ∗ = Θ0, ni = 0

repeat

randomly choose instance i from set I ; run all configurations on Θ∗ on i

ni = ni + 1

if (ni ≥ nimin)

perform rank-based Friedman test on results for configurations in Θ∗

on all instances in I evaluated so far

if (test indicates significant performance differences)

θ
∗ = best configuration in Θ∗ according to the statistical population parameter

over instances evaluated so far

for all θ ∈ Θ∗ \ {θ∗} do

perform pairwise t-test on θ and θ
∗

if (test indicates significant performance differences)

eliminate θ from Θ∗

end if

end for

end if

end if

until (termination condition)

return Θ∗

� Parameter Control

pF-Race: Final Remarks

Good technique, but:

� not suited for applications with large configuration spaces;

� thus, mainly used for configuration problems with few parameters and rather small configura-

tion spaces.

� Parameter Control

